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“Using performance to justify placing functions in a low-level subsystem must 
be done carefully. Sometimes, by examining the problem thoroughly, the same or 
better performance can be achieved at the high level.”

—“End-to-End Arguments in System Design,” J. H. Saltzer, D. P. Reed,  
	 and D. D. Clark, 1984

It is commonly believed that datacenter networking software must sacri-
fice generality to attain high performance. The popularity of specialized 
distributed systems designed specifically for niche technologies such 

as RDMA, lossless networks, FPGAs, and programmable switches testifies 
to this belief. In this article, we show that such specialization is not neces-
sary. eRPC is a new general-purpose remote procedure call (RPC) library 
that offers performance comparable to specialized systems while running 
on commodity CPUs in traditional datacenter networks based on either lossy 
Ethernet or lossless fabrics.

eRPC performs well in three key metrics: message rate for small messages; bandwidth for 
large messages; and scalability to a large number of nodes and CPU cores. It handles packet 
loss, congestion, and background request execution. In microbenchmarks, one CPU core can 
handle up to 10 million small RPCs per second or send large messages at 75 Gbps. We port a 
production-grade implementation of Raft state machine replication to eRPC without modi-
fying the core Raft source code. We achieve 5.5 µs of replication latency on lossy Ethernet, 
which is faster than or comparable to specialized replication systems that use programmable 
switches, FPGAs, or RDMA. 

Squeezing the best performance out of modern, high-speed datacenter networks has meant 
painstaking specialization that breaks down the abstraction barriers between software 
and hardware layers. The result has been an explosion of co-designed distributed systems 
that depend on niche network technologies, including RDMA, FPGAs, and programmable 
switches. Add to that new distributed protocols with incomplete specifications, the inabil-
ity to reuse existing software, hacks to enable consistent views of remote memory—and the 
typical developer is likely to give up and just use kernel-based TCP.

These specialized technologies were deployed with the belief that placing their functionality 
in the network would yield a large performance gain. Our work shows that a general-purpose 
RPC library called eRPC can provide state-of-the-art performance on commodity Ethernet 
datacenter networks without additional network support. This helps inform the debate about 
the utility of additional in-network functionality versus purely end-to-end solutions for 
datacenter applications.

The goal of our work is to answer the question: can a general-purpose RPC library provide 
performance comparable to specialized systems? Our solution is based on two key insights. 
First, we optimize for the common case, i.e., when messages are small, the network is 
congestion-free, and RPC handlers are short. Handling large messages, congestion, and long-
running RPC handlers requires expensive code paths, which eRPC avoids whenever possible. 
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Several eRPC components, including its API, message format, 
and wire protocol, are optimized for the common case. Second, 
restricting each flow to at most one bandwidth-delay product 
(BDP) of outstanding data effectively prevents packet loss 
caused by switch buffer overflow for common traffic patterns. 
This is because datacenter switch buffers are much larger than 
the network’s BDP. For example, in our two-layer testbed that 
resembles real deployments, each switch has 12 MB of dynamic 
buffer, while the BDP is only 19 kB.

eRPC (efficient RPC) is available at https://erpc.io.

Background and Motivation
We first discuss aspects of modern datacenter networks relevant 
to eRPC and the limitations of existing networking options that 
underlie the need for eRPC.

High-Speed Datacenter Networking
Modern datacenter networks provide tens of Gbps per-port 
bandwidth and a few microseconds of round-trip latency. They 
support polling-based network I/O from userspace, eliminating 
interrupts and system call overhead from the datapath. eRPC 
uses userspace networking with polling, as in most prior high-
performance networked systems.

Lossless fabrics. Lossless packet delivery is a link-level feature 
that prevents congestion-based packet drops. For example, 
priority-based flow control (PFC) for Ethernet prevents a link’s 
sender from overflowing the receiver’s buffer by using pause 
frames. Some datacenter operators, including Microsoft, have 
deployed PFC at scale. Unfortunately, PFC comes with a host 
of problems, including head-of-line blocking, deadlocks due to 
cyclic buffer dependencies, and complex switch configuration. 
In our experience, datacenter operators are often unwilling to 
deploy PFC due to these problems.

Switch buffer >> BDP. The increase in datacenter bandwidth 
has been accompanied by a corresponding decrease in round-
trip time (RTT), resulting in a small BDP. Switch buffers have 
grown in size to the point where “shallow-buffered” switches 
that use SRAM for buffering now provide tens of megabytes of 
shared buffer. Much of this buffer is dynamic, i.e., it can be dedi-
cated to an incast’s target port, preventing packet drops from 
buffer overflow. For example, in our two-layer 25 GbE testbed 
that resembles real datacenters, the RTT between two nodes 
connected to different top-of-rack (ToR) switches is 6 µs, so the 
BDP is 19 kB. In contrast to the small BDP, the Mellanox Spec-
trum switches in our cluster have 12 MB in their dynamic buffer 
pool. Therefore, the switch can ideally tolerate a 640-way incast. 
The popular Broadcom Trident-II chip used in datacenters at 
Microsoft and Facebook has a 9 MB dynamic buffer.

In practice, we wish to support approximately 50-way incasts: 
congestion control protocols deployed in real datacenters are 
tested against comparable incast degrees. This is much smaller 
than 640, allowing substantial tolerance to technology varia-
tions, i.e., we expect the switch buffer to be large enough to 
prevent most packet drops in datacenters with different BDPs 
and switch buffer sizes.

Limitations of Existing Options
Software options. Existing datacenter networking software 
options sacrifice performance or generality, preventing unmodi-
fied applications from using the network efficiently. On the one 
hand, fully general networking stacks such as mTCP [4] allow 
legacy sockets-based applications to run unmodified. Unfortu-
nately, they leave substantial performance on the table, espe-
cially for small messages. On the other extreme, fast packet I/O 
libraries such as DPDK provide only unreliable packet delivery.

Our prior RPC design—FaSST RPCs [6]—was the precursor to 
eRPC. Like eRPC, FaSST RPCs use datagram packet I/O, but 
they assume a lossless network and lack several features such 
as multi-packet messages and congestion control. eRPC’s main 
contribution is a design that performs well in lossy networks and 
supports the aforementioned features with low overhead.

Hardware options. Numerous recent research proposals co-
design distributed systems with special network hardware tech-
nologies like RDMA, FPGAs, and programmable switches for 
fast communication. While there are advantages of co-design, 
such specialized systems are unfortunately very difficult to 
design, implement, and deploy. Specialization breaks abstrac-
tion boundaries between components, which prevents reuse of 
components and increases software complexity. Building dis-
tributed systems requires tremendous programmer effort, and 
co-design typically mandates starting from scratch, with new 
data structures, consensus protocols, or transaction protocols. 
Co-designed systems often cannot reuse existing codebases or 
protocols, tests, formal specifications, programmer hours, and 
feature sets.

eRPC Overview
eRPC implements RPCs on top of a transport layer that provides 
basic unreliable packet I/O, such as UDP over Ethernet networks 
or InfiniBand’s Unreliable Datagram transport. A userspace NIC 
driver is required for good performance. Our primary contribu-
tion is the design and implementation of end-host mechanisms 
and a network transport (e.g., wire protocol and congestion 
control) for RPCs.

 eRPC’s requests execute at most once and are asynchronous to 
avoid stalling on network round trips; intra-thread concurrency 
is provided using an event loop. RPC servers register request 
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handler functions with unique request types; clients use these 
request types when issuing RPCs, and get continuation call-
backs on RPC completion. Users store RPC messages in opaque, 
DMA-capable buffers provided by eRPC; a library that provides 
marshalling and unmarshalling can be used as a layer on top  
of eRPC. 

Each user thread that sends or receives requests creates an 
exclusive RPC endpoint. Each endpoint contains an RX and TX 
queue for packet I/O, an event loop, and several sessions. A ses-
sion is a one-to-one connection between two RPC endpoints, i.e., 
two user threads. The client endpoint of a session is used to send 
requests to the user thread at the other end. A user thread may 
participate in multiple sessions, possibly playing different roles 
(i.e., client or server) in different sessions.

User threads act as “dispatch” threads: they must periodically 
run their endpoint’s event loop to make progress. The event loop 
performs the bulk of eRPC’s work, including packet I/O, invok-
ing request handlers and continuations, congestion control, and 
management functions. To avoid blocking on a long-running 
request handler, eRPC provides a pool of background threads to 
handle request types that are annotated by the user as long-
running, typically over a few microseconds.

Client control flow. rpc->enqueue_request() queues a request 
on a session, which is transmitted when the user runs rpc’s event 
loop. On receiving the response, the event loop copies it to the cli-
ent’s response buffer and invokes the continuation callback.

Server control flow. The event loop of the rpc that owns the 
server session invokes (or dispatches) a request handler on 
receiving a request. We allow nested RPCs, i.e., the handler need 
not enqueue a response before returning. It may issue its own 
RPCs and call enqueue_response() for the first request later 
when all dependencies complete.

eRPC design
Achieving eRPC’s performance goals requires careful design 
and implementation. We discuss three aspects of eRPC’s design 
in this section: scalability of our networking primitives, the 
challenges involved in supporting zero-copy transfers, and 
the design of sessions. The next section discusses eRPC’s wire 
protocol and congestion control. A recurring theme in eRPC’s 
design is that we optimize for the common case, i.e., when 
request handlers run in dispatch threads, RPCs are small and 
the network is congestion-free.

Scalability considerations. We chose plain packet I/O instead 
of RDMA writes to send messages in eRPC. eRPC holds connec-
tion state in large CPU caches, which allows scaling to a large 
number of connections. In contrast, RDMA requires maintain-
ing per-connection in much smaller (∼2 MB) on-NIC caches, 
which does not scale well to large clusters. Our experiments 

show that whereas RDMA performance drops by up to 50% with 
5000 connections, eRPC’s performance remains constant with 
even 20,000 connections. In addition, eRPC uses modern NIC 
features (e.g., multi-packet receive queues) to guarantee a con-
stant NIC memory footprint per local CPU core.

Zero-copy challenges. eRPC supports zero-copy transfers 
from DMA-capable buffers provided to applications. Supporting 
zero-copy along with eRPC’s feature set required solving several 
challenges, such as reasoning about DMA buffer ownership in 
the presence of retransmissions. Since eRPC transfers packets 
directly from application-owned buffers, care must be taken 
so that buffer references are never used by eRPC after buffer 
ownership is returned to the application. The following example 
demonstrates the problem: Consider a client that falsely suspects 
packet loss and retransmits its request. The server, however, 
received the first copy of the request, and its response reaches 
the client before the retransmitted request is sent out by the 
client’s NIC. Before processing the response and invoking the 
continuation, we must ensure that there are no references to the 
request buffer in the client’s NIC DMA queue.

The conventional approach to ensure DMA completion is to 
use “signaled” packet transmission, in which the NIC writes 
completion entries to the TX completion queue. Unfortunately, 
doing so increases NIC and PCIe resource use, so we use unsig-
naled packet transmission in eRPC. Our method of ensuring 
DMA completion with unsignaled transmission is in line with 
our design philosophy: we choose to make the common case 
(no retransmission) fast, at the expense of invoking a more-
expensive mechanism to handle the rare cases. We flush the 
TX DMA queue after queueing a retransmitted packet, which 
blocks until all queued packets are DMA-ed. This f lush is 
moderately expensive (≈2 µs), but it is called only during rare 
retransmissions.

Sessions. Each session maintains multiple outstanding requests 
to keep the network pipe full. Concurrent requests on a session 
can complete out-of-order with respect to each other. This 
avoids blocking dispatch-mode RPCs behind a long-running 
background RPC. We support a constant number of concurrent 
requests (default = 8) per session; additional requests are trans-
parently queued by eRPC.

eRPC limits the number of unacknowledged packets on a session 
to implement end-to-end flow control, which reduces switch 
queueing. Allowing BDP/MTU unacknowledged packets per 
session ensures that each session can achieve line rate.

Transport Layer
One of eRPC’s main contributions is the design of low-overhead 
transport layer components, including end-to-end reliability and 
congestion control, discussed next. eRPC uses a client-driven 
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protocol, meaning that each packet sent by the server is in 
response to a client packet. This shifts most transport complex-
ity to clients, freeing server CPU that is often more valuable.

End-to-end reliability. For simplicity, eRPC treats reordered 
packets as losses by dropping them. Datacenter networks 
typically preserve intra-flow ordering even with network load 
balancing (e.g., ECMP), except during rare route churn events. 
On suspecting a lost packet, the client rolls back the request’s 
wire protocol state using a simple Go-Back-N mechanism, and 
retransmits from the updated state. The server never runs the 
request handler for a request twice, guaranteeing at-most-once 
RPC semantics.

Congestion control. Congestion control for datacenter net-
works aims to reduce switch queueing, thereby preventing 
packet drops and reducing RTT. While software-based con
gestion control has been considered to be slow in the past, we 
show that optimizing for uncongested networks, and recent 
advances in software rate limiting allow congestion control  
with little overhead.

eRPC uses a congestion control algorithm for high-speed data-
center networks called Timely [7], although other algorithms 
may also be supported in the future. Timely uses packet RTT  
as the congestion signal, and it updates session transmission 
rates based on RTT statistics. We use a software rate limiter  
for enforcing the transmission rate suggested by Timely.

Datacenter networks are typically uncongested, so we optimize 
congestion control for uncongested networks. Recent datacenter 
studies support this claim. For example, Roy et al. [9] report that 
99% of all Facebook datacenter links are less than 10% utilized 
at one-minute timescales.

When a session is uncongested, RTTs are low and Timely’s 
computed rate for the session stays at the link’s maximum rate; 
we refer to such sessions as uncongested. If the RTT of a packet 
received on an uncongested session is smaller than Timely’s low 
threshold (∼50 µs), below which it performs additive increase, 
we do not perform a rate update. For uncongested sessions, we 
transmit packets directly instead of placing them in the rate 
limiter.

Evaluation
eRPC is implemented in 6200 SLOC of C++, excluding tests and 
benchmarks. We evaluated eRPC’s performance both in micro-
benchmarks and real applications. The numbers presented here 
were measured on an eight-node cluster with Intel Xeon servers, 
with Mellanox ConnectX-5 NICs connected to a 40 GbE switch.

Microbenchmarks
Latency. For small 32-byte RPCs, eRPC’s median latency is  
2.3 µs, which is only 300 ns more than 32-byte RDMA reads.

Bandwidth. To measure eRPC’s bandwidth for large messages, 
we use a client that sends large requests to a server thread, which 
replies with small, 32-byte responses. With 8 MB requests, eRPC 
saturates the network’s 40 Gbps with one client thread. On a 
faster 100 Gbps InfiniBand network, we measured that eRPC 
can achieve 75 Gbps in the same experiment.

In addition, our microbenchmarks showed that eRPC also 
provides:

◆◆ High scalability. On a large 100-node cluster, eRPC’s perfor-
mance scales to 20,000 connections per-node.

◆◆ Incast tolerance. eRPC’s congestion control successfully 
reduces switch queueing with up to 50-way incasts.

◆◆ Packet loss tolerance. eRPC delivers good bandwidth with a 
packet loss rate of up to 10−5.

Raft over eRPC
To evaluate whether eRPC can be used in real applications with 
unmodified existing storage software, we built a state machine rep-
lication system using an open-source implementation of Raft [8].

State machine replication (SMR) is used to build fault-tolerant 
services. An SMR service consists of a group of server nodes that 
receive commands from clients. SMR protocols ensure that each 
server executes the same sequence of commands and that the 
service remains available if servers fail. Raft is such a protocol 
that takes a leader-based approach: absent failures, the Raft 
replicas have a stable leader to which clients send commands; if 
the leader fails, the remaining Raft servers elect a new one. The 
leader appends the command to replicas’ logs, and it replies to 
the client after receiving ACKs from a majority of replicas.

SMR is difficult to design and implement correctly: the pro-
tocol must have a specification and a proof (e.g., in TLA+), and 
the implementation must adhere to the specification. We avoid 
this difficulty by using an existing implementation of Raft [1]. 
(It had no distinct name, so we term it LibRaft.) We did not write 
LibRaft ourselves; we found it on GitHub and used it as is. LibRaft 
is well tested with fuzzing over a network simulator and 150+ unit 
tests. Its only requirement is that the user provide callbacks for 
sending and handling RPCs—which we implement using eRPC. 
Porting to eRPC required no changes to LibRaft’s code.

Measurement System Median 
(µs)

99% 
(µs)

Measured at client 
NetChain 9.7 N/A

eRPC 5.5 6.3 

Measured at leader 
ZabFPGA 3.0 3.0 

eRPC 3.1 3.4

Table 1: Latency comparison for replicated PUTs
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We compare against recent consistent replication systems that 
are built from scratch for two specialized hardware types. First, 
NetChain [5] implements chain replication over programmable 
switches. Second, Consensus in a Box [3] (called ZabFPGA here) 
implements ZooKeeper’s atomic broadcast protocol [2] on FPGAs.

Workloads. We mimic NetChain and ZabFPGA’s experiment 
setups for latency measurement: we implement a three-way 
replicated in-memory key-value store with 16-byte keys and 
64-byte values, and use one client to issue PUT requests. The 
replicas’ command logs and key-value store are stored in DRAM. 
We compare eRPC’s performance on CX5 against their pub-
lished numbers because we do not have the hardware to run 
NetChain or ZabFPGA. Table 1 compares the latencies of the 
three systems.

Comparison with NetChain. NetChain’s key assumption is 
that software networking adds 1–2 orders of magnitude more 
latency than switches [5]. However, our experiments show that 
eRPC adds 850 ns, which is comparable to latency added by 
current programmable switches (∼800 ns).

Raft’s latency over eRPC is 5.5 µs, which is substantially lower 
than NetChain’s 9.7 µs. This result must be taken with a grain 
of salt: on the one hand, NetChain uses NICs that have higher 
latency than our ConnectX-5 NICs. On the other hand, it has 
numerous limitations, including key-value size and capacity 
constraints, serial chain replication whose latency increases 
linearly with the number of replicas, absence of congestion con-
trol, and reliance on a complex and external failure detector.

Comparison with ZabFPGA. Although ZabFPGA’s SMR serv-
ers are FPGAs, the clients are commodity workstations that 
communicate with the FPGAs over slow kernel-based TCP. For 
a challenging comparison, we compare against ZabFPGA’s com-
mit latency measured at the leader, which involves only FPGAs. 
In addition, we consider its “direct connect” mode, where FPGAs 
communicate over point-to-point links (i.e., without a switch) 
via a custom protocol. Even so, eRPC’s median leader commit 
latency is only 3% worse.

Conclusion
eRPC is a fast, general-purpose RPC system that provides an 
attractive alternative to putting more functions in network 
hardware and specialized system designs that depend on these 
functions. eRPC’s speed comes from prioritizing common-case 
performance, carefully combining a wide range of old and new 
optimizations, and the observation that switch buffer capacity 
far exceeds datacenter BDP. eRPC delivers performance that 
was until now believed possible only with lossless RDMA fabrics 
or specialized network hardware, and it allows unmodified 
applications to perform close to the hardware limits.
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