
46    S U M M ER 20 19  VO L . 4 4 , N O. 2 	 www.usenix.org

COLUMNS

Passwords
C H R I S “ M A C ” M C E N I R Y

Passwords. Everybody hates them, but everyone still uses them.

While there are pushes for certificates, OTP, and other forms of authentications,
the password is still king. In addition to the ubiquity of passwords, good practice

dictates that we use different passwords for every account silo, and (controversially) we are
supposed to change them often.

Most corporate environments use a single account silo, and the use of single sign-on systems
has the promise of not needing to authenticate regularly. However, most of the time, these
systems are more consistent sign-on instead of single sign-on, so you end up typing your
password over and over again. On the plus side, this is convenient in quickly updating muscle
memory following password changes.

The above reasons have given rise to the heavy use of personal password storage. There are
online services which provide this in bulk. Most operating systems provide some form of
personal password storage: Windows has credential manager, OSX has Keychain, and Linux
has several depending on the distribution that you’re working on. Even the mobile OSes have
some form of native secrets manager that is now being opened up to the applications.

In this exercise, we’re going to examine Go libraries for OSX password manager, a Windows
password manager, and one that is cross-platform. We’ll be looking at how to interact with
them and how they store the passwords via the libraries.

The code for these examples can be found at https://github.com/cmceniry/login in the pass-
words directory. This code is using dep for dependency management, but this should work
with Go modules as well. After downloading the code, change into the example’s directory
(keychain, credmgr, keyring) and run the example with go run main.go.

Caveats
The built-in password storage mechanisms on most OSes authenticate the application run-
ning as well as the user. With some storage types, you can grant permissions for the applica-
tion to bypass the user authentication. The target of this grant depends on the OS—e.g., it can
be the application binary, the user + binary, the name or file path to the binary, etc.

Unfortunately, this does not play as well with go run since that produces a different binary
and identifier every time you run it.

Because of that, I recommend that you do not apply any “AllowAlways” rules for any of the
runs, and that you only use test examples for these runs. At the end, you should clean up the
examples that are created. In a production situation, once your binary has been built and
distributed, then and only then, should you decide whether “AllowAlways” is worth the risk.

Some of the libraries attempt to simplify the overall interface to the native password stores.
This simplification sometimes creates incomplete maps. In addition, the multiple libraries do
not map the fields consistently, and the ones that support multiple native implementations may
map each of those differently. This does make it a challenge to understand which is the correct
invocation for each library and native store. Be sure to double check the documentation.

Chris “Mac” McEniry is a
practicing sysadmin responsible
for running a large e-commerce
and gaming service. He’s been
working and developing in

an operational capacity for 15 years. In his
free time, he builds tools and thinks about
efficiency. cmceniry@mit.edu

www.usenix.org	   S U M M ER 20 19  VO L . 4 4 , N O. 2  47

COLUMNS
Passwords

I’ve attempted to make it obvious in these examples, but you will
see that that is not always an easy prospect.

Most of the libraries focus on the password or generic ([]byte)
secret. Many of the native stores support additional typing for
their secrets, but most of these are not supported by the libraries.
Accordingly, we’re going to focus on generic passwords in these
exercises.

OSX Keychain
There are multiple implementations that interact with the OSX
Keychain. We’re going to explore the go-keychain library from
keybase. This will have the import line (with alias to avoid
naming issues):

 keychain “github.com/keybase/go-keychain”

Keychain stores “Items” which are a password blob combined
with metadata.

As mentioned, Keychain is capable of storing multiple Item
types inside of it; however, the library support, and hence our
focus, is limited to passwords, specifically “application pass-
word” (term inside of Keychain) or GenericPassword (term
inside of the library).

go-keychain supports four pieces of metadata: the “Name” or
“Label,” the “Account,” the “Service,” and the “Access Group.”
The Name is what this Item shows up under in Keychain itself,
and the library refers to this name as the Label. The Account is a
string for the username associated with the password. The Ser-
vice is a string for where (e.g., the URL) you want to use the pass-
word (the underlying Keychain field is literally called “Where”).
You can have multiple Items with the same Name as long as the
Account is different. Since the other libraries do not support a
distinction between the “Name”/”Label” and the “Service” fields,
we’re going to set them to be the same thing.

The Access Group is a way of collecting multiple applications
and multiple passwords and administering their access together.
This is not used by other libraries and other OSes, so we will not
use it here.

To create a simple password, we pass a NewGenericPassword to
the AddItem library func:

keychain/main.go: create.

 err := keychain.AddItem(

 keychain.NewGenericPassword(

 “;login example,”

 “falken,”

 “;login example,”

 []byte(“joshua”),

 “,”

),

)

Since we have to ensure that the Name and Account are unique,
it is possible to encounter a duplicate. For this simple example,
we’re going check our errors for that and ignore just that error
while responding to any other errors.

keychain/main.go: duperr.

 if err != nil && err != keychain.ErrorDuplicateItem {

If all goes well, we’ve stored it into the password store, and now
we need to retrieve it. There are two ways to retrieve the secret:
the get helper, and a full query.

For just getting a password with known location, there’s a con-
venient GetGenericPassword func that will grab it for us, and we
can print it out. To use it, we have to identify the metadata for
it: Name/Label, Account, Service, and Access Group. Since this
function is general purpose, we have to fill in all four fields, even
with empty strings, to match the signature.

keychain/main.go: getgeneric.

 item, err := keychain.GetGenericPassword(

 “;login example,”

 “falken,”

 “;login example,”

 “,”

)

 ...

 fmt.Println(string(item))

The second method is to query for it. The query is useful when
looking for multiple Items. We set the parameters that we need
to match on, indicate that we’re looking for one or multiple
answers, ask for it to return the data rather than just the meta-
data, and then perform our actual query. Since this can return
multiple responses (though in this case only one will return),
we still want to iterate over the results.

keychain/main.go: query.

 query := keychain.NewItem()

 query.SetSecClass(keychain.SecClassGenericPassword)

 query.SetLabel(“;login example”)

 query.SetAccount(“falken”)

 query.SetService(“;login example”)

 query.SetMatchLimit(keychain.MatchLimitOne)

 query.SetReturnData(true)

 results, err := keychain.QueryItem(query)

 ...

 for _, i := range results {

 fmt.Println(string(i.Data))

 }

This works well if we’re looking for a specific password by
account. Try removing the SetService or SetLabel calls for the
query to see what is returned.

48    S U M M ER 20 19  VO L . 4 4 , N O. 2 	 www.usenix.org

COLUMNS
Passwords

Credential Manager
Next, we’re going to interface with Window’s Credential Man-
ager using the wincred library from GitHub user danieljoos.

It has the import path:

 “github.com/danieljoos/wincred”

Like Keychain, Credential Manager maintains some metadata for
its secrets. It requires a “TargetName,” which has to be unique,
and allows for an optional Username field. For this example,
we’re going to limit it to just the TargetName and secret itself.

The creation of new passwords is relatively straightforward. We
create a new record by its name with NewGenericCredential,
assign the password itself and the optional metadata, and then
write that to the store.

credmgr/main.go: create.

 cred := wincred.NewGenericCredential(“loginExample”)

 cred.UserName = “falken”

 cred.CredentialBlob = []byte(“joshua”)

 err := cred.Write()

In the event of duplicates, Credential Manager will overwrite
what is there.

Now we can retrieve that password out of the Credential
Manager. Since we’re fetching by TargetName, it’s a simple
get command followed by print.

credmgr/main.go: get.

 cred, err := wincred.GetGenericCredential(“loginExample”)

 ...

 fmt.Println(cred.UserName)

 fmt.Println(strings(cred.CredentialBlob))

The wincred library and underlying interface to Window’s
Credential Manager is quite a bit more intuitive than the
Keychain interface, but it also does not allow for more complex
cases that use duplicate metadata values for records (e.g., retain-
ing multiple versions).

Cross-Platform
Now, let’s combine those and use a common library to try to
make it cross-platform. To be specific, our definition of cross-
platform use is to be able to use the same binary/code across
multiple OSes; it is not about moving the password data across
multiple OSes. Directly porting over the password data is
complicated and needs some transformation since Keychain
and Credential Manager and other native stores have different
semantics.

For cross-platform usage, we’re going to look at the keyring
library by 99designs. It supports storing secrets in multiple

backends: Keychain, Credential Manager, the Gnome secrets
service, KDE Wallet, and others. It has the import path:

 “github.com/99designs/keyring”

Many of the overall options for go-keychain and wincred are
stripped out from keyring. With it, you can specify a container,
the “ServiceName,” and a “Key” for a specific entry. In the under-
lying password store, these two fields may be mirrored onto
other fields (e.g., when backing with Keychain, it sets Label and
Service to both be the ServiceName), but keyring only allows for
these two fields.

For creation and retrieving, we start by opening (read declaring)
our password container by its ServiceName:

keyring/main.go: open.

 kr, err := keyring.Open(keyring.Config{

 ServiceName: “;login example,”

 })

After that, we are able to commit it to the password store with
its value. We must also identify the unique Key inside of this
ServiceName for this password. Note that unlike some of the
native libraries where this is a “construct then write” method,
the keyring library does this as one command (again, different
semantics).

keyring/main.go:create.

 _ = kr.Set(keyring.Item{

 Key: “falken,”

 Data: []byte(“joshua”),

 })

Much like wincred, keyring overwrites existing values instead of
indicating a duplicate Item.

Now that we have the data stored, we can pull it out and display
it. As with the single function to write the Item, the keyring
library uses a single function to retrieve data.

keyring/main.go: get.

 p, err := kr.Get(“falken”)

 if err != nil {

 panic(err)

 }

 fmt.Println(string(p.Data))

Library Compatibility
Making it so that we can use keyring and either go-keychain
or wincred together requires us to match up the appropriate
metadata.

For go-keychain, this is a matter of matching the keyring
ServiceName with both the go-keychain Label and Service and
the keyring Key with the go-keychain Account.

www.usenix.org	   S U M M ER 20 19  VO L . 4 4 , N O. 2  49

COLUMNS
Passwords

For wincred, we must match the keyring ServiceName with
the wincred TargetName which currently has to include some
additional markup. As of this writing, the keyring library will
append aws-vault: to the ServiceName and Key to store as the
TargetName in wincred. (The keyring library was originally
named aws-vault and so retains a few vestiges of that. There is
an open issue for this.)

Conclusion
Password management is hard.

The current level of cross-platform compatibility is low. There
is no standard for password storage—particularly the identity
and metadata for finding the passwords. There are significant
inconsistencies in the native password stores as well as incon-
sistencies in the way that the libraries map to those password
stores. Applications can be ported across multiple OSes, but the
passwords saved are hit or miss if you try to use them across
multiple applications. It’s best right now to pick one library and
stick with it.

When considering the user, it’s a constant tradeoff between
security and ease of use. You have to decide for yourself what is
your level of risk. If storing passwords in the native password
stores encourages other secure activities (e.g., shorter sessions,

not using static API keys, etc.), then this may be right up your
alley. If it’s a matter of storing the passwords in the native pass-
words stores versus your own securely wrapped (encrypted, per-
missions, etc.) files, it’s better to use the former as a significant
amount of engineering effort has been put in place that makes
the native password stores probably more secure than what most
of us would do otherwise.

Despite the issues, I hope that this column has given you some
insight into how to handle these in reasonable ways and the con-
fidence to do so. Anything that we can do to improve the state of
password management by making it easier on the user and more
secure is a boon for our field. Native password stores are just one
of those methods, and I encourage you to use them. Good luck
and be safe!

XKCD	 xkcd.com

