
22   S U M M ER 2020  VO L .  45 ,  N O.  2  www.usenix.org

PROGRAMMINGAnomalies in Linux Processor Use 
R I C H A R D  L .  S I T E S

Richard L. Sites is a semi-retired 
computer architect and software 
engineer. He received his PhD 
from Stanford University several 
decades ago. He was co-

architect of the DEC Alpha computers and then 
worked on performance analysis of software 
at Adobe and Google. His main interest now is 
to build better tools for careful non-distorting 
observation of complex live real-time software, 
from datacenters to embedded processors in 
vehicles and elsewhere. dick.sites@gmail.com

Careful observation of Linux dynamic behavior reveals surprising 
anomalies in its schedulers, its use of modern chip power-saving 
states, and its memory allocation overhead. Such observation can lead 

to better understanding of how the actual behavior differs from the pictures 
in our heads. This understanding can in turn lead to better algorithms to 
control dynamic behavior. 

We study here four such behaviors on x86-64 systems: 

1. Scheduling dynamics across the Completely Fair Scheduler, the real-time FIFO scheduler, 
and the real-time Round-Robin scheduler 

2. Dynamic use of mwait-sleep-wakeup to save power 

3. Dynamic CPU clock frequency changes to save power 

4. Invisible cost of heap allocation just after allocation 

In each case, the interaction of Linux and the underlying hardware can be improved in 
simple ways.

The software observation tool is KUtrace [1–3], which timestamps and records every transition 
between kernel-mode and user-mode execution in a live computer system, using less than 1% 
CPU and memory overhead and thus observing with minimal distortion. Each transition is 
recorded in just four bytes in a kernel trace buffer—20 bits of timestamp and 12 bits of event 
number (syscall/sysreturn, interrupt/return, fault/return numbers plus context-switch new 
process ID, and a handful of other items). Everything else is done by postprocessing a raw 
binary trace. Depending on the processor, each trace entry takes an average of 12–20 nsec to 
record, about 30 times faster than ftrace [4]. The robustly achieved design point is to handle 
200,000 transitions per second per CPU core with less than 1% overhead. I built the first such 
system at Google over a decade ago, and it and its offspring have been used in live production 
datacenters since.

Linux Schedulers: Not Completely Fair
The Linux CPU schedulers juggle program execution by assigning tasks to CPU cores at vari-
ous times. The Completely Fair Scheduler (CFS) runs each task at equal speed, each getting 
CPUs/tasks speed over time. The FIFO real-time scheduler runs each task in FIFO order 
to completion or until it blocks. The Round-Robin real-time scheduler runs like FIFO but 
imposes a maximum time quantum, moving tasks to the end of a run queue in round-robin 
fashion at quantum boundaries. 

On a four-core Intel i3-7100 processor (actually two physical cores hyperthreaded) running 
the Linux 4.19.19 LTS (long-term support) kernel version, I ran 1 to 12 identical CPU-bound 
threads and observed the true scheduling behavior [5]. Each thread repeatedly checksums a 
240 KB array that fits into a per-core L2 cache. From the Linux documentation, I expected 
the resulting timelines for more than four tasks to show each task running periodically and 
all completing at nearly the same time. Not so. 



www.usenix.org  S U M M ER 2020  VO L .  45 ,  N O.  2 23

PROGRAMMING
Anomalies in Linux Processor Use 

Figure 1 shows groups of 1 to 12 threads running under CFS. 
As the last thread of each group finishes, the next group starts, 
consuming about 26 seconds in all. The pictures for the other 
schedulers look similar at this scale. (Note that all the figures in 
this article appear in color in the online version.)

Looking at just the seven-thread group, Figure 2 shows it for each 
of the three schedulers. The smallest dashes are 12 ms execution 
periods (the quantum), chosen by the scheduler based on four 
cores and timer interrupts every 4 ms. This simple example does 
not stress the differences that the real-time schedulers would 
provide in a mixture of batch and real-time programs, but it does 
highlight their underlying dynamics.  

The documentation for these schedulers did not lead me to expect 
that some tasks would run uninterrupted for a dozen quanta or 
more, nor did it lead me to expect a 20–30% variation in comple-
tion time between the earliest and latest ones. None of this 

approaches “completely fair.” Observing these actual dynamics 
can lead to better algorithms.

Deep Sleep: Too Much Too Soon
Our second study concerns power-saving dynamics. Modern 
software passes hints to the chip hardware that nothing inter-
esting will be executing for a while, so the hardware might well 
want to slow down or turn off a core to save (battery) power. 
For x86 processors, the Linux idle-process code issues mwait 
 instructions to suggest sleep states to the hardware. Deep sleep 
states such as Intel C6 involve turning off a CPU core and its 
caches (first doing any necessary writebacks). When a subse-
quent interrupt arrives at that core, the hardware and micro-
code first crank up the CPU core’s clock and voltage, write good 
parity/ECC bits in the cache(s), and eventually execute the first 
instruction of the interrupt handler. Coming out of C6 deep sleep 
in an Intel i3-7100 takes about 30 microseconds, delaying inter-
rupt handling by that amount. 

You might not think that this matters much until you observe 
the dynamics of multiple communicating threads sending inter-
processor interrupts to each other just as the receiving core has 
gone to sleep, and when that one responds, the reply goes back to  
a core that in turn has just gone to sleep. Rinse and repeat. 

Figure 3 shows just such a sequence, at the beginning of launch-
ing the group of seven threads in the program in the previous 
section. Note that Figures 1–6 show everything happening on 
every CPU core every nanosecond—all idle time and kernel and 
user execution time for all programs, with nothing missing. For 

Figure 1: Running groups of 1 to 12 compute threads under CFS. The main program spawns one thread at the top left, and when that completes one second 
later it spawns two threads, then three, etc. With only four logical CPU cores, the scheduler starts its real work with five or more threads. The vertical line 
marks the group of seven that is expanded in Figure 2.

Figure 2: Running groups of seven compute-bound threads under the three 
Linux schedulers, shown over about two seconds total. In each case, the 
thread-preemption times vary substantially, and some threads complete un-
expectedly much sooner than others—arrows depict the largest differences.



24   S U M M ER 2020  VO L .  45 ,  N O.  2  www.usenix.org

PROGRAMMING
Anomalies in Linux Processor Use 

example, Figure 1 also has threads with names like systemd-
journal, cron, avahi-daemon, sshd, and DeadPoolForage. None  
of these take any appreciable CPU time, so I cropped out most  
of them except the three cron jobs that run near time 1.8 sec-
onds and take up a little vertical space between the group of  
two threads and the group of three threads in that figure.

The thin black lines in Figure 3 are the idle process executing, 
while the tall gray/colored lines are kernel-mode execution, and 
the half-height gray/colored lines are user-mode execution. The 
sine waves are the time coming out of C6 sleep (the time spent in 
deep sleep is short here, but is often several milliseconds). The 
dotted arcs show one process waking up another. 

The idle threads do an mwait instruction to sleep after spinning 
for only 400–900 nsec, which is much too soon. In the diagram, 
the first four of seven clone()calls are on CPU 0 at the upper left, 
and the spawned threads start executing on CPUs 3, 2, 2, and 1, 

respectively, just after and just below. Each child thread blocks 
almost immediately inside page_fault, waiting for the parent 
to finish setting up shared pages. Full execution of four threads 
begins only on the right side of the diagram. The bouncing back 
and forth between parent and child keeps encountering ~50 μs 
delays because the CPU cores prematurely go into deep sleep.

There are two problems here: (1) 30 μs is a long time to be recov-
ering from a siesta, ruining any expectations of fast interrupt 
response, for example, and (2) violation of the Half-Optimal 
 Principle [6]:

If it takes time T to come out of a state waiting for some 
event at unknown time E in future, spin at least time T 
before going into that state. This is at least half-optimal 
in all cases, even though you don’t know the future.

In this case, the half-optimal strategy is to spin for 30 μs instead 
of 0.4–0.8 μs before dropping into a C6 sleep state that takes  

Figure 3: Premature sleep in the intel_idle.c Linux kernel code causes startup delays for seven spawned threads. Thin black lines are the idle process, 
and sine waves are the time it takes a chip core in deep sleep to wake up again. Heavier lines on the right are compute-bound execution of four of the seven 
threads on the four CPU cores.

Figure 4: Non-idle execution on three CPUs at the left triggers a jump in all four CPU clock frequencies from slowest 800 MHz to fastest 3.9 GHz, which 
then step back to slow (frequency in units of 100 MHz indicated by the shading surrounding the lines for each CPU).



www.usenix.org  S U M M ER 2020  VO L .  45 ,  N O.  2 25

PROGRAMMING
Anomalies in Linux Processor Use 

30 μs to exit. Doing so would completely avoid sleeping in the 
trace above and would speed up the initial song-and-dance by 
over 3x. Observing these actual dynamics can lead to better 
algorithms.

Fluctuating Frequency: Mismatched to Goal
Our next study looks at another power-saving technique—vary-
ing the CPU clock frequency for each core. The goal is to use slow 
clocks when not much execution is happening and to use fast 
clocks when doing real computing. The measured Intel i3-7100 
chip core clocks vary between 800 MHz and 3.9 GHz. For this 
processor, Linux allows the chip hardware to dynamically vary 
the clock frequency—“HWP enabled” in the Linux kernel Intel 
x86 jargon. Once enabled, no operating system code runs to vary 
the frequency or even to deliver an event when the frequency 
changes. However, a machine-specific register can be read to 
get some hint of the likely upcoming frequency. I added code to 
read that register at every timer interrupt and add it to the raw 
KUtrace.  

For a computing load to observe, I ran a command to find some 
files and look for a regular expression in them:

find ~/linux-4.19.19/ -name “*.h” |xargs grep rdmsr

and then traced that for 20 seconds. This runs three programs, 
find, xargs, and grep. The first two mostly wait for disk while 
reading directories, and the last is mostly CPU-bound scanning a 

file. I picked this combination because I expected low CPU clock 
rates while waiting for disk and higher ones while scanning files.

Figure 4 shows an execution timeline on four CPU cores running 
mostly the bash, find, and xargs programs but with a little bit of 
other processes such as jbd2, ssh, and chrome. The gray overlay 
(yellow in the online version) shows CPU clock speeds: dark 
gray for slow clocks and lighter and lighter for faster clocks. The 
freq numbers are multiples of 100 MHz. Based on the non-idle 
program execution at the far left on CPUs 1, 2, and 3, the chip 
switches from 800 MHz to 3.9 GHz on all four CPU clocks, then 
slowly, over about 100 ms, drops the frequency back to 800 MHz. 
These are the true clock dynamics and match what one would 
expect from reading the (sparse) documentation. Note, however, 
that the execution bursts on CPU 1 in the right half of the dia-
gram do not raise the clock frequency.

In contrast to the intended behavior, Figure 5 shows a region of 
the same trace eight seconds later. This time the clock frequency 
jumps up from 800 MHz to 3.9 GHz as expected, but 8 ms later it 
jumps back to 800 and then 900 MHz, even though CPU 2 is still 
quite busy running grep. 

This dynamic is mismatched to the performance goal of the 
power-management design. Observing these actual dynamics 
can lead to better algorithms.

Figure 5: Non-idle execution at the left triggers a jump in CPU clock frequencies from slowest to fastest, which prematurely jump back to slow while CPU 2 is 
still 100% busy.

Figure 6: The page faults immediately after allocating memory take over 100x more time than the allocation itself. 



26   S U M M ER 2020  VO L .  45 ,  N O.  2  www.usenix.org

PROGRAMMING
Anomalies in Linux Processor Use 

References
[1] R. L. Sites, “Benchmarking ‘Hello World’,” ACM Queue 
Magazine, vol. 16, no. 5 (November 2018): https://queue.acm 
.org/detail.cfm?id=3291278.

[2] R. L. Sites, “KUTrace: Where Have All the Nanoseconds 
Gone?” Tracing Summit 2017 (11:00 a.m., slides and video): 
https://tracingsummit.org/wiki/TracingSummit2017. 

[3] Open-source code for KUtrace: https://github.com 
/dicksites/KUtrace.

[4] Ftrace function tracer: https://www.kernel.org/doc/html 
/latest/trace/ftrace.html.

[5] Credit to Lars Nyland at Nvidia for first showing me this.

[6] I have used this principle for many years but only created 
the name while writing this article. A related Half-Useful 
Principle applies to disk transfers and other situations with 
startup delays: if you spend 10 ms doing a seek, then try to 
spend 10 ms transferring data (1 MB+ these days), so that at 
least half the time is useful work.

Cost of Malloc: Not There but Soon Thereafter
Our final study looks at memory allocation. In a client-server 
environment with the client sending 1,000,000-byte data-
base write messages to the server, the server trace reveals 
a user-mode allocation of 1,000,000 bytes for receiving the 
message,  followed by 245 page faults (ceil of 1,000,000/4096), 
the  repeating blips on CPU 3 in Figure 6. You can see similar 
page-fault bursts in the completely different program at the far 
right of Figure 3. The big blips near time 98.7 ms are timer inter-
rupts. You can directly see in the ~30 μs skew in delivering timer 
interrupts on sleeping CPU 2 and on busy CPU 3.

The allocation takes a few microseconds in the underlying 
system call just before the page faults, but the page faults them-
selves take over 1100 microseconds. The (good) Linux design 
for extending heap allocation simply creates 245 read-only 
page table entries pointing to the kernel’s single all-zero page. 
As the user-mode program moves data into this buffer, each 
memory write to a new page takes a page fault, at which time the 
page-fault handler allocates a real memory page, does a copy-
on-write (CoW) to zero it to prevent data security leaks between 
 programs, sets the page table entry to read-write, and returns to 
redo the memory write. This goes on for 245 pages, taking much, 
much longer than the allocation time that is visible in many pro-
filing tools. The dominant page-fault time is invisible to normal 
observation tools.

The copy-on-write path itself is inefficient in several ways. First, 
it could do groups of 4–16 pages at once, saving some page-fault 
entry/exit overhead without spending excess time in the fault 
routine and without allocating too many real pages that might 
never be used. Second, the kernel code does not special-case the 
Linux ZERO_PAGE as source to avoid reading it, by something like:

        if (src == ZERO_PAGE) 
                memset(dst, 0, 4096);
        else
                memcpy(dst, src, 4096);

Doing so would avoid reading an extra 4 KB of zeros into the L1 
cache each time and would avoid half of the memory accesses. It 
would also speed up the instructions per cycle (IPC) of the CoW 
inner loop. 

A malloc call that reuses previously allocated heap space does 
not have the behavior seen here, but one that extends the heap 
does. Some programs aggressively extend and then shrink the 
heap repeatedly, wasting time not only in malloc/free but also in 
page faults. Allocating a buffer once and then explicitly reusing 
it in user code can be faster, for example. Observing these actual 
dynamics can lead to better algorithms.

Conclusion
Careful observation of Linux dynamic behavior reveals sur-
prising anomalies in its schedulers, its use of modern chip 
power-saving states, and its memory allocation overhead. Such 
observation can lead to better understanding of how the actual 
behavior differs from the pictures in our heads. This understand-
ing can in turn lead to better algorithms and better control of 
dynamic behavior. 

As an industry, we have poor nondistorting tools for observ-
ing the true dynamic behavior of complex software, including 
the operating system itself. KUtrace is an example of a better 
tool. I encourage operating-system designers to provide such 
extremely-low-overhead, and hence nondistorting, tools in 
future releases.

https://queue.acm.org/detail.cfm?id=3291278
https://queue.acm.org/detail.cfm?id=3291278
https://tracingsummit.org/wiki/TracingSummit2017
https://github.com/dicksites/KUtrace
https://github.com/dicksites/KUtrace
https://www.kernel.org/doc/html/latest/trace/ftrace.html
https://www.kernel.org/doc/html/latest/trace/ftrace.html



