
32    S U M M ER 20 19  VO L . 4 4 , N O. 2 	 www.usenix.org

SREStructured Logging
Crafting Useful Message Content

V L A D I M I R L E G E Z A A N D A N T O N G O L U B T S O V W I T H B E T S Y B E Y E R

Vladimir Legeza is a Technical
Solutions Engineer at Google
Cloud Japan. For the last few
decades, he has worked for
various companies in a variety

of sizes and business spheres such as business
consulting, Web portals development, online
gaming, and TV broadcasting. Since 2010,
Vladimir has primarily focused on large-scale,
high-performance solutions. Before Google,
he worked as an SRE on search services and
platform infrastructure at Yandex and then in a
similar position at Amazon Japan.
lgz@google.com

Anton Golubtsov is a Software
Development Engineer at
Amazon Japan. Before Amazon,
he worked at Yandex in a few
roles: an SDE, a team leader,

and a Technical Project Manager.
zoomacode@zoomacode.ru

Betsy Beyer is a Technical
Writer for Google Site Reliability
Engineering in NYC and is
the editor of Site Reliability
Engineering: How Google Runs

Production Systems and Site Reliability Workbook.
She has previously written documentation for
Google datacenters and hardware operations
teams. She holds degrees from Stanford and
Tulane. bbeyer@google.com

In the context of logging, the word “structured” typically refers to the way
log records are represented in a machine-readable format, such as JSON
or XML. In this article, we focus on another aspect of logging structure:

the message content.

Computing today offers several automated ways of collecting, delivering, and processing log
records from different types of systems. But modern technologies are not supportive if the
information describing a specific event is insufficient or otherwise not helpful.

To approach this topic, it’s useful to understand the most common logging issues, why they
occur and possible solutions. By discussing some representative use cases, we aim to provide
practical insights and approaches to improving the structure of your logs. As with most
advice, our proposed solutions are just one way of approaching a problem space—feel free to
either apply our suggestions wholesale or pick and choose the pieces that suit your needs.

Reasons to Invest in Well-Structured Logging
Before diving into specifics: why should you invest time and effort on designing and imple-
menting a sound logging strategy?

Imagine a scenario in which you’re trying to investigate event statements to determine why
your main service isn’t responding. Meanwhile, angry customers are reaching out to you via
every possible communication channel, and upper management is shouting at you to resolve
the situation quickly. Every corner of the office seems to be consumed with anxiety and
pressure, but your only reasonable response is, “I couldn’t find any useful information in our
logs…I’ll need to reproduce this entire event on a staging environment.”

For many companies, every minute of downtime results in a certain amount of harm: outages
entail both financial costs and damage to your reputation. When customers and investors
experience a serious scare, the entire business may be at risk.

Well-structured logging can make a world of difference in the above scenario. After a few
years in the industry, our experience has shown that investing time and effort in improving
the logging process is worthwhile. When a crisis occurs, the alternative is too costly and
painful.

Anatomy of a Log Entry
Logs can be split into three broad categories:

◆◆ Operational logs: contain information about service usage, such as user requests and
transactions.

◆◆ Telemetry logs: contain application-internal metrics, expressed in the form of log records.

◆◆ Behavioral logs: show what is happening inside the application.

Operational and telemetry logs are typically generated from a pre-formatted template, while
behavioral logs incorporate manually crafted components that are unique to each record.
We’ll focus on behavioral logs, the most widely used and complex of the three, but you can
apply the solutions we discuss to operational and telemetry logs as well.

www.usenix.org	   S U M M ER 20 19  VO L . 4 4 , N O. 2  33

SRE
Structured Logging: Crafting Useful Message Content

Types of Records/Messages
You might implement logging for a variety of purposes, most of
which enable effective root cause analysis (RCA):

◆◆ Tracking milestones: To show an application’s current state
or a specified milestone. This type of information is useful in a
couple scenarios:

○○ When you want to understand what the application is doing
right now—whether or not it reaches a particular milestone.
Example milestones: Operation A is completed; starting
operation B. No more data to process.

○○ When you want to see a sequence of state changes in order
to understand the application’s end-to-end behavior.
Example implementation: The ssh binary expresses cer-
tain information into STDERR if executed with the -v flag.

◆◆ Alerting: To emit alert notifications when something goes
amiss.

◆◆ Debugging/sampling: To capture the data samples and state-
ments with which a program is operating. These types of mes-
sages appear in the code in early development stages, when you
simply want to see if an application is behaving as expected.

These message types map to a set of standard logging severity
levels, as shown in Table 1.

Granular Decomposition
It’s helpful to think of all log messages as a collection of answers
about why an issue is happening. To answer why, we also need
more information about when an event happened, where it hap-
pened, and what exactly happened. (Of course, not every type of
log will answer all four “W” questions.)

Regardless of the type and category, every log record consists of
two parts:

◆◆ Metadata: Information about the event statement

◆◆ Content: The statement itself

Metadata is generated automatically, whereas content is manu-
ally crafted. Each part answers its own set of “W” questions, as
represented in Figure 1.

Complications
Problems with logging fall into two main buckets: inconsistency
and missing data.

Inconsistency
Modern systems that use microservice architectures typically
aggregate logs from multiple applications. The inconsistency
problem arises at the edge between apps when you attempt to
correlate events across several services. Because these problems
largely pertain to the auto-generated portion of logs, you can
address them systematically by establishing a set of rules about
metadata and content.

For example, while one engineer might assign a severity level of
INFO to a given error notification, another might classify that
notification as an ERROR. The same uncertainty might apply
to WARNING versus ERROR classifications, ERROR versus
CRITICAL classifications, and so on. You can overcome this
inconsistency problem by establishing clear guidelines around
appropriate severity levels.

It can also be difficult to track where events occur across micro
services, as identity elements like process and thread IDs, host,
service, executable names, and source code pointers tend to be
tightly coupled to specific service instances. To overcome this
inconsistency, consider introducing global variables, such as
a unique Request ID that’s randomly generated in a front line
server and passed along all data paths.

Missing Data
Sometimes the content portion of a log record is missing a
chunk of valuable information, which means the log entry is
less meaningful or even meaningless. Overcoming this issue is
the difference between implementing log messages and making
sure that their recipients can read meaningful information.

In order to craft meaningful log messages, put yourself in the
shoes of potential readers. A log entry’s audience likely needs
much more context about the application than the engineer who
crafts the message. In concrete terms, consider two of the pre
viously mentioned “W” questions: what and why (as where and
when were automatically generated). After writing a baseline
message, recursively iterate over each “W” question until the
message has only one possible meaning.

Tips and Tricks
Now that you’re familiar with the anatomy of a log entry and the
broad categories of complications, we’ll address some of the most
common problems with the structure of logging contents.

Message Type Severity Level

Milestone INFO

Alert WARNING or ERROR

Data samples, additional details DEBUG

Table 1: Message types mapped to severity levels Figure 1: Anatomy of a log entry (simple)

34    S U M M ER 20 19  VO L . 4 4 , N O. 2 	 www.usenix.org

SRE
Structured Logging: Crafting Useful Message Content

Metadata Issues

Time Zone
Some timestamp formats may not include critical details, or may
include non-essential information. For example, it’s very impor-
tant for log messages to include time zone information—particu-
larly if your organization spans or will someday span more than
one location—whereas including the weekday is simply a waste
of space. Daylight saving time is another hidden issue: even if you
use a single time zone for all systems and services, this quirk can
translate into either an empty hour of data or two independent
sets of records captured for the same hour.

To address these issues, the timestamp identifier should always
include the time zone. We recommend basing your time zone on
UTC. Unlike GMT, UTC is not impacted by daylight saving time.
You likely also need to implement a time converter to align logs
across time zones.

Severity Level
As previously mentioned, there’s a lot of room for discordance in
imprecise name-based severity-level definitions. Overcome this
friction by establishing clear organization-wide guidelines.

INFO vs. DEBUG
You can define the boundary between INFO and DEBUG
buckets by restricting the INFO level to represent milestone
information. You also need to account for two known gray areas:

◆◆ Logs that describe decisions that an application made. For
example:

Descale cluster ‘abc’ from 7 to 5 nodes. Reason: average node

load < 30% for the last 10min.

Note: Here, and for most of the examples that follow, we’ve omit-
ted the metadata from log entries since this metadata takes up
space and isn’t particularly relevant.

◆◆ Operational logs that require an attached severity level. For
example, if user request logs pass through the same logging
mechanism as other entries.

You might classify both of these cases as INFO messages: while
they’re not clear milestones, they roughly represent a logical
point in the code, reached during execution.

If a given log record contains only statement information, but you
also need to provide additional knowledge about that information,
we recommend distributing the information across two log mes-
sages: the statement itself as an INFO message, and the additional
information as a DEBUG message. This approach maintains clear
information on every level, and the person who reads the logs can
easily decide which level of detail they want to see. DEBUG mes-
sages are ideal for hosting information that doesn’t fit into other
level criteria or information that may be valuable in the future.

WARNING vs. ERROR Messages

We recommend differentiating between WARNING versus
ERROR messages according to application behavior:

◆◆ WARNING: If the app can automatically recover from this
state

◆◆ ERROR: If the app can’t automatically recover from this state

You can implement these classifications on a more granular
level—e.g., on an individual thread, branch, or transaction level.

For example, the following issue occurred in the middle of the
request processing:

Request “/api/v1/get?obj_id=12345678”

Attempt to retrieve from cache.

Unable to resolve “cache-farm.example.com”: Not found. Abort.

Cache miss.

Attempt to retrieve from origin.

Object obtained.

Response sent.

200 OK “/api/v1/get?obj_id=12345678”

If you’re treating signals on a thread basis, you should treat
the highlighted alert as a WARNING because processing isn’t
blocked. If you’re treating signals from a branch perspective,
you should mark the alert as an ERROR because the operational
branch that retrieves objects from the cache was aborted and
reached its logical end. By handling alerts based upon the branch
depth, some ERRORs don’t result as an error in the overall request
processing. However, you can identify smaller anomalies faster.

In the following example, which attempts to reach an unavail-
able API, a set of WARNING messages precedes the final
ERROR message. The service attempts to connect five times
before giving up. The overall procedure is not yet aborted during
retries, so the first four requests are marked with WARNING
messages; only the last attempt is stated as an ERROR. If your
logs only accounted for ERROR messages, you’d only see the
final message, which doesn’t tell the entire story. It’s key here
that the ERROR message explicitly references the five previ-
ous attempts and four WARNING messages—otherwise, the
WARNING messages may be buried among hundreds of other
unrelated messages, and the reader might not even realize that
there were previous attempts to connect to the API.

 ...

WARNING “Unable to connect to Awesome API. Connection timed

out. Attempt 3/5”

WARNING “Unable to connect to Awesome API. Connection timed

out. Attempt 4/5”

ERROR “Unable to connect to Awesome API after 5 attempts.

Connection timed out. Exiting.”

www.usenix.org	   S U M M ER 20 19  VO L . 4 4 , N O. 2  35

SRE
Structured Logging: Crafting Useful Message Content

ERROR vs. CRITICAL Severity

While a CRITICAL severity doesn’t necessarily indicate that
something bad happened, an ERROR severity unequivocally does.

We’ve personally found that CRITICAL severity isn’t useful in
most scenarios and have chosen to do away with that severity
entirely. However, you may find useful scenarios for using the
CRITICAL severity level. Be sure to determine a precise def
inition of what information is deemed CRITICAL and how to
clearly distinguish that information.

Figure 2 consolidates a proposed schema for severity levels and
their meanings.

Content Issues

INFO
INFO is a simple statement addressing what happened or is
about to happen. Your aim in crafting this message should be to
provide clarity.

Consider the following message, which, although accurate, isn’t
sufficiently descriptive:

Server has started.

This message fails to indicate why this information is important.
Your what questions should only have one answer. In this case, is
there more than one server that could have started? If so, which
server started?

The following message is a marked improvement:

HTTP API Server has started.

You can improve further upon an INFO message by asking, What
is the most valuable information about the subject of this event? In
this case, What is the most valuable information about the HTTP

API server? For any network communication HTTP server, the
answer to this question is the entry point:

API Server start listening on http://0.0.0.0:80.

This event statement is three times more useful than the
original.

ERROR and WARNING Messages
ERROR and WARNING messages are categorized as alerts,
which describe the difference between the expected and actual
behavior: We expected A, but got B. To craft meaningful ERROR
and WARNING messages, ask yourself:

◆◆ What happened?

◆◆ Why is there a difference between the expected and actual
conditions?

In the following example, we attempted to call an HTTP API and
received an error. We’ll iterate a couple of times on What and
Why in order to demystify details.

What happened?

Unsuccessful API call.

What was the reason for this call?

Unable to retrieve the data object via API.

What data object?

Unable to retrieve a file’s metadata via API.

What file?

Unable to retrieve metadata for the “abc123” file via API.

What API?

Unable to retrieve metadata for the “abc123” file from “https://

api.example.com/v1/get_meta?obj=abc123”.

Figure 2: Anatomy of a log entry (complex)

36    S U M M ER 20 19  VO L . 4 4 , N O. 2 	 www.usenix.org

SRE
Structured Logging: Crafting Useful Message Content

Why?

Unable to retrieve metadata for the “abc123” file from “https://

api.example.com/v1/get_meta?obj=abc123”: Failed to parse

server response.

What further information do we know about the server
response?

Unable to retrieve metadata for the “abc123” file from “https://

api.example.com/v1/get_meta?obj=abc123”: Failed to parse JSON

response.

Why?

Unable to retrieve metadata for the “abc123” file from “https://

api.example.com/v1/get_meta?obj=abc123”: Failed to parse JSON

response. No JSON object could be decoded.

What happens next?

Unable to retrieve metadata for the “abc123” file from “https://

api.example.com/v1/get_meta?obj=abc123”: Failed to parse JSON

response. No JSON object could be decoded. Aborting.

Working from the original message text, gathering all this infor-
mation from the live system would take minutes or even hours.
By iterating through this series of questions, we gather informa-
tion that the original message didn’t provide:

◆◆ Exact file name: We can make a request for this object in a
separate system to clarify the current object condition, includ-
ing the state of its metadata.

◆◆ Exact URL of a metadata request: Now we can quickly
request the metadata again for further inspection without hav-
ing to craft this request from scratch. We can also immediately
verify that the data was requested from the correct place and
with the correct environment (API version, additional param-
eters, modifiers, etc.).

◆◆ The data source service: We know who to page in case we
encounter a massive issue.

◆◆ Metadata encoding format: JSON.

◆◆ Final action: No additional retries were made, and the re-
quester did not get the data they needed.

It’s worth emphasizing the What’s next? question here, which
comes in handy when you encounter a vague statement. In this
example, the reader was left with questions like, Will the system
retry requesting data from another source? Was this the only
attempt? and Did the original request ever succeed? The “Abort-
ing” statement, which reports the application’s next expected
action, removes all these uncertainties.

Alternatively, when an error requires a long explanation (for
example, with potential causes and suggestions for various
methods of mitigation), instead of packing the entire text into
the message itself, consider assigning a unique ID and provid-
ing a reference to a full explanation. The disadvantage of this
method is that the log entry may not explain the situation. On the
other hand, the description can be highly enriched with back-
ground information, solution playbooks, examples, and so on.

DEBUG
The debugging level serves two main purposes: increasing out-
put verbosity and providing data samples.

When it comes to increasing output verbosity, DEBUG messages
can better detail lower-level milestones and illustrate ongoing
values, which are useful to real-time application tracing. For
example, consider a well-known open-source “OpenSSH” utility.
Both the server and the client support extended verbosity that
displays the files being read, network connection establishment
details, cryptography negotiation, and much more, thereby help-
ing the reader understand how the utility works.

Data sampling is relatively straightforward. Consider it in the
context of the previous file metadata retrieval example. The next
logical step for a reader faced with the message “No JSON object
could be decoded” is to examine the content of this object. We
can make the reader’s life easier by placing this data as a DEBUG
message that follows the original alert.

You need to decide whether or not to include the original alert
information in the DEBUG message—does it suit your purpose
better to optimize for saving storage or to optimize for individual
message clarity? Because you can link these messages using
metadata, there’s no strong need to include the original message.
However, longer records can save valuable time during incident
investigations, and they aren’t filtered out from non-metadata
searches.

Our final DEBUG entry perfectly aligns with the log entry
anatomy scheme:

Accounting for sensitive information
in DEBUG messages

Take care in choosing how to represent the original alert
as a DEBUG message. Whenever you log a working data
sample, even partially, make sure that the sample doesn’t
contain sensitive information. Publishing such infor-
mation accidently can pose a threat and security risk to
people and systems!

www.usenix.org	   S U M M ER 20 19  VO L . 4 4 , N O. 2  37

SRE
Structured Logging: Crafting Useful Message Content

Complete entry:

2019.01.15 00:55:12.345012 UTC 43526 62837563 file_manager

[.../example_api/__init__.py:1024] DEBUG Unable to retrieve

metadata for the “abc123” file from “https://api.example.com/

v1/get_meta?obj=abc123”: Failed to parse JSON response. No

JSON object could be decoded. Aborting. Response: ‘Internal

Server Error.’

Breakdown:

Message Formatting and Processing

Formatting
You can use formatting to coherently represent metadata. Aim to
keep your formatting brief but sufficiently explicit.

Here’s an example of formatting that’s applied to Kubernetes log
metadata (you can see the original format description at https://
github.com/kubernetes/klog/blob/master/klog.go):

I0115 02:31:05.029108 1083 server.go:796] GET /stats/summary/:

(10.507359ms) 200 [[Go-http-client/1.1] 10.44.1.11:60556]

Note the following:

◆◆ The severity level is collapsed to a single capitalized character,
I, which stands for INFO. You can represent the other severity
levels with the letters W (WARNING), E (ERROR), and D
(DEBUG). Because the severity is the first character in the line,
it can be easily expressed in a regular expression.

◆◆ The four digits concatenated with the severity level represent
a date: 0115 refers to January 15, and the year is omitted, likely
because records aren’t stored for more than 12 months or be-
cause this information is added during entry processing.

◆◆ A single closing square bracket (]) separates the metadata from
the content.

You could improve this formatting by accounting for time zones.
For example, Google Cloud Platform collects the full timestamp,
along with additional metadata.

By consolidating the date format, this record is readable, con-
tains almost all the data we need, and saves about 10 bytes of
space per record.

Output
Messages to the standard file descriptor should be delivered to
STDERR, as opposed to STDOUT. Because users and various
tools expect messages to appear on the STDERR, messages
directed to STDOUT will be ignored or potentially cause harm
by injecting data into a data flow pipeline.

You can save time and ensure log format consistency by creating
a small set of libraries for various languages, which can coordi-
nate all logging configuration out of the box.

Multi-line Messages
Multi-line entries can be problematic when log processing
software treats messages as one entry per line. You can mitigate
this problem by performing an additional layer of pre-processing
on the application level: you can adjust every outgoing string
by replacing the newline character with another unique string
(\n, for example), so that the message can be restored by reverse
conversion.

This solution’s only drawback is message length. For example,
a Java stack trace may run up against the maximum permitted
message size in the processing or delivery stage. If you run into
this problem, you can consider splitting one message into a
sequence of several messages.

As a practical example, consider the shell script below. Shell
scripts notoriously suffer from poor logging. We can improve
the script by replacing the simple echo function with the more
meaningful log_info. By logging INFO messages, we address
the previously discussed time zone and output issues, thereby
accommodating compact formatting and multi-line entries.

Here’s an example implementation, distributed under the Apache
2.0 license:

$ cat standardized_bash_log.sh

#!/bin/bash

date_fmt=’%m%d %H:%M:%S’

tz=’UTC’

log_preproc(){

 echo “$@” | awk -v ORS=’’ ‘{if (NR!=1) $0 = “\\n” $0};{print}’

}

2019.01.15 00:55:12.345012 UTC WHEN
43526 Process ID

WHERE
62837563 Thread ID
file_manager Binary Name
[.../example_api/__init__.py:1024] Code Pointer
DEBUG SEVERITY
Unable to retrieve metadata for

the “abc123” file from “https://api.

example.com/v1/get_meta?obj=abc123”

WHAT

Failed to parse JSON response. No

JSON object could be decoded.
WHY

Aborting. WHAT’S NEXT
Response: ‘Internal Server Error.’ Details

38    S U M M ER 20 19  VO L . 4 4 , N O. 2 	 www.usenix.org

SRE
Structured Logging: Crafting Useful Message Content

log(){

 metadata=”${1}$(TZ=$tz date “+$date_fmt”) $tz $$ \

$(basename $0)”

 content=$(log_preproc “$2”)

 echo “${metadata}] $content” >&2

}

log_info(){

 log ‘I’ “$@”

}

Usage:

$ cat logging_example.sh

#!/bin/bash

source standardized_bash_log.sh

log_info ‘The first line of text;

 The second;

 And finally, the third one.’

Execution with multi-line restoration:

$ echo -e $(./logging_example.sh 2>&1 | grep “second”)

I0116 07:42:59 UTC 40844 logging_example.sh] The first line of

text;

 The second;

 And finally, the third one.

Storage
Root cause analysis (RCA) benefits from robust logging data.
However, crafting and storing a comprehensive set of logging
records requires a prohibitively large amount of storage. Does
storing all logging data from all apps and environments in full
really make sense?

When performing any kind of RCA, each investigation is initi-
ated by an error. An investigator needs the information sur-
rounding this problematic event. In reality, you need to store
operational logs (user requests and decision-making informa-
tion) in full, as these events are unique and unrelated to each
other. The behavioral logs can be partially truncated because
event sequences are repetitive.

To reduce storage volume, you can place a filter between an
application and the delivery mechanism. For example, a filter
can accumulate all messages for the last two to five minutes of
operation in a buffer; when an error occurs, the filter dumps the
entire buffer to remote storage. An engineer can then find all
error-related records as well as all potentially correlated events
that were in flight during the incident.

This approach has a couple of positive side effects. Because the
price of log storage depends directly on the number of errors the
service experiences, the fewer errors your service undergoes,
the less storage you need. The filter can also prevent the system
from flooding the logging system with identical errors.

If you’re concerned about potentially problematic situations
that don’t produce errors and hence can’t be easily detected, you
can keep the entire logging set locally on the host with a shorter
retention period.

If you want to minimize storage use when conducting other
research and development, you can narrow the observation
scope to a single application instance for a certain period of time.
That way, you can easily reclaim the space occupied by locally
stored data once the experiment is complete.

Conclusion
Many of the problems with logging in modern computing can
be addressed by bridging the gap between the people writing
and reading the logs. You can narrow this distance by clarify-
ing and restricting the meanings of various terms and by using
a question-based approach to ensure that you express all of the
necessary data. We hope you find the recommendations in this
article useful and that you adjust our approaches according to
your preferences and experience, improve them, and share your
further ideas and best practices with your team and beyond.

