
www.usenix.org	   S U M M ER 20 19  VO L . 4 4 , N O. 2  53

COLUMNS

The major difference between a thing that might go wron‑g and a thing that cannot
possibly go wrong is that when a thing that cannot possibly go wrong goes wrong it
usually turns out to be impossible to get at or repair. —Douglas Adams

One hears often enough that the error rate for software is so many
flaws per thousand lines of code or the like. A fraction of those flaws
turn out to create vulnerabilities. A fraction of those vulnerabilities

get exploited. And “we” learn about a fraction of those exploits. Let’s call it

	 S * F *V * E * P

In other words, we create S lines of new code, F of which are wrong, V of which are vulner-
abilities, E of which are weaponized, and P of which come to our attention. Let’s stipulate one
thing: arguing about what constitutes a line of code is irrelevant. While we’re at it, let’s stipu-
late that everything here is subject to argument about definitions and what goes in what set.

That kind of formulation is similar to the kinds of rough calculations around whether there
is other intelligent life in the galaxy. On the one hand, there are something like 100 billion
stars in the Milky Way. On the other hand, intelligent life requires a bunch of pretty unlikely
coincidences (probabilities) multiplied by that 100 billion. You only need five 1% probabilities
multiplied together to get down to as many intelligent life planets in the Milky Way as you
have fingers. Six such conjunctions and the odds turn against our very existence.

So, how many lines of code? That is harder to estimate than the number of stars in the Milky
Way. An unsubstantiated claim in CSO magazine [1] was that 111 billion lines of code (LOC)
were created in 2017. Elsewhere, there’s a slightly more substantiated estimate of 20 million
developers at work today [2]. The old rule of thumb for a developer is/was 50 LOC/day or
10–15 KLOC/year. Multiplied times 20 million devs, that’s 20–30% of that 100+ billion LOC
claim. Of course, some code is not written by hand but by machine, but is it really 70–80%?
Or are there more than 20 million devs? Or are they more productive than 10–15 KLOC/year?
With almost 8 billion people on earth, does it sound right that 1 in 400 is a dev? Let’s take S
= 1011 for the moment.

How many flaws are in that code? The old rule of thumb is/was 25–50 flaws per thousand
lines of code (KLOC), although the various measurements that come to that range of num-
bers were for software products that are deployed en masse after a defined build process as
opposed to continuously thrashed web applications. Anyhow, if we use 40 flaws/KLOC and
multiply it by 100 billion LOC, we are looking at 4 billion new flaws per year.

As a kind of comparative calibration, the top six open source package repositories account
for 80% of all open source repositories [3], a combined total of 1.75 million packages, which
number is increasing by 1,000 per day. That’s 23% annual growth, and we’re not even talking
about GitHub or SourceForge.

For Good Measure
Curves of Error

D A N G E E R

Dan Geer is the CISO for In-Q-
Tel and a security researcher
with a quantitative bent. He has
a long history with the USENIX
Association, including officer

positions, program committees, etc. dan@
geer.org

54    S U M M ER 20 19  VO L . 4 4 , N O. 2 	 www.usenix.org

COLUMNS
For Good Measure: Curves of Error

Turning to what fraction of uncategorized flaws are security
flaws, i.e., what fraction of bugs create vulnerabilities, we find
two schools of thought. School One: any and all bugs are vulner-
abilities unless and until proven otherwise. School Two: only a
small fraction of all bugs are security bugs. For today’s purpose,
we’ll side with School Two, taking the line that vulnerabilities
are a small percentage of total flaws. That may well be incorrect
in the sense of “failing to make the conservative assumption”
(conservative with respect to security outcomes, that is).

In any case, the vulnerability to flaw ratio is related to Bruce
Schneier’s foundational question of whether, in truth, vulner
abilities in software are sparse or dense [4]. Chris Wysopal says
that Veracode [5] finds 0.1 vulnerabilities per KLOC, so a 40
flaws/KLOC starting point means that 0.1/40 = 0. 0025 or 1/4 of
1% of flaws are actually vulnerabilities. That makes it conser-
vative to say that 1% of all software bugs are vulnerabilities, so
we’ll go with that for the moment.

Then there is the probability that a given vulnerability can
and will be weaponized, which is to say turned into a deployed
exploit. As Dave Aitel [6] has repeatedly argued, what is sparse is
not vulnerabilities that could be weaponized but the people who
can weaponize vulnerabilities. Add to that that good exploits
may require more than one vulnerability, i.e., the conversion rate
of vulnerabilities to exploits may be lower still. Plus in a whole-
world setting where the installed base of software is growing
faster than the human population, then the fraction of vulns that
are weaponized might actually be falling, not for want of oppor-
tunity but for want of labor (back to Aitel). In any case, and for
the purpose of argument here, let’s call it 1-in-200 or .005 that a
given vuln will be weaponized.

That 1-in-200 is almost surely way conservative. Brian Martin
of Risk Based Security [7] has data showing that out of 199,311
vulns with a CVSSv2 9.3 or higher, 6,244 have a public exploit,
2,350 have a proof of concept, and 3,048 have a private exploit.
That works out to 5.8% of those (very serious) vulns are known

to have, or be capable of, exploits. That’s an order of magni-
tude higher than 1-in-200, but we’ll stick with 1-in-200 for
the moment. While we’re at it, HackerOne says that in 2018
they managed 78,275 reports [8]. If even half of those are valid
security bugs, then it would more than double the 2018 CVE or
VulnDB count.

Of course, some weaponized vulns will never come to our
attention. For this estimate, we must admit that we are in the
murk; zero-days don’t get counted since they aren’t 0days if we
can count them, nor are exploits that are use-once for precious
targets something we’ll ever see. This is what Ablon and Bogart
covered so well for RAND [9]. For the sake of argument, let’s pick
maximum ignorance priors, i.e., say that 50% of vulnerability
weaponization is unobservable while 50% comes to some kind of
public attention. This brings us back to the top, viz.,

	 S * F *V * E * P

which we’ll rewrite with S = 1011, F = .04, V = .01, E = .005, and P = .50

	 1011 * .04 * .01 * .005 * .50 = 100,000/yr

A number like 100,000 de novo, non-targeted exploits in the wild
per year is certainly a stunning number. But is it real? Does it
carry policy freight?

In calendar 2017, there were 14,714 new CVE reports made.
Going back to year 2000, there were 1,020. That works out to
a compound annual growth rate (CAGR) from 2000 to 2017 of
15.7%. For 2001, there were 1,677 reports, which amounts to a
CAGR from 2001 to 2017 of 13.6%. Figure 1 lays this all out; for
each year, the column represents the number of CVE reports
made, and the line is the value for the compound annual growth
rate between that year to 2017.

Focusing on the longest term, from 2000 to 2017, that CAGR of
15.7% begs the question: how fast is the total body of installed
code growing? If that total installed base is growing faster than
15.7%, then CVE would say that either we’re collectively getting
better at making new software secure or we’re collectively get-
ting worse at finding (and recording) security problems in new
software.

Generally speaking, a measure that has constant error will
return value estimates that are wrong, but its trend line will at
least have the right shape. Therefore, we might ask the question,
“Does CVE has relatively constant error?” Unfortunately, the
answer to that question is almost surely “No”—CVE’s coverage
has been shown to be poor, and the recent spike in its listing of
new vulnerabilities is more a response to embarrassing congres-
sional hearings in late 2016 than anything else: i.e., the big jump
in 2017 is an artefact.

Figure 1: Number of CVE entries and CAGR from each year to the 2017
value

www.usenix.org	   S U M M ER 20 19  VO L . 4 4 , N O. 2  55

COLUMNS
For Good Measure: Curves of Error

We seem to have no good measure, then, of the shape of the
curve of error. Bug bounty payouts are not it (it being the way to
measure the fraction of vulnerabilities that are exploitable). So
we are back to the number to noodle over: is finding 100,000 de
novo, non-targeted exploits in the wild per year a round-number
estimate good enough to inform policy?

Obviously, spreading 100,000 new exploits through 100 billion
new lines of code constitutes a seemingly low density—literally
one in a million (105 /1011). That ought to be reassuring. Or should
it? The 2016 Ford F150 pickup truck is said to have 150 million
lines of code [10]. By our working guess of 1-in-a-million, that
150 * 106 LOC might be expected to set the stage for 150 exploits.
Perhaps thankfully, the Boeing 787 Dreamliner is said to have
7 million LOC which gives the naive estimate of a half-dozen
exploits waiting to come “out of the nowhere into the here.”

If the reader thinks software errors are some flavor of inevitable
and are not designed in by a present-day Illuminati, then those
errors are sprinkled over software products like some kind of
pixie dust. Even if the estimates above are off by an order of mag-
nitude (in either direction), the implication, both personal and
policy, might well be this: the more software there is in a product,
the less you should depend upon it. The more a given supplier
lards up the product with features, the less you should want to
depend on it. The more often the software base turns over, the
less the software in it has been burned in.

For the present author, a state of security is the absence of
unmitigatable surprise, hence the Douglas Adams quote at the
start, the conservative assumptions throughout, and the previ-
ous paragraph’s appeal to retaining alternative—analog if you
prefer—mechanisms. That position, itself, would be shown to be
conservative if finding bugs with AI turns out to be as effective
as it might be. While AI uber-bug-finding would likely depress
the number of latent, as yet invisible threats, it is hard to imagine
that any substantial entity would be prepared for their AI to
autonomously fix bugs it had autonomously found, so, in turn,
the number of known bugs could well increase faster than the
market cycle could accommodate fixing them. And then we’d be
writing about this in parallel to the vaccination of school-age
children as a state-imposed access requirement to a public good,
only now it would be autonomous update as a state-imposed
access requirement to a different public good.

References
[1] S. Morgan, “World Will Need to Secure 111 Billions Lines
of New Software Code in 2017”: https://www.csoonline.com/
article/3151003/world-will-need-to-secure-111-billion-lines-
of-new-software-code-in-2017.html.

[2] R. Cox, “How Many Go Developers Are There?”: https://
research.swtch.com/gophercount.

[3] Open source repository timeline: http://www.modulecounts.
com/modulecounts.csv.

[4] B. Schneier, “Should U.S. Hackers Fix Cybersecurity Holes
or Exploit Them?” May 19, 2014: https://www.theatlantic.
com/technology/archive/2014/05/should-hackers-fix-cyber-
security-holes-or-exploit-them/371197/.

[5] Veracode, State of Software Security, vol. 9: https://www.
veracode.com/state-of-software-security-report.

[6] D. Aitel, personal communication.

[7] B. Martin, personal communication; https://vulndb.cyber-
riskanalytics.com.

[8] “Hacker-Powered Security Report 2018,”
July 11, 2018: https://www.hackerone.com/blog/
Hacker-Powered-Security-Report-2018.

[9] L. Ablon and A. Bogart, Zero Days, Thousands of Nights:
The Life and Times of Zero-Day Vulnerabilities and Their
Exploits, RAND Corporation, 2017: https://www.rand.org/
pubs/research_reports/RR1751.html. Also available in print
form.

[10] R. Saracco, “Guess What Requires 150 Mil-
lion Lines of Code...,” January 13, 2016: https://
www.eitdigital.eu/news-events/blog/article/
guess-what-requires-150-million-lines-of-code/.

