
www.usenix.org	   S U M M ER 20 19  VO L . 4 4 , N O. 2  39

SRE

Complex
The Most Overloaded Word in Technology

L A U R A N O L A N

“Site reliability engineers shall predict the behavior of complex systems.”

This sentence, which I recently came across in a job description, is fasci-
nating because it is one that, depending on your background, could seem
either reasonable enough or an utter glaring contradiction in terms.

Most people use the word complex as a synonym of complicated or intricate—something with
a lot of parts that’s hard to fully grasp. Understanding something complicated may be hard,
but make the effort and you can, at least potentially, do it.

However, both software engineers and systems engineers use the word complex as a specific
term of art. Software engineers in fact use it in several different ways, distinct from the sys-
tems meaning. Software engineers and systems engineers (please read that term throughout
this article to mean SREs, production engineers, systems administrators, DevOps practi-
tioners, etc.) are overlapping groups of people who work together. We all need to understand
which meaning is in use at any given time so we can communicate clearly.

First, software engineers talk about time and space complexity: in other words, Big-O. In this
context, complexity refers to how the time or space requirements to execute an algorithm
scale with the properties of the input. There are also code complexity metrics like McCabe’s
Cyclomatic Complexity—that metric counts the number of independent code paths in a piece
of software. But neither of these are what most of us mean when we discuss complexity or its
inverse, simplicity.

Software Complexity
Complexity has been the enemy of the software engineer for decades now. Fred Brooks’
classic essay “No Silver Bullet” [1] divided software’s complexity into two parts: essential
complexity and accidental complexity. Essential complexity is that related solely to specify-
ing the problem and how it should be solved. Accidental complexity is related to the details
of implementation. Writing your business logic and unit testing it is (hopefully) mostly
essential complexity, but HTTP and managing concurrency and garbage collection and
deployment to production are largely accidental complexity. The overwhelming majority of the
work of technology operation is about accidental complexity.

But this doesn’t tell us what software engineers mean by complexity. Fundamentally, com-
plexity is that which makes software difficult to fully understand and to correctly reason
about. Moseley and Marks’ paper “Out of the Tarpit” [2] discusses several sources of com
plexity. The biggest, and hardest to deal with, is state—state influences the flow of control of
a program, but the number of potential states a piece of software can be in increases expo-
nentially with the number of variables. Dealing with this is such a difficult problem that we
basically handwave past it: we normally run all tests on modules in known states, and we rou-
tinely restart misbehaving programs in order to restore them to a known good internal state.

Laura Nolan’s background is
in site reliability engineering,
software engineering,
distributed systems, and
computer science. She wrote

the “Managing Critical State” chapter in the
O’Reilly Site Reliability Engineering book and
was co-chair of SREcon18 Europe/Middle
East/Africa. Laura Nolan is a production
engineer at Slack. laura.nolan@gmail.com

40    S U M M ER 20 19  VO L . 4 4 , N O. 2 	 www.usenix.org

SRE
Complex: The Most Overloaded Word in Technology

Other major sources of complexity are sheer code volume and
the fact that programs, unlike complex physical structures,
cannot be visually inspected. Mental models of the program
must be constructed from the source code. This can of course
be easier or harder depending on how the code is structured.
John Osterhout’s book A Philosophy of Software Design [3] is all
about making the design of software systems less complex, and
he advocates very strongly for relatively few deep modules, each
of which implements powerful functionality behind a simple
interface. This is much like the UNIX philosophy—write small
programs that do one thing well and can be used together.

Systems Complexity
Systems engineers tend to have a completely different idea of com-
plexity, stemming from systems theory. Systems theory is a dis-
tinct area of research, spanning all kinds of manmade or natural
systems—everything from an anthill to a nuclear power plant—
and complex systems theory is a subset of it. Complex systems
have particular characteristics: multiple interacting parts, system
state (i.e., a memory of some kind), and feedback loops. They
display emergent phenomena, have nonlinear relationships (small
changes in one part can lead to large deviations in overall system
behavior) and tend to be prone to cascading failures or “vicious
cycles.” Complex system behavior cannot be predicted reliably.

An amusing example of a complex systems failure is the incident
that led to two interacting book pricing bots driving the price of a
book on the genetics of flies to over 23 million dollars [4]. One bot
was designed to set its price to undercut its competition by 2%,
and another bot was coded to price books it didn’t have in stock
at 27% above the price it found in the market (in order to make a
profit reselling them). In the case of one rare book, each bot set
its price based on the other bot’s price on a daily basis, leading to
a vicious cycle of compounding prices. This system has multiple
interacting parts, state and feedback loops—it is a complex sys-
tem, albeit a trivial example of one.

All computing systems are complex systems. Even if a system is
running on a single physical machine you are still dealing with
the interactions of multiple pieces of software, all of which are
likely complex systems in their own right, running on complex
hardware. Each running program may have multiple threads of
control, state, interactions with the operating system and other
programs—even if not explicitly then via shared resources.

The “Stella Report” [5] describes several real-world examples of
the kinds of deviations and failures that are commonly expe-
rienced in complex computing systems. In one example from
the report, the combination of centralized logging with the
ELK stack plus installation of a keylogger for audit purposes
resulted in system failure when the remote Logstash program
experienced intermittent failure. The issue was compounded

by the terminal becoming unresponsive (waiting for the logging
system), hindering debugging. That outcome is hard to predict
ahead of time by reasoning about system behavior. This is why
chaos testing has become popular. It’s easier, and far more reli-
able, to add latency to a component in a controlled fashion and
see what is affected than to attempt to model all the possible
interactions between system components.

This systems theory definition of complexity is the one often
used by systems administrators, SREs, and DevOps practi-
tioners—this is in no small part due to the impact of Richard
Cook’s paper “How Complex Systems Fail” [6] on the industry
some years ago. Software engineers, on the other hand, mainly
think in terms of code structure, interactions between modules,
and interdependencies in their code bases. Software engineers’
primary concern is the difficulty of making correct changes
without introducing errors. Systems engineers’ primary concern
is stability of the deployed software in production.

This is why, when you ask a software engineer to promote sim-
plicity as part of their job description, they look for opportunities
to separate concerns and reduce coupling in their code base to
refactor to well-known design patterns, create better-defined
interactions between modules, and remove unused code.

When you ask systems engineers to do the same thing, they often
look for ways to control extremes of the system’s behavior (using
load shedding and circuit breakers, for instance), or to make
elements of the system more uniform. Dave Mangot’s recent
;login: article “Achieving Reliability with Boring Technology”
[7] discusses the use of infrastructure-as-code techniques to
make sure your production environments are standard and well-
understood. That’s a very good example of the kinds of ways that
systems engineers can reduce complexity.

The two kinds of complexity that we discuss here are quite dif-
ferent, but they do also have one major thing in common: both
software complexity and systems complexity make the task of
understanding and predicting behavior impossible.

All of us—software engineers, systems administrators, site reli-
ability engineers, production engineers, DevOps practitioners—we
are all fighting the same two-faced demon named complexity. In
both software and operations, complexity arises from state, from
the sheer number of components or modules, from the number of
interactions (both intended and unintended), as well as from the
impossibility of direct inspection of the systems we work on.

Code and the running production system are two aspects of the
same thing, and it’s very unlikely we can run a stable, reliable,
performant, maintainable system if either variety of complexity
(code or systems) is not continually managed. Let’s understand
each other’s language, and let’s always have empathy for the
challenges that our colleagues face.

www.usenix.org	   S U M M ER 20 19  VO L . 4 4 , N O. 2  41

SRE
Complex: The Most Overloaded Word in Technology

References
[1] F. Brooks, “No Silver Bullet—Essence and Accident in Soft-
ware Engineering,” Proceedings of the IFIP 10th World Comput-
ing Conference, 1986.

[2] B. Moseley, P. Marks, “Out of the Tar Pit,” BCS Software
Practice Advancement (SPA 2006).

[3] J. Osterhout, A Philosophy of Software Design (Yaknyam
Press, 2018).

[4] M. Masnick, “The Infinite Loop of Algorithmic Pricing on
Amazon…Or How a Book on Flies Cost $23,698,655.93,” Tech-
dirt: http://bit.ly/2FagxMz (accessed March 18, 2019).

[5] D. Woods, “STELLA Report,” SNAFUcatchers Workshop on
Coping with Complexity, 2017.

[6] R. I. Cook, MD, “How Complex Systems Fail,” Cognitive
Technologies Lab, University of Chicago, 2002.

[7] D. Mangot, “Achieving Reliability with Boring Technology,”
;login:, vol. 44, no. 1 (Spring 2019): https://www.usenix.org​
/publications/login/spring2019/mangot.

Register Today!

Register by July 22 and save!

Fifteenth Symposium on
 Usable Privacy and Security
Co-located with USENIX Security ’19
August 11–13, 2019 • Santa Clara, CA, USA
www.usenix.org/soups2019

The Fifteenth Symposium on Usable Privacy and Security (SOUPS 2019)
will bring together an interdisciplinary group of researchers and prac-
titioners in human computer interaction, security, and privacy. The
program will feature technical papers, including replication papers and
systematization of knowledge papers, workshops and tutorials, a poster
session, and lightning talks.

Symposium Organizers
General Chair

Heather Richter Lipford,
University of North Carolina at Charlotte

Technical Papers Co-Chairs
Michelle Mazurek, University of Maryland

Rob Reeder, Google

http://bit.ly/2FagxMz
https://www.usenix.org/publications/login/spring2019/mangot
https://www.usenix.org/publications/login/spring2019/mangot

