GOLUMNS

iVoyeur
Prometheus

DAVE JOSEPHSEN

Dave Josephsen is a book
author, code developer, and
monitoring expert who works
for Sparkpost. His continuing

mission: to help engineers
worldwide close the feedback loop.

dave-usenix@skeptech.org

50 ;login: SUMMER 2019

VOL. 44, NO. 2

keep having this conversation—a byproduct of my own incessant hum-

ble-bragging about living in Montana. I will be talking to someone I've

just met, at a nerd meet-up say, or maybe a coffee shop or airplane, and
the topic will just sort of come up. Arise. Spring forth into being.

It probably has something to do with my handshake. The way I grab people by their out-
stretched hand, not so much heartily greeting them as capturing them in place, and ensuring
they cannot politely escape as I loudly exclaim something to the effect of:

“HI-'M-DAVE-I-LIVE-IN-MONTANA!”

And then, as if by magic, the conversation careens away from whatever direction it probably
should have been headed directly north into the tree-lined hinterlands.

Obviously, as the architect of this colloquial digression, I'm more or less rudely declaring my
preference for hinterlands over the unknowable set of topics which could be derived from the
unique soup of ingredients of your humanity combined with mine.

I mean, we were probably just going to talk about the weather anyway, but it does bother
me. This notion that I have robbed us of the opportunity for spontaneous conversation in
exchange for my personal, known baseline of locutionary enjoyment. Had I not grabbed the
steering wheel and swerved, we might be talking about bread-making right now or tuning
diesel engines. Maybe you're 3/4 of the way through the Manga Guide to Linear Algebra and
are just dying to talk with someone about it. That would have been really fun, and I failed to
allow that possibility to blossom between us. I didn’t give you the credit you deserve.

Irecognize that.Ido. So although I brought us here, I won’t insist on us staying. What
often happens is that you will know of a person or place in Montana. You used to visit your
grandma in Pony, or maybe your ex frequents the ice-climbing festivals in Hyalite Canyon.
And so we are brought closer together by virtue of a shared experience with place.

Maybe the notion of wilderness itself resonates with you. Your heart pounds for the dry-hot,
windy openness of the West: Arizona, New Mexico, Utah. Maybe you've wandered central
Africa or sailed the coast of South America. You've never been to Montana per se, but there
is a remote place threaded into the fabric of your soul. A hard-to-get-to place into which you
could happily disappear and, just as happily, never return.

But just as often, you happen to be someone to whom my happy place parses as a hellish sort
of prison. A person who finds it hard to imagine a fate worse than banishment to the icy,
deserted foothills of the Absaroka-Beartooth Wilderness, where the elk outnumber people,
there is no decent pizza, and the preponderance of what little conversation there is to be had
revolves around, well, bread-making and tuning diesel engines.

Thus, a sort of conversational reset transpires. We can’t, after all just throw our hands in the
air and run away from each other. That’d be weird. So we do what all good engineers do: we
turn it off and then turn it back on again. You say something like, “Wow, you really must like

Www.usenix.org

COLUMNS

getting away from it all,” and I chuckle politely and hand over
the wheel. First law of improv and all that; I'm sure we can find
common ground in some other subject matter that is hopefully
not the weather.

But that phrase getting away from it all; it’ll still bug me weeks
later. The unspoken thought that I am willingly abandoning the
richness of a full place for one of emptiness. That I'm escaping or
ejecting. Getting away from “it,” whatever it is.

I guess maybe we have different its. And I think I get yours, the
cultural it, with the third-wave coffee and the music and the
bright laughter, and liberality of ideas. The golden aura that
glows around healthy, sophisticated, urban coexistence.

But you don’t need to come to the hinterlands to experience my
it. You can find it within yours. Between it. In empty offices after
dark and in shops that haven’t opened yet. In any kind of place
where, if you were to stand in place and turn time like a knob,
you would see that the place always exists, but the people who
inhabit it exist only between the hours of 8 and 4 say, only as long
as the band is playing or until the bell rings.

With apologies for polluting an otherwise objective and scien-
tific journal with magical thinking: there’s something that lives
in the spaces we vacate. Not an emptiness, but a kind of pres-
ence or potential. A thing accentuated by our absence. A signal
underlying the obvious stuff, there for anyone who cares enough
to listen. A wilderness. You can feel it vibrating there if you hold
still, in the in-between. That’s my it.

Prometheus

T have mentioned Prometheus (http://prometheus.io) here and
there in my recent articles, and I think the time has finally come
to do a short series on it. There are myriad details of note. Its
built-in time series database and cloud-native focus. Its reinven-
tion (or maybe revitalization?) of the pull-model so abhorred by
DevOps acolytes, and its query-centric operation and accompa-
nying domain-specific language: PromQL.

But rather than charging head-first into any of those technical
frontiers, I'd like to take a moment to make a point about what
systems like Prometheus represent in the context of the evolu-
tion of systems monitoring. There is a continuum where, on
one end, exist the monitoring systems of the “past.” They were
built, in a way, unconcerned with what they would eventually
be tasked with monitoring. Which is fair, since the things they
monitored were equally unconcerned with being monitored.

If we built airplanes like this, it would be as if we built one
airplane with no instrument panel and then a second altogether
separate airplane to fly beside it, taking note every so often of

WWWw.usenix.org

iVoyeur: Prometheus

the first plane’s speed and the temperature of its exhaust. What-
ever could be seen from the outside. The first airplane flying
happily, obliviously along until it didn’t. And in the aftermath
we’d ignore the wreckage, turning our attention instead to the
plane that didn’t crash. Scratching our heads and combining its
samples with our intuition to guess at what might have happened
to the plane that did.

On the other end of the continuum, every piece of software
written worldwide is a monitoring system and, oh by the way,
also possessed of some additional, arbitrary functionality. As if
everything we make is instrument panel, upon which we some-
times bolt wheels or wings.

Both ends of this continuum are dystopian in their special way,
but also instructive in that they hint at some middle ground in
between. Imagine a place where applications run, interactions
happen, and customers are serviced, and in between all of that,
quite unbeknownst to everyone, a telemetry signal is emitted,
underlying the obvious stuff. There for anyone who cares enough
to listen.

We aren’t building a monitoring system into everything we
make, but we are acknowledging the importance of feedback,
upfront in the development process, and providing an organi-
zational answer to the question of where to send operational
telemetry.

Prometheus server is probably the first centralized poller that
assumes the presence of such a signal. It’s a traditional poller
in that it wakes up on a configurable interval, polls metrics, and
stores them internally. Its contribution to the field of pollers is
subtle but important: it only polls this specific kind of signal,
emitted via HTTP on one or more TCP ports on every host.

If you've worked with other monitoring systems, this might seem
like a limitation at first, but it’s really quite liberating. There

is no particular agent to install; no collector-side of its body to
configure and reunite with its head. Instead, you are encouraged
to participate directly in the data-model by taking whatever you
want Prometheus to slurp up, packing it into a text format, and
making it available via HTTP on a pre-arranged TCP port.

So we are left to create this signal. We can emit it from within—
inside a running process or thread that is our application—or
from the outside using a piece of software dedicated to collecting
metrics. We can even post-process logs into the correct format.
Obviously, we can also use a combination of techniques and, in
practice, pretty much always do. Here’s a simple example of its
text format.

;login: SUMMER 2019 VOL. 44,NO.2 51

GOLUMNS

iVoyeur: Prometheus

HELP go_threads Number of 0S threads created.

TYPE go_threads gauge

go_threads 71

HELP process_cpu_seconds_total Total user and system \
CPU time spent in seconds.

TYPE process_cpu_seconds_total counter

process_cpu_seconds_total 24738.72

HELP process_max_fds Maximum number of open file \
descriptors.

TYPE process_max_fds gauge

process_max_fds 1024

These metrics were emitted from inside a Go program, using

the Go exporter (https://github.com/prometheus/client_golang).
If you're used to dealing with metrics systems, the concept of
anamed value like process_max_fds 1024 is no doubt very
familiar to you. Note also the metadata fields that provide a data-
type and a human-readable description for each metric; although
these appear to be comments, they are in fact required fields.

In Prometheus land, the software that emits metrics signals is
always called an exporter. Getting started, you probably won’t
need to write one yourself because there are already off-the-
shelf' exporters for just about everything you can imagine,
including a “node exporter,” which works like a traditional moni-
toring agent, reading values out of /proc and /sys and exporting
these as Prometheus signals for you.

Here’s another, more complicated version of Prometheus’s data
format:

HELP nginx_requests_total Total number of regs by HTTP \
status code.

TYPE nginx_requests_total counter

promhttp_metric_handler_requests_total{code="200"}

1.654693e+06

promhttp_metric_handler_requests_total{code="500"} O

promhttp_metric_handler_requests_total{code="503"} 0

52 :login: SUMMER 2019 VOL. 44, NO. 2

This example adds “labels,” enclosed in curly braces after the
metric name. Arbitrary metrics dimensionality can be achieved
with labels, but the Prometheus documentation (and anyone
who has used it in anger) warns against their overuse (https://
prometheus.io/docs/practices/naming/). In real life, metrics
should be restricted to labels with fewer than 10 dimensions:
e.g., recording requests by HTTP type is fine, but attempting to
record requests by customer ID will quickly blow up in your face.

I cantell you firsthand, the act of creating and nurturing this
signal proliferates quickly through an organization, with appli-
cation engineers using libraries to export metrics directly from
their services as well as more operations-oriented engineers
writing shell-scripts or other little pieces of automation to add
more host-oriented metrics. Once you start working with it and
relying on it, it quickly becomes habit-forming. At Fastly we've
written a discovery tool (https://vimeo.com/289893972) called
PromSD, which makes it easy for Prometheus (and people like
me) to discover and explore the metrics backchannel in the in-
between space of our network.

The data model is probably my favorite thing about Prometheus,
this lovely notion of a monitoring subtext quietly woven into

the fabric of the “important stuff.” A single text format we can
all agree on, that multiple monitoring systems or even human
beings can consume. It feels like our little secret, and I think it’s
an important step forward for the field of monitoring in general.
Tune in next time when we’ll explore Prometheus’s local storage,
and PromQL, the query language you can use to interrogate the
storage layer and draw graphs.

Take it easy!

WwWWw.usenix.org

