
42    S U M M ER 2020  VO L . 45 , N O. 2 	 www.usenix.org

COLUMNS

iVoyeur
eBPF Tools

D A V E J O S E P H S E N

Dave Josephsen is a book author,
code developer, and monitoring
expert who works for Fastly.
His continuing mission: to help
engineers worldwide close the

feedback loop. dave-usenix@skeptech.org

I spent my high-school years in a tightly entangled group of four friends.
We were basically inseparable, formed a horrible rock band, and I think
did a lot of typical ’90s Los Angeles kid things like throwing powdered

doughnuts into oncoming traffic and making a nuisance of ourselves at
7-Eleven and Guitar Center. We smashed against the breakwater of gradu-
ation and went different places, but of the four of us, I was the only one who
didn’t go off to college to study music theory. Opting instead to eject into the
Marine Corps, which is a longer story, and irrelevant to the current metaphor.

Anyway, we kept in touch, and in their letters all three of my friends described the process of
learning music theory in a very similar way. As a neophyte musician, you typically have some
aptitude with one or two instruments, but very little knowledge about how music itself works.
Evidently in the first year of music theory, you are presented with myriad complicated rules.
From what I understand, in fact, you do little else the first year but learn the rules and some
important exceptions to the rules.

Then bit by bit, as the years progress, the rules are stripped away, until you reach some sort of
musical enlightenment, where there are no rules and you work in a kind of effortless innova-
tory fugue where everything you create just clicks.

I vaguely remember feeling this way about computer science. Having written my first Perl
script, f lush with optimism and newfound aptitude. “So this is what it feels like to have
mastered computering at last,” I thought to myself, setting aside my Camel book to cross my
arms in a self-satisfied way, and cursing whatever company I was working for at the time
with whatever abomination I’d just created.

Many—er, well, several years later, I feel strongly that computer science is something like the
exact opposite of how my friends described music theory in those hastily scribbled letters all
that time ago. The rules do not so much disappear but rather change and reassemble anew
every so often, and instead of effortless enlightenment, I find myself splitting my days between
confounded frustration and shocked dismay, each of those punctuated by short bouts of
relief and semi-comprehension. In our world I sometimes feel like it’s a miracle anything
works at all, and the more I learn, the less I seem to know.

In my last article I introduced eBPF, the extended Berkeley Packet Filter, along with a shell
tool called biolatency, which uses eBPF-based kernel probes to instrument the block I/O (or
bio) layer of the kernel and return per-device latency data in the form of a histogram. There
is a deeply refreshing crispness about delving into the solar system of eBPF, a brisk under
current that pulls one down through abstraction layers and toward the metal. There are over
150 tools in the BCC (https://github.com/iovisor/bcc) tools suite, and you can use them all
without knowing how they work, of course. I think you’ll find, however, that your effective-
ness with BCC tools like biolatency scales linearly with your knowledge of kernel internals,
and the slightest exploration into their inner workings leads one directly into the kernel
source.

www.usenix.org	   S U M M ER 2020  VO L . 45 , N O. 2  43

COLUMNS
iVoyeur: eBPF Tools

Let’s begin this second article on eBPF, therefore, with a short
discussion of the Linux Kernel’s “bio” layer [1]. This is the kernel
software layer loosely defined as the contents of the block
subdirectory of the Linux kernel source. The code here resides
between file systems like ext3 and device drivers, which do the
work of interacting directly with storage hardware.

At this layer, we are below abstraction notions like files and
directories. Disks are represented by a small struct inside the
kernel called struct_gendisk [2], for “generic disk,” and reads
and writes no longer exist as separate entities. Instead, all types
of block I/O operations are wrapped inside a generic request
wrapper called struct_bio [2], the struct for which the “bio”
layer is named.

Without delving any further into the bio layer, we can already see
how ideally situated the bio layer is for trace-style instrumenta-
tion. Above us, in the file systems, we would need to probe every
kind of disk operation: a different probe for reads, writes, opens,
etc. Below bio we will find vendor-specific code and a mountain
of historical, related exceptions and complications. But right
here inside bio, we have a single, well-defined data-structure that
represents every type of disk I/O possible operation. No writes,
no reads, just requests, and one probe can summarize them all.

We can also assume that tracing these requests will give us read
access to the struct_bio data structure, because we’ll need it
to see what kind of request we’re dealing with (e.g., read/write),
what block device each request is destined for, and so on.

We now have the necessary information to take our first cursory
glance inside biolatency.py [3] to intuit what’s going on. The
first 53 lines are pretty typical preamble for a Python script:
documentation, imports, and argument parsing. The arguments
are interesting, but we’ll set them aside for now to take a look at
the large string that begins on line 55:

define BPF program
bpf_text = “””
#include <uapi/linux/ptrace.h>
#include <linux/blkdev.h>
typedef struct disk_key {

From our last article you’ll remember that eBPF is a virtual
machine that resides in the kernel. This string (named bpf_text)
is the payload intended for that in-kernel VM; it takes up about
a quarter of the overall code in the Python script and is written
in C. It is a program, embedded within our program, that will be
compiled to bytecode and loaded into the kernel’s eBPF VM. If
you look closely, you’ll notice that this C code won’t compile as is,
because of expressions like this one on line 70:

BPF_HASH(start, struct request *);
STORAGE

These are string-replacement match targets. These will be
replaced in this string with valid code, depending on options
passed in by the user. These substitutions begin on line 103
and all take the same general form:

if args.milliseconds:
 bpf_text = bpf_text.replace(‘FACTOR’, ‘delta /= 1000000;’)
 label = “msecs”
else:
 bpf_text = bpf_text.replace(‘FACTOR’, ‘delta /= 1000;’)
 label = “usecs”

All of these substring substitutions follow the same basic pat-
tern: if option X was set by the user, then replace MACRO in the
payload program with value Y; otherwise, replace MACRO with
value Z. In the example above, we’re choosing between micro and
milliseconds in the payload string. We’re also setting a “label”
variable to give hints for properly printing the output later on.
This process of rewriting sections of the payload string goes on
for most of the options the user passes in. The exception is -Q,
which selects whether we will include the time an I/O request
spends queued in the kernel as part of the latency calculation.

This switch affects our choice of which particular kernel func-
tions we ultimately choose to trace. If we don’t care about queue-
time, we will want to measure latency starting from the moment
the I/O request is issued. However if -Q is set, we will also want to
include the time each request spent waiting on the kernel. We can
see how this is implemented starting on line 134:

b = BPF(text=bpf_text)
if args.queued:
 b.attach_kprobe(event=”blk_account_io_start”, \
 fn_name=”trace_req_start”)
else:
 if BPF.get_kprobe_functions(b’blk_start_request’):
 b.attach_kprobe(event=”blk_start_request”, \
 fn_name=”trace_req_start”)
 b.attach_kprobe(event=”blk_mq_start_request”, \
 fn_name=”trace_req_start”)
b.attach_kprobe(event=”blk_account_io_done”,
 fn_name=”trace_req_done”)

First, we instantiate a new BPF Python object, passing in our
newly rewritten payload in the process. What happens next
depends on the -Q option. If we care about the latency induced
by in-kernel queue time, then we’ll insert our kernel probe at the
blk_account_io_start() kernel function, which is called when
an I/O request is first queued in the kernel. However, if we want
to measure “pure” block I/O latency—that is, the amount of time a
given generic I/O request took to return—we’ll instrument blk
_mq_start_request() and possibly blk_start_request() if the
latter function exists in the current kernel. No matter what paths
we choose, we’ll close each trace at blk_account_io_done().

44    S U M M ER 2020  VO L . 45 , N O. 2 	 www.usenix.org

COLUMNS
iVoyeur: eBPF Tools

At this point, our payload is inserted into the running kernel, and
we are collecting data. Now we are confronted with some bitwise
arithmetic beginning with a collection of constants on line 147
and continuing with some bitmask construction, and constants
definition on line 157:

REQ_OP_BITS = 8
REQ_OP_MASK = ((1 << REQ_OP_BITS) - 1)
REQ_SYNC = 1 << (REQ_OP_BITS + 3)
REQ_META = 1 << (REQ_OP_BITS + 4)
REQ_PRIO = 1 << (REQ_OP_BITS + 5)

This is necessary to understand the data we’re collecting. The
bit-specifics correspond to the bi_opf [4] attribute (bio opera-
tional flags) inside struct_bio, the central block I/O request
struct I mentioned above in the bio layer. The attribute is an
unsigned int that’s used to track metadata about a given block
I/O request. You can see the constant defs for this bitmask a
few lines down [5] from the struct_bio definition in the kernel
source. In short, these flags tell us whether a given request was a
read, write, cache-flush, etc. and provide some additional meta-
data about the operation, whether it was priority, backgrounded,
read-ahead, etc.

If you continue down to line 171 in biolatency, you’ll see that we
AND the flags value, given to us from the probe, against a bitmask
with bit 7 set to determine an integer value that corresponds to
the top-level operation type (read, write, flush, discard, etc.). We
then proceed to individually check for flags in the bitmask which
correspond to subcategories. Prepending these to the top-level
operation type:

 if flags & REQ_SYNC:
 desc = “Sync-” + desc
 if flags & REQ_META:
 desc = “Metadata-” + desc
 if flags & REQ_FUA:
 desc = “ForcedUnitAccess-” + desc

So if the flags mask AND’d to a value of 0, which equates to “Read,”
and then we subsequently discovered that bit 11 was set in the flags
mask corresponding to “Sync,” we’d wind up filing this bio-request
under “Sync-Read.” Biolatency can use this data to plot histograms
of I/O latency per category of I/O operation with the -F flag.

The last section in the script deals with printing our output.
The script stays in the foreground until it encounters a keyboard
interrupt from the user, and then dumps its output depending
on how the user specified they wanted to see it in the argument
flags. Unfortunately, these all use functions defined deeper
inside the BCC Python library code, and scratching at them
requires us to understand the eBPF data model, and a little bit
more about the line between kernel and userspace, all of which
we will get into in our next article.

If you’re feeling like you know less than you did when you came
in, then you are in a pretty good place. As I said in the intro,
studying eBPF internals brings you close to the kernel in short
order, which is a refreshing place to be. If you’d like to read a little
more about the kernel’s bio layer, there is an excellent set of intro-
ductory articles at LWN [1], and Brendan Gregg’s BCC Python
Development Tutorials [6] are another great resource for those
wanting to read ahead.

Take it easy.

References
[1] “A block layer introduction part 1: The bio layer”: https://​
lwn.net/Articles/736534/.

[2] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds​
/linux.git/tree/include/linux/genhd.h?h=v4.13#n171.

[3] https://github.com/iovisor/bcc/blob/master/tools​
/biolatency.py.

[4] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds​
/linux.git/tree/include/linux/blk_types.h?h=v4.14-rc1#n54.

[5] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds​
/linux.git/tree/include/linux/blk_types.h?h=v4.14-rc1#n182.

[6] https://github.com/iovisor/bcc/blob/master/docs/tutorial​
_bcc_python_developer.md.

https://lwn.net/Articles/736534/
https://lwn.net/Articles/736534/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/genhd.h?h=v4.13#n171
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/genhd.h?h=v4.13#n171
https://github.com/iovisor/bcc/blob/master/tools/biolatency.py
https://github.com/iovisor/bcc/blob/master/tools/biolatency.py
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/blk_types.h?h=v4.14-rc1#n54
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/blk_types.h?h=v4.14-rc1#n54
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/blk_types.h?h=v4.14-rc1#n182
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/blk_types.h?h=v4.14-rc1#n182
https://github.com/iovisor/bcc/blob/master/docs/tutorial_bcc_python_developer.md
https://github.com/iovisor/bcc/blob/master/docs/tutorial_bcc_python_developer.md

