
22    S U M M ER 20 19  VO L . 4 4 , N O. 2 	 www.usenix.org

PROGRAMMINGDatacenter RPCs Can Be General and Fast
A N U J K A L I A , M I C H A E L K A M I N S K Y , A N D D A V I D G . A N D E R S E N

Anuj Kalia is a PhD student
in the Computer Science
Department at Carnegie
Mellon University, advised
by David Andersen and

Michael Kaminsky. He is interested in high-
performance computer systems and networks.
akalia@cs.cmu.edu

David G. Andersen is
an Associate Professor
of Computer Science at
Carnegie Mellon University.
He completed his MS and

PhD degrees at MIT, and holds BS degrees
in biology and computer science from the
University of Utah. In 1995, he co-founded
an Internet service provider in Salt Lake City,
Utah. dga@cs.cmu.edu

Michael Kaminsky is a Senior
Research Scientist at Intel Labs
and an adjunct faculty member
of the Computer Science
Department at Carnegie Mellon

University. He is part of the Intel Science
and Technology Center for Visual Cloud
Systems (ISTC-VCS), based in Pittsburgh,
PA. His research interests include distributed
systems, operating systems, and networking.
michael.e.kaminsky@intel.com

“Using performance to justify placing functions in a low-level subsystem must
be done carefully. Sometimes, by examining the problem thoroughly, the same or
better performance can be achieved at the high level.”

—“End-to-End Arguments in System Design,” J. H. Saltzer, D. P. Reed,
	 and D. D. Clark, 1984

It is commonly believed that datacenter networking software must sacri-
fice generality to attain high performance. The popularity of specialized
distributed systems designed specifically for niche technologies such

as RDMA, lossless networks, FPGAs, and programmable switches testifies
to this belief. In this article, we show that such specialization is not neces-
sary. eRPC is a new general-purpose remote procedure call (RPC) library
that offers performance comparable to specialized systems while running
on commodity CPUs in traditional datacenter networks based on either lossy
Ethernet or lossless fabrics.

eRPC performs well in three key metrics: message rate for small messages; bandwidth for
large messages; and scalability to a large number of nodes and CPU cores. It handles packet
loss, congestion, and background request execution. In microbenchmarks, one CPU core can
handle up to 10 million small RPCs per second or send large messages at 75 Gbps. We port a
production-grade implementation of Raft state machine replication to eRPC without modi-
fying the core Raft source code. We achieve 5.5 µs of replication latency on lossy Ethernet,
which is faster than or comparable to specialized replication systems that use programmable
switches, FPGAs, or RDMA.

Squeezing the best performance out of modern, high-speed datacenter networks has meant
painstaking specialization that breaks down the abstraction barriers between software
and hardware layers. The result has been an explosion of co-designed distributed systems
that depend on niche network technologies, including RDMA, FPGAs, and programmable
switches. Add to that new distributed protocols with incomplete specifications, the inabil-
ity to reuse existing software, hacks to enable consistent views of remote memory—and the
typical developer is likely to give up and just use kernel-based TCP.

These specialized technologies were deployed with the belief that placing their functionality
in the network would yield a large performance gain. Our work shows that a general-purpose
RPC library called eRPC can provide state-of-the-art performance on commodity Ethernet
datacenter networks without additional network support. This helps inform the debate about
the utility of additional in-network functionality versus purely end-to-end solutions for
datacenter applications.

The goal of our work is to answer the question: can a general-purpose RPC library provide
performance comparable to specialized systems? Our solution is based on two key insights.
First, we optimize for the common case, i.e., when messages are small, the network is
congestion-free, and RPC handlers are short. Handling large messages, congestion, and long-
running RPC handlers requires expensive code paths, which eRPC avoids whenever possible.

www.usenix.org	   S U M M ER 20 19  VO L . 4 4 , N O. 2  23

PROGRAMMIING
Datacenter RPCs Can Be General and Fast

Several eRPC components, including its API, message format,
and wire protocol, are optimized for the common case. Second,
restricting each flow to at most one bandwidth-delay product
(BDP) of outstanding data effectively prevents packet loss
caused by switch buffer overflow for common traffic patterns.
This is because datacenter switch buffers are much larger than
the network’s BDP. For example, in our two-layer testbed that
resembles real deployments, each switch has 12 MB of dynamic
buffer, while the BDP is only 19 kB.

eRPC (efficient RPC) is available at https://erpc.io.

Background and Motivation
We first discuss aspects of modern datacenter networks relevant
to eRPC and the limitations of existing networking options that
underlie the need for eRPC.

High-Speed Datacenter Networking
Modern datacenter networks provide tens of Gbps per-port
bandwidth and a few microseconds of round-trip latency. They
support polling-based network I/O from userspace, eliminating
interrupts and system call overhead from the datapath. eRPC
uses userspace networking with polling, as in most prior high-
performance networked systems.

Lossless fabrics. Lossless packet delivery is a link-level feature
that prevents congestion-based packet drops. For example,
priority-based flow control (PFC) for Ethernet prevents a link’s
sender from overflowing the receiver’s buffer by using pause
frames. Some datacenter operators, including Microsoft, have
deployed PFC at scale. Unfortunately, PFC comes with a host
of problems, including head-of-line blocking, deadlocks due to
cyclic buffer dependencies, and complex switch configuration.
In our experience, datacenter operators are often unwilling to
deploy PFC due to these problems.

Switch buffer >> BDP. The increase in datacenter bandwidth
has been accompanied by a corresponding decrease in round-
trip time (RTT), resulting in a small BDP. Switch buffers have
grown in size to the point where “shallow-buffered” switches
that use SRAM for buffering now provide tens of megabytes of
shared buffer. Much of this buffer is dynamic, i.e., it can be dedi-
cated to an incast’s target port, preventing packet drops from
buffer overflow. For example, in our two-layer 25 GbE testbed
that resembles real datacenters, the RTT between two nodes
connected to different top-of-rack (ToR) switches is 6 µs, so the
BDP is 19 kB. In contrast to the small BDP, the Mellanox Spec-
trum switches in our cluster have 12 MB in their dynamic buffer
pool. Therefore, the switch can ideally tolerate a 640-way incast.
The popular Broadcom Trident-II chip used in datacenters at
Microsoft and Facebook has a 9 MB dynamic buffer.

In practice, we wish to support approximately 50-way incasts:
congestion control protocols deployed in real datacenters are
tested against comparable incast degrees. This is much smaller
than 640, allowing substantial tolerance to technology varia-
tions, i.e., we expect the switch buffer to be large enough to
prevent most packet drops in datacenters with different BDPs
and switch buffer sizes.

Limitations of Existing Options
Software options. Existing datacenter networking software
options sacrifice performance or generality, preventing unmodi-
fied applications from using the network efficiently. On the one
hand, fully general networking stacks such as mTCP [4] allow
legacy sockets-based applications to run unmodified. Unfortu-
nately, they leave substantial performance on the table, espe-
cially for small messages. On the other extreme, fast packet I/O
libraries such as DPDK provide only unreliable packet delivery.

Our prior RPC design—FaSST RPCs [6]—was the precursor to
eRPC. Like eRPC, FaSST RPCs use datagram packet I/O, but
they assume a lossless network and lack several features such
as multi-packet messages and congestion control. eRPC’s main
contribution is a design that performs well in lossy networks and
supports the aforementioned features with low overhead.

Hardware options. Numerous recent research proposals co-
design distributed systems with special network hardware tech-
nologies like RDMA, FPGAs, and programmable switches for
fast communication. While there are advantages of co-design,
such specialized systems are unfortunately very difficult to
design, implement, and deploy. Specialization breaks abstrac-
tion boundaries between components, which prevents reuse of
components and increases software complexity. Building dis-
tributed systems requires tremendous programmer effort, and
co-design typically mandates starting from scratch, with new
data structures, consensus protocols, or transaction protocols.
Co-designed systems often cannot reuse existing codebases or
protocols, tests, formal specifications, programmer hours, and
feature sets.

eRPC Overview
eRPC implements RPCs on top of a transport layer that provides
basic unreliable packet I/O, such as UDP over Ethernet networks
or InfiniBand’s Unreliable Datagram transport. A userspace NIC
driver is required for good performance. Our primary contribu-
tion is the design and implementation of end-host mechanisms
and a network transport (e.g., wire protocol and congestion
control) for RPCs.

 eRPC’s requests execute at most once and are asynchronous to
avoid stalling on network round trips; intra-thread concurrency
is provided using an event loop. RPC servers register request

24    S U M M ER 20 19  VO L . 4 4 , N O. 2 	 www.usenix.org

PROGRAMMIING
Datacenter RPCs Can Be General and Fast

handler functions with unique request types; clients use these
request types when issuing RPCs, and get continuation call-
backs on RPC completion. Users store RPC messages in opaque,
DMA-capable buffers provided by eRPC; a library that provides
marshalling and unmarshalling can be used as a layer on top
of eRPC.

Each user thread that sends or receives requests creates an
exclusive RPC endpoint. Each endpoint contains an RX and TX
queue for packet I/O, an event loop, and several sessions. A ses-
sion is a one-to-one connection between two RPC endpoints, i.e.,
two user threads. The client endpoint of a session is used to send
requests to the user thread at the other end. A user thread may
participate in multiple sessions, possibly playing different roles
(i.e., client or server) in different sessions.

User threads act as “dispatch” threads: they must periodically
run their endpoint’s event loop to make progress. The event loop
performs the bulk of eRPC’s work, including packet I/O, invok-
ing request handlers and continuations, congestion control, and
management functions. To avoid blocking on a long-running
request handler, eRPC provides a pool of background threads to
handle request types that are annotated by the user as long-
running, typically over a few microseconds.

Client control flow. rpc->enqueue_request() queues a request
on a session, which is transmitted when the user runs rpc’s event
loop. On receiving the response, the event loop copies it to the cli-
ent’s response buffer and invokes the continuation callback.

Server control flow. The event loop of the rpc that owns the
server session invokes (or dispatches) a request handler on
receiving a request. We allow nested RPCs, i.e., the handler need
not enqueue a response before returning. It may issue its own
RPCs and call enqueue_response() for the first request later
when all dependencies complete.

eRPC design
Achieving eRPC’s performance goals requires careful design
and implementation. We discuss three aspects of eRPC’s design
in this section: scalability of our networking primitives, the
challenges involved in supporting zero-copy transfers, and
the design of sessions. The next section discusses eRPC’s wire
protocol and congestion control. A recurring theme in eRPC’s
design is that we optimize for the common case, i.e., when
request handlers run in dispatch threads, RPCs are small and
the network is congestion-free.

Scalability considerations. We chose plain packet I/O instead
of RDMA writes to send messages in eRPC. eRPC holds connec-
tion state in large CPU caches, which allows scaling to a large
number of connections. In contrast, RDMA requires maintain-
ing per-connection in much smaller (∼2 MB) on-NIC caches,
which does not scale well to large clusters. Our experiments

show that whereas RDMA performance drops by up to 50% with
5000 connections, eRPC’s performance remains constant with
even 20,000 connections. In addition, eRPC uses modern NIC
features (e.g., multi-packet receive queues) to guarantee a con-
stant NIC memory footprint per local CPU core.

Zero-copy challenges. eRPC supports zero-copy transfers
from DMA-capable buffers provided to applications. Supporting
zero-copy along with eRPC’s feature set required solving several
challenges, such as reasoning about DMA buffer ownership in
the presence of retransmissions. Since eRPC transfers packets
directly from application-owned buffers, care must be taken
so that buffer references are never used by eRPC after buffer
ownership is returned to the application. The following example
demonstrates the problem: Consider a client that falsely suspects
packet loss and retransmits its request. The server, however,
received the first copy of the request, and its response reaches
the client before the retransmitted request is sent out by the
client’s NIC. Before processing the response and invoking the
continuation, we must ensure that there are no references to the
request buffer in the client’s NIC DMA queue.

The conventional approach to ensure DMA completion is to
use “signaled” packet transmission, in which the NIC writes
completion entries to the TX completion queue. Unfortunately,
doing so increases NIC and PCIe resource use, so we use unsig-
naled packet transmission in eRPC. Our method of ensuring
DMA completion with unsignaled transmission is in line with
our design philosophy: we choose to make the common case
(no retransmission) fast, at the expense of invoking a more-
expensive mechanism to handle the rare cases. We flush the
TX DMA queue after queueing a retransmitted packet, which
blocks until all queued packets are DMA-ed. This f lush is
moderately expensive (≈2 µs), but it is called only during rare
retransmissions.

Sessions. Each session maintains multiple outstanding requests
to keep the network pipe full. Concurrent requests on a session
can complete out-of-order with respect to each other. This
avoids blocking dispatch-mode RPCs behind a long-running
background RPC. We support a constant number of concurrent
requests (default = 8) per session; additional requests are trans-
parently queued by eRPC.

eRPC limits the number of unacknowledged packets on a session
to implement end-to-end flow control, which reduces switch
queueing. Allowing BDP/MTU unacknowledged packets per
session ensures that each session can achieve line rate.

Transport Layer
One of eRPC’s main contributions is the design of low-overhead
transport layer components, including end-to-end reliability and
congestion control, discussed next. eRPC uses a client-driven

www.usenix.org	   S U M M ER 20 19  VO L . 4 4 , N O. 2  25

PROGRAMMIING
Datacenter RPCs Can Be General and Fast

protocol, meaning that each packet sent by the server is in
response to a client packet. This shifts most transport complex-
ity to clients, freeing server CPU that is often more valuable.

End-to-end reliability. For simplicity, eRPC treats reordered
packets as losses by dropping them. Datacenter networks
typically preserve intra-flow ordering even with network load
balancing (e.g., ECMP), except during rare route churn events.
On suspecting a lost packet, the client rolls back the request’s
wire protocol state using a simple Go-Back-N mechanism, and
retransmits from the updated state. The server never runs the
request handler for a request twice, guaranteeing at-most-once
RPC semantics.

Congestion control. Congestion control for datacenter net-
works aims to reduce switch queueing, thereby preventing
packet drops and reducing RTT. While software-based con
gestion control has been considered to be slow in the past, we
show that optimizing for uncongested networks, and recent
advances in software rate limiting allow congestion control
with little overhead.

eRPC uses a congestion control algorithm for high-speed data-
center networks called Timely [7], although other algorithms
may also be supported in the future. Timely uses packet RTT
as the congestion signal, and it updates session transmission
rates based on RTT statistics. We use a software rate limiter
for enforcing the transmission rate suggested by Timely.

Datacenter networks are typically uncongested, so we optimize
congestion control for uncongested networks. Recent datacenter
studies support this claim. For example, Roy et al. [9] report that
99% of all Facebook datacenter links are less than 10% utilized
at one-minute timescales.

When a session is uncongested, RTTs are low and Timely’s
computed rate for the session stays at the link’s maximum rate;
we refer to such sessions as uncongested. If the RTT of a packet
received on an uncongested session is smaller than Timely’s low
threshold (∼50 µs), below which it performs additive increase,
we do not perform a rate update. For uncongested sessions, we
transmit packets directly instead of placing them in the rate
limiter.

Evaluation
eRPC is implemented in 6200 SLOC of C++, excluding tests and
benchmarks. We evaluated eRPC’s performance both in micro-
benchmarks and real applications. The numbers presented here
were measured on an eight-node cluster with Intel Xeon servers,
with Mellanox ConnectX-5 NICs connected to a 40 GbE switch.

Microbenchmarks
Latency. For small 32-byte RPCs, eRPC’s median latency is
2.3 µs, which is only 300 ns more than 32-byte RDMA reads.

Bandwidth. To measure eRPC’s bandwidth for large messages,
we use a client that sends large requests to a server thread, which
replies with small, 32-byte responses. With 8 MB requests, eRPC
saturates the network’s 40 Gbps with one client thread. On a
faster 100 Gbps InfiniBand network, we measured that eRPC
can achieve 75 Gbps in the same experiment.

In addition, our microbenchmarks showed that eRPC also
provides:

◆◆ High scalability. On a large 100-node cluster, eRPC’s perfor-
mance scales to 20,000 connections per-node.

◆◆ Incast tolerance. eRPC’s congestion control successfully
reduces switch queueing with up to 50-way incasts.

◆◆ Packet loss tolerance. eRPC delivers good bandwidth with a
packet loss rate of up to 10−5.

Raft over eRPC
To evaluate whether eRPC can be used in real applications with
unmodified existing storage software, we built a state machine rep-
lication system using an open-source implementation of Raft [8].

State machine replication (SMR) is used to build fault-tolerant
services. An SMR service consists of a group of server nodes that
receive commands from clients. SMR protocols ensure that each
server executes the same sequence of commands and that the
service remains available if servers fail. Raft is such a protocol
that takes a leader-based approach: absent failures, the Raft
replicas have a stable leader to which clients send commands; if
the leader fails, the remaining Raft servers elect a new one. The
leader appends the command to replicas’ logs, and it replies to
the client after receiving ACKs from a majority of replicas.

SMR is difficult to design and implement correctly: the pro-
tocol must have a specification and a proof (e.g., in TLA+), and
the implementation must adhere to the specification. We avoid
this difficulty by using an existing implementation of Raft [1].
(It had no distinct name, so we term it LibRaft.) We did not write
LibRaft ourselves; we found it on GitHub and used it as is. LibRaft
is well tested with fuzzing over a network simulator and 150+ unit
tests. Its only requirement is that the user provide callbacks for
sending and handling RPCs—which we implement using eRPC.
Porting to eRPC required no changes to LibRaft’s code.

Measurement System Median
(µs)

99%
(µs)

Measured at client
NetChain 9.7 N/A

eRPC 5.5 6.3

Measured at leader
ZabFPGA 3.0 3.0

eRPC 3.1 3.4

Table 1: Latency comparison for replicated PUTs

26    S U M M ER 20 19  VO L . 4 4 , N O. 2 	 www.usenix.org

PROGRAMMIING
Datacenter RPCs Can Be General and Fast

We compare against recent consistent replication systems that
are built from scratch for two specialized hardware types. First,
NetChain [5] implements chain replication over programmable
switches. Second, Consensus in a Box [3] (called ZabFPGA here)
implements ZooKeeper’s atomic broadcast protocol [2] on FPGAs.

Workloads. We mimic NetChain and ZabFPGA’s experiment
setups for latency measurement: we implement a three-way
replicated in-memory key-value store with 16-byte keys and
64-byte values, and use one client to issue PUT requests. The
replicas’ command logs and key-value store are stored in DRAM.
We compare eRPC’s performance on CX5 against their pub-
lished numbers because we do not have the hardware to run
NetChain or ZabFPGA. Table 1 compares the latencies of the
three systems.

Comparison with NetChain. NetChain’s key assumption is
that software networking adds 1–2 orders of magnitude more
latency than switches [5]. However, our experiments show that
eRPC adds 850 ns, which is comparable to latency added by
current programmable switches (∼800 ns).

Raft’s latency over eRPC is 5.5 µs, which is substantially lower
than NetChain’s 9.7 µs. This result must be taken with a grain
of salt: on the one hand, NetChain uses NICs that have higher
latency than our ConnectX-5 NICs. On the other hand, it has
numerous limitations, including key-value size and capacity
constraints, serial chain replication whose latency increases
linearly with the number of replicas, absence of congestion con-
trol, and reliance on a complex and external failure detector.

Comparison with ZabFPGA. Although ZabFPGA’s SMR serv-
ers are FPGAs, the clients are commodity workstations that
communicate with the FPGAs over slow kernel-based TCP. For
a challenging comparison, we compare against ZabFPGA’s com-
mit latency measured at the leader, which involves only FPGAs.
In addition, we consider its “direct connect” mode, where FPGAs
communicate over point-to-point links (i.e., without a switch)
via a custom protocol. Even so, eRPC’s median leader commit
latency is only 3% worse.

Conclusion
eRPC is a fast, general-purpose RPC system that provides an
attractive alternative to putting more functions in network
hardware and specialized system designs that depend on these
functions. eRPC’s speed comes from prioritizing common-case
performance, carefully combining a wide range of old and new
optimizations, and the observation that switch buffer capacity
far exceeds datacenter BDP. eRPC delivers performance that
was until now believed possible only with lossless RDMA fabrics
or specialized network hardware, and it allows unmodified
applications to perform close to the hardware limits.

References
[1] C Implementation of the Raft Consensus Protocol, 2019:
https://github.com/willemt/raft.

[2] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zoo-
Keeper: Wait-Free Coordination for Internet-Scale Systems,”
in Proceedings of the USENIX Annual Technical Conference
(USENIX ATC ’10), June 2010: https://www.usenix.org/legacy​
/event/usenix10/tech/full_papers/Hunt.pdf.

[3] Z. István, D. Sidler, G. Alonso, and M. Vukolic, “Consensus
in a Box: Inexpensive Coordination in Hardware,” in Proceed-
ings of the 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’16), May 2016: https://​
www.usenix.org/system/files/conference/nsdi16/nsdi16​
-paper-istvan.pdf.

[4] E. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm, D. Han,
and K. Park, “mTCP: A Highly Scalable User-Level TCP Stack
for Multicore Systems,” in Proceedings of the 11th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI ’14), April 2014: https://www.usenix.org/system/files​
/conference/nsdi14/nsdi14-paper-jeong.pdf.

[5] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim,
and I. Stoica, “NetChain: Scale-Free Sub-RTT Coordination,”
in Proceedings of the 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’18), April 2018:
https://www.usenix.org/system/files/conference/nsdi18​
/nsdi18-jin.pdf.

[6] A. Kalia, M. Kaminsky, and D. G. Andersen, “FaSST: Fast,
Scalable and Simple Distributed Transactions with Two-
Sided RDMA Datagram RPCs,” in Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI ’16), November 2016: https://www.usenix.org​
/system/files/conference/osdi16/osdi16-kalia.pdf.

[7] R. Mittal, T. Lam, N. Dukkipati, E. Blem, H. Wassel, M.
Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and D. Zats,
“TIMELY: RTT-Based Congestion Control for the Datacenter,”
in Proceedings of the ACM SIGCOMM, August 2015.

[8] D. Ongaro and J. Ousterhout, “In Search of an Understand-
able Consensus Algorithm,” in Proceedings of the USENIX
Annual Technical Conference (USENIX ATC ’14), June 2014:
https://www.usenix.org/system/files/conference/atc14/atc14​
-paper-ongaro.pdf.

[9] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren,
“Inside the Social Network’s (Datacenter) Network,” in
Proceedings of the ACM SIGCOMM, August 2015.

https://github.com/willemt/raft
https://www.usenix.org/legacy/event/usenix10/tech/full_papers/Hunt.pdf
https://www.usenix.org/legacy/event/usenix10/tech/full_papers/Hunt.pdf
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-istvan.pdf
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-istvan.pdf
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-istvan.pdf
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-jeong.pdf
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-jeong.pdf
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-jin.pdf
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-jin.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-kalia.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-kalia.pdf
https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf
https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf

