
42    S U M M ER 20 19  VO L . 4 4 , N O. 2 	 www.usenix.org

COLUMNSOther Faces of Python
P E T E R N O R T O N

I’d like to talk about uses for serialized data this time, looking at them
through contrasting language-neutral formats: YAML and protocol
buffers. These will be the basis for discussing an interesting Python

interpreter, specially built to make working with protocol buffers easier.

Wikipedia (https://en.wikipedia.org/wiki/Serialization) has a really great, straightforward
definition of serialization: “the process of translating data structures or object state into a
format that can be stored.” YAML is a really easy format for serialization/deserialization for
simple Python data types since it represents data structures in a way that’s really similar to
how Python does; in my experience, however, this is not so much the case for defined types.

YAML
So let’s talk about YAML. YAML (standing for YAML Ain’t Markup Language, or possibly
Yet Another Markup Language, or maybe something else) is recognizable in the wild as the
prolific format where the whitespace is relevant and indentation is incredibly important, and
which breaks if someone naively makes a single whitespace change (like many people’s first
impression of Python!). Its goal is to be able to serialize and deserialize data in a format that
is human-readable (text) and comprehensible (line breaks matter in a way that is similar to
written language, indentation guides the structure, etc.).

YAML also has all sorts of interesting features, like the ability to name a structure and reuse
it multiple times, and graft that onto various other locations, similar to using variables. (Some
interesting discussion about the full range of what it can do is available at http://yaml.org.)
YAML is often used as more than just a serialization format since it has the ability to, for
example, declare blocks, repeat them, etc. A recent post at https://blog.atomist.com/in-defense-
of-yaml/ reminded me of some of the work I’ve been doing. In short, YAML is hugely useful,
but it also has limits that should be respected.

One trivial example of its usefulness is:

this:

 is: a mapping with

 different: value types

 here: 3

which would look like this in Python:

{“this”: {“is”: “a mapping with”, “different”: “value types”, “here”: 3}}

Declaring a reusable block (called an anchor) is this simple, and you can see how it’s expanded
by running this in the Python REPL using the pyyaml module (see http://pyyaml.org for
more info):

>>> import yaml

>>> yaml.load(“””

... this: &use_this_anchor

... is: cool

...

Peter works on automating
cloud environments. He loves
using Python to solve problems.
He has contributed to books
on Linux and Python, helped

with the New York Linux Users Group, and
helped to organize past DevOpsDays NYC
events. In addition to Python, Peter is slowly
improving his knowledge of Rust, Clojure, and
maybe other fun things. Even though he is a
native New Yorker, he is currently living and
working from home in the northeast of Brazil.
pcnorton@rbox.co.

www.usenix.org	   S U M M ER 20 19  VO L . 4 4 , N O. 2  43

COLUMNS
Other Faces of Python

... here: *use_this_anchor

... “””)

{‘this’: {‘is’: ‘cool’}, ‘here’: {‘is’: ‘cool’}}

This can greatly reduce size and repetition. It’s clear that human-
readable and understandable formats like YAML have been
a huge positive change. Because of their widespread use and
acceptance, people feel less need to create poorly defined ad-hoc
configuration formats. The fact that software is shipped using
YAML means that they’re being configured via plaintext data
structures. That’s a big win!

YAML and Configuration
These formats make your configuration much easier to compre-
hend. You almost don’t have to do any work. It also means that
your configuration often seems to be self-documenting—we can
read about specific data types, quantities, etc., and with only a
little familiarity with the system you’re working with, it’s almost
obvious what you (or the program) are trying to express. For
example, the following is probably going to make sense if I tell
you that it’s a section of YAML-formatted configuration for the
Envoy proxy, a Layer 7 proxy (sometimes called a service mesh;
see envoyproxy.io for more info):

static_resources:

 clusters:

 - circuit_breakers:

 thresholds:

 - max_pending_requests: 8192

 max_requests: 8192

 max_retries: 1000

 priority: DEFAULT

 - max_pending_requests: 8192

 max_requests: 8192

 max_retries: 1000

 priority: HIGH

 connect_timeout: 0.5s

 hosts:

 - socket_address:

 address: foohost-ssl

 port_value: 443

 lb_policy: ROUND_ROBIN

 name: foohost

 per_connection_buffer_limit_bytes: 3100000

 tls_context: {}

 type: STRICT_DNS

It doesn’t provide the person reading it with the larger picture,
but you can use this as a starting point—it’s probably configura-
tion that governs the behavior of a listening port and multiple
hosts behind a load-balancer .

One limit to YAML’s flexibility, though, is that small nested
changes prevent the use of anchors. So there are two threshold
entries that look almost exactly alike. But the difference in the
priority key means that the entire structure must be repeated.
As you can imagine, this sort of inconsistency can become irri-
tating as the size of the data gets larger.

Using YAML as the representation of the data comes with
another weakness: there is no built-in checking that a message
has the right shape or the right structure—essentially it doesn’t
come with any type checking. Let’s focus on this, because better
type checking is great, especially when it is easily achievable at
a low cost.

Skycfg, Protocol Buffers, and YAML
So how can someone do better than YAML? One answer is to use
protocol buffers (usually just called protobufs). Protocol buffers
are also widely used, and one important role they play is in defin-
ing APIs. Two examples that have been increasingly adopted
over the past few years are the Envoy proxy (mentioned above)
and Kubernetes (https://kubernetes.io). In both cases, protocol
buffers are used to define the structures used by the API inter-
nally, while their external-facing REST API and configuration
will accept messages in other formats (e.g., YAML) but translate
them and check them against the API definition. This means
that a REST API may be used with YAML data, but when this
data gets into the system and is deserialized, it’ll get checked
against the protocol buffer definitions, which are the real source
of truth.

In order to make using protobufs easier, the folks at Stripe have
created Skycfg, which is based on a special-purpose language
whose syntax and behavior are derived from Python. While
Python is usually considered a “general-purpose” language,
Skycfg has an entirely different reason for existing. It is based
on a variant of Python whose primary goal is to be as easy to use
as the standard CPython but to be limited in a way that focuses
on enhancing the process of configuring large software systems.
The language Skycfg is based on was once called “Skylark” but
was renamed “Starlark” (https://blog.bazel.build/2018/08/17/
starlark.html) and released as part of the Bazel build system
(http://bazel.build).

With Skycfg, protocol buffer messages are compiled from a
neutral format into a Golang-specific library and imported into
Skycfg, and your own variation of Skycfg is built for your own
use. When your custom interpreter is run, you can create objects
using their protocol buffer message definitions, and they main-
tain their type information per the underlying Golang runtime.
The intent is that the protobuf data structures remain strongly
typed and will not have implicit conversions done to them.
Messages are defined ahead of time; they are created, updated,
compared, etc. using the syntax of Python (Skycfg), and doing

44    S U M M ER 20 19  VO L . 4 4 , N O. 2 	 www.usenix.org

COLUMNS
Other Faces of Python

things this way maintains a strongly typed, statically checkable
configuration.

Some Examples
So let’s have some show and tell.

This bit of YAML is pretty easy to comprehend:

access_log_path: /var/log/envoy/admin_access_log

address:

 socket_address:

 address: 127.0.0.1

 port_value: 1234

This is short and sweet, and as configuration it seems pretty
straightforward. As mentioned earlier, the user/operator must
make sure to avoid some common mistakes. If I add a tab instead
of spaces, it breaks in a way that may not be obvious. If I make
the port value >65k, I may not notice it, but it’s clearly outside
the range of available ports. If I mistype something it’s still valid
YAML, but it doesn’t mean anything to the program that reads it.

By contrast, generating this in Skycfg code has the upfront cost
of writing some Python, with a disproportionately large benefit:
I can create configuration messages where the type of the mes-
sage is known and statically checked. So, unlike YAML, this
doesn’t allow us to graft the wrong message into the wrong place.
In addition, the fields of the messages are also type checked, and
we can create these messages with proper functions instead of
being YAML anchors, in which you can’t replace at the granular-
ity of one element of a list or a mapping.

Just in case you are interested in the entire v2 API that Envoy pro-
vides, the messages being generated below are documented further
at https://www.envoyproxy.io/docs/envoy/latest/api-v2/api.

-*- Python -*-

v2_bootstrap = proto.package(“envoy.config.bootstrap.v2”)

Code we write, the “//” is specific to Skycfg/starlark

load(“//common_helpers.sky”, “to_struct”)

load(“//common_helpers.sky”, “envoy_address”)

this gets code the envoy maintainers wrote,

built into the main.go

v2_core = proto.package(“envoy.api.v2.core”)

Bootstrap message sections

def admin_msg(access_log_path, address, port):

 “””This generates the :admin:

 section, including the access log path

 and the listen address of this server.

 “””

 admin = v2_bootstrap.Admin(

 access_log_path=access_log_path,

 address=envoy_address(address, port))

 return admin

def node_msg(cluster, node_id):

 “””The cluster name should match whatever

 we’re using to identify the cluster, the

 node_id should match the IP address or

 hostname.

 “””

 return v2_core.Node(

 id=node_id,

 cluster=cluster)

def build_bootstrap_msg(

 admin, node, static_resources, stats_sinks):

 “””The core initial config is the

 bootstrap message - this is essentially

 the jumping-off point that we plant in

 /̀etc/envoy/envoy.yaml`

 “””

 return v2_bootstrap.Bootstrap(

 admin=admin,

 node=node,

 static_resources=static_resources,

 stats_sinks=stats_sinks)

To use this, you need to build the interpreter, which is really
simple. Look at https://github.com/pcn/followprotocol for the
code and try it out.

This is a pretty neat trick, and the benefits become clearer once
you consider the power of the combination of Python’s syntax
to easily and dynamically script up the configuration and then
add strong type checking, where the definitions are supplied by
the authors of the server side, so you don’t have to track changes.
So, for instance, when a breaking change appears in a newer
API version, it will be made clear to you just by generating the
configuration. The server doesn’t have to try the bad configura-
tion and reject it.

What’s more, protocol buffers provide a way to update message
formats by adding to the end of a structure. This allows for com-
patibility as you change your messages.

Also, notice that the above snippets do the right thing when
type bounds are violated. So if I change the port number in the
bootstrap.sky to something far outside of the bounds of a TCP
port, the following would happen:

followprotocol$./followprotocol envoy.sky

panic: ValueError: value 12345678910 overflows type ‘uint32’.

goroutine 1 [running]:

main.main()

	 /home/spacey/go/src/github.com/pcn/

followprotocol/main.go:94 +0x7c6

Full disclosure: the definition of the message specifies that this
uint32 must be <= 65536, but as of this writing, there seems to be

www.usenix.org	   S U M M ER 20 19  VO L . 4 4 , N O. 2  45

COLUMNS
Other Faces of Python

an issue with this, so I overflowed with a larger number for this
example to contrast it with CPython behavior.

Any time this sort of check catches an error, it is like free time
being given back to you! One of the most common problems with
configuring programs is that in order to know whether a config-
uration is even valid—things that are supposed to be strings look
and act like strings, numbers are numbers, etc.—you need to pass
them into a running process where that process validates it (e.g.,
in the best case with a --check-config flag or something along
those lines). But even a checker often won’t be able to tell you
that you’ve violated a constraint that has to do with the type and
not the format. Some things that a strongly typed checker can
know is that, for example, you’ve configured a number value to
be larger than an unsigned 8-bit integer, and it will only accept a
signed 8-bit integer. Or you create a list that contains strings and
numbers, but for a situation where the required list is only able
to accept strings. These, in addition to the actual syntax errors,
are much, much more difficult to catch, and the goal is that the
process of creating the configuration makes it clear that these
errors are present. It also turns the problem of perhaps indenting
YAML a bit oddly into a problem of Python indentation. Since
the syntax is Python, you can use Python syntax checkers to
your advantage, though they’re imperfect. In any case, the fact
that these messages are declared and dealt with by the Skycfg
protocol buffer handling means a whole class of checks is largely
done for you.

Another effect of this is that since Skycfg isn’t a general-purpose
language, once a message is created, handling it is done out-
side of Python syntax. With only a little bit of experience with
Golang, you can take the messages that are generated by Skycfg
and do something with them there. They could also be saved to a
file or shipped out over a network socket—you do need to add this
in for yourself. Oddly, you may find that after doing all this work,
you end up writing everything out as YAML, per my example
repository. So it’s always a good idea to keep that option in mind.

Templating
Lastly, let’s discuss the Skycfg approach as compared to another
method that’s often used to generate configuration: use a
templating language/macro language like Jinja2, Mustache,
or maybe Erb if you’re using Ruby. Configuration syntax for
simpler things tend to be quite comprehensible at first, but
some parts can grow and change to the point where you end up
gaining domain-specific knowledge about particular sections
of configuration that because of their irregularity have nothing
to do with anything else—they sort of make up their own rules
as they go along. The configurations for Apache and Nginx are
very expressive, but they also make it very challenging to just
confirm that they are acceptably formatted. Using a templating
approach works very, very well when the problem is simple, and,

fortunately, most configurations can be made to be simple and
can work by fitting them into a pretty simple template.

Unfortunately, generating YAML with templates, even with
regular, simple YAML, gets tricky as soon as you attempt to graft
new data structures onto the existing text of a partial message
via appending templates. It doesn’t seem like it should be so hard,
but it turns out that it often is.

By defining a service in terms of protocol buffers, and by using
that to make systems that are meant to be operated program-
matically via an API, the authors of Envoy and Kubernetes
(among others) are inviting the use of a solution like Skycfg in
order to generate the desired configuration faster and more
safely. I recommend taking a look at Skycfg if you find yourself
working with a system that defines itself via protobuf messages.

Note about the last column: In the last column, I mentioned
that I’d look to see whether there’s a way to make a change to
something like the zip built-in work throughout a codebase. So
far, I haven’t found a way to do that well (the idea I had in my
head failed so hard...), so I’ll look a bit more to see if it does, in
fact, seem possible.

