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SECURITY

Better Passwords through Science  
(and Neural Networks)
W I L L I A M  M E L I C H E R ,  B L A S E  U R ,  S E A N  M .  S E G R E T I ,  L U J O  B A U E R ,  
N I C O L A S  C H R I S T I N ,  A N D  L O R R I E  F A I T H  C R A N O R

In this article, we discuss how we use neural networks to accurately mea-
sure password strength, and how we use this capability to build effec-
tive password meters. First, we show how neural networks can be used 

to guess passwords and how we leveraged this method to build a password 
guesser to better model guessing attacks. We report our measurements of the 
effectiveness of neural networks at guessing passwords, demonstrating that 
they outperform other popular methods of modeling adversarial password 
guessing. We then show how we developed a password guesser that can be 
compressed so that it is practical for client-side use inside a Web page [1]. 
Finally, we describe how we designed and built a password meter, based on 
neural networks, that gives more accurate and helpful guidance to users for 
creating passwords that are resistant to guessing attacks [2].

Passwords are the most common authentication mechanism in use today. We all use pass-
words every day and will likely continue to do so for the foreseeable future. Unfortunately, 
human-chosen passwords often follow predictable patterns. For example: exclamation 
points are at the end; capital letters are at the beginning of passwords; dictionary words, 
well-known phrases, keyboard patterns, and names of people and places are all common. 
Such predictable patterns allow attackers to break into accounts by guessing passwords.

Guessing attacks can take the form of online attacks in which attackers make guesses while 
trying to log in to a live system. Online attacks are sometimes defended against by limit-
ing the rate at which attackers may make guesses against the system. In contrast, in offline 
guessing attacks, attackers can make large numbers of guesses without limits. This com-
monly happens when a database of hashed passwords is stolen, an event that occurs with 
disappointing regularity. Attackers guess candidate passwords and compare them against 
hashed passwords in the database, limited only by the amount of computer resources they 
have. The widespread incidence of password reuse makes such attacks more dangerous 
because attackers who crack a user’s password that was leaked from a stolen database may 
use that cracked password—or common variations of the password—to guess the creden-
tials for that user’s other accounts. A common and effective defense against both online and 
offline guessing attacks is to urge users to create less predictable passwords that are more 
resistant to guessing.

To understand how to guide users to make less guessable passwords, our research group 
has studied methods for modeling how attackers guess passwords. Previous approaches 
for modeling password-guessing attacks include statistical approaches, and tools used in 
adversarial password cracking. Statistical methods, such as Markov models and probabi-
listic context-free grammars, work by deriving statistical properties from lists of training 
passwords. Adversarial password cracking tools, such as John the Ripper and Hashcat, are 
typically used in practice for their ability to crack hashed passwords quickly; often they are 
configured by experts to craft special password cracking rules for specific password sets. 
Prior work from our group has studied these approaches and shown how the combination 
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of multiple automated approaches approximates the ability of professional human experts to 
guess passwords [3]. However, modeling a guessing attack in which attackers can make large 
numbers of guesses often requires servers with tens of CPU cores and with gigabytes of disk 
space for storing models of password guessing. Such models are not practical for giving real-
time feedback to users during password creation; users can’t download gigabytes of data or 
wait days or weeks to get feedback for creating a password.

Due to the challenges of accurately modeling password attacks, most password meters are 
unable to provide data-driven, principled feedback to users during password creation. Meters 
will typically calculate some combination of a variety of heuristics—such as the number 
of special characters used or the length of the password—which often has little correlation 
to the resistance of passwords to guessing attacks [4]. When faced with such meters, users 
often make predictable modifications in order to satisfy the meter’s strength estimate, such 
as adding an exclamation point to the end of their password. However, because attackers are 
also aware of the predictable patterns in password construction, such modifications do little 
to improve the password’s resistance to guessing. In addition, meters are often incapable of 
providing positive advice or giving users suggestions about how to make passwords better, 
instead rating a password as simply “weak” or “fair.”

Designing a Neural Network Guesser
Neural networks are a machine-learning technique that is particularly adept at fuzzy classifi-
cation problems and problems dealing with computer processing of natural language. The 
intuition for our approach was that, because the task of guessing passwords in an adversarial 
attack is conceptually related to generating natural language, neural networks would be well 
suited to our goal of modeling guessing attacks. Recently, the machine-learning community 
has showed how to use neural networks to generate text, which our approach leverages [5]. 
Generating a password with a neural network involves repeatedly predicting the next 
character of a password to build up the password one character at a time. This process can  
be extended to generate large numbers of probable passwords. During training, the neural 
network is taught to predict the next character when given a real password fragment. The 
neural network can then learn to recognize high-level patterns that often arise in password 
construction, such as keyboard patterns or exclamation points at the end of a password.

We tried many different variations and tunings for training our neural network guesser. 
When training neural networks, there is a large design space of different parameters and 
design decisions to explore for better performance. We experimented with a wide range 
of different parameters including: the number of parameters in the model; the method of 
representing password characters; different recurrent neural-network architectures; using 
different types of training data; and using a technique called transference learning, which 
specializes neural network predictions for different situations. At the end of these experi-
ments, we had a neural-network training methodology that we found was most accurate for 
our application of guessing passwords. Additionally, we used a technique of modeling pass-
word guessing to arbitrarily high numbers of guesses by employing Monte Carlo methods [6], 
allowing us to accurately model password guessability against nation-states or other 
extremely powerful adversaries who have huge resources for cracking passwords.

When designing our neural-network guessing method, we tested it against the best tunings 
of other methods for guessing passwords. In addition, during development of our neural-
network guesser, we comprehensively tested various different versions of the neural-network 
guesser against each other to find the best method. We measured the performance of our 
guessing approaches both on real passwords collected in recent password leaks and on pass-
words we have collected in our research studies, allowing us to compare the performance of 
guessing methods in a wide variety of password policies and situations. To train our guessing 
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methods in our experiments, we required large numbers of real 
passwords, which we obtained from leaked password lists. In 
total, our data set of passwords contained over 100 million pass-
words from more than 20 password leaks. This huge amount of 
data on real-world passwords allows machine-learning tech-
niques to infer deep insights into password construction and to 
have the predictive power to model common password patterns.

We found that the neural networks guessed passwords more 
accurately than any other individual method. However, while 
our best-performing neural networks often performed close to 
an optimal guessing strategy, the combination of all methods 
including neural networks (MinGuess in Figure 1) performed 
better than just neural networks alone, showing that a combina-
tion of many models is still better than any individual method. 
Nonetheless, if one is limited to only one method for estimat-
ing password strength, neural networks are the most accurate. 
Figure 1 shows a selection of some of our results on guessing 
accuracy for different conditions; the neural network approach 
guesses a larger proportion of passwords over the same number 
of guesses than other methods. This finding holds to various 
degrees across all of our test sets, although we find that neural 
networks are particularly accurate when guessing passwords 
made under the more exotic, stronger password policies, which 
are becoming increasingly common as password guessing abili-
ties increase.

Designing a Client-Side Strength Estimator
Besides increasing the accuracy of existing password strength 
models, we also strove to develop more practical models. Previ-
ous methods for modeling adversarial password cracking require 
large amounts of disk space or bandwidth—hundreds of mega-
bytes or gigabytes—and take hours or days to calculate measures 
of password strength. In contrast, to give real-time feedback 
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to users during password creation, models must be smaller to 
download and give quick results. For this application, we wanted 
a model that was less than one megabyte to download, which is 
roughly half the size of an average Web page. Additionally, in the 
context of real-time feedback, a model must calculate a measure-
ment of password strength within a fraction of a second—ideally 
below the threshold of human recognition, which is roughly 100 ms. 
In addition to these properties, the measurement should be accu-
rate, and the model should run inside of a Web browser, which 
means that JavaScript is the most viable execution platform.

Given the challenges of implementing accurate password-strength 
measurement on resource-constrained clients, it might be 
tempting to use a system architecture where the password model 
is stored on a server and only measurement results are com-
municated to the client. However, in many situations, the user’s 
password should never be sent to the server for security reasons, 
for example, in the case of device encryption software, keys that 
protect cryptographic credentials, or the master password for a 
password manager. Even in cases where the user’s password is 
eventually sent to an external server, using a remote password-
strength measurement mechanism may allow powerful side 
channels based on keyboard timing, message size, and caching 
[7]. For these reasons, we preferred architectures where pass-
word modeling and strength estimation are done entirely on the 
client side. This design decision has the added benefit of being 
easier for Web administrators to deploy.

To summarize our technical approach to meeting these goals:  
we started by training a neural network with fewer parameters—
the features of the model that define how to predict the next 
character. Using this less complex model made the network 
smaller, but did not sacrifice much accuracy compared to our 
best-performing network. Then we reduced the precision of the 
already shrunken neural network’s parameters, again trading off 

(a) Guessing passwords that must be more than 
eight characters

(b) Guessing passwords that are required to be 
more than eight characters long and have a mix 
of character classes

(c) Guessing passwords that are required to be 
more than 12 characters long and have a mix of 
character classes

Figure 1: Comparison of the ability of different password methods to guess passwords. The x-axis of each graph shows the number of guesses made in log 
scale. The y-axis shows the percent of passwords guessed. Higher lines on the graph represent more accurate guessing. “Neural” shows the performance 
of our neural-network approach; “Markov” the Markov model approach; “PCFG” probabilistic context-free grammars; “JTR” John the Ripper; “Hashcat” 
shows the performance of Hashcat; and “MinGuess” shows a combination of all approaches, where a password receives the minimum guess number from 
all approaches. Each graph shows passwords created under a different policy—requiring a different minimum length and different mix of character classes 
(uppercase and lowercase characters, digits, and symbols). 
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situation—for example, notifying users that using capital letters 
at the beginning of the password is a common pattern and does 
not meaningfully improve the strength of their password.

We developed a password meter that achieves these goals. Our 
meter combines the accuracy of our neural-network strength 
measurement with a series of data-driven heuristics that provide 
human-understandable feedback about the user’s password. 
Figure 2 shows an example of our meter in action. Our meter 
uses the neural network to control the bar that shows how strong 
the user’s password is, while data-driven heuristics addition-
ally give the user specific feedback about how to improve their 
password. The meter can also provide a concrete suggestion for 
how to change the password so that it will be stronger. It does 
so by creating several candidate suggestions that are similar to 
the user’s chosen password and then using the neural network 
to gauge their strength. Only those candidate passwords that are 
judged stronger by the network are shown to the user.

We tested whether the meter helps users to create stronger 
passwords. We recruited participants to create a password for a 
hypothetical high-value online account in a variety of different 
conditions—some participants used our meter during password 
creation, some used modified versions of our meter, and some 
did not have the benefit of any meter. Similar methodology has 
been used in prior work by our group for measuring the impact of 
a variety of different conditions on the security and usability of 
human-chosen passwords [8, 9]. 

We found that participants who used the meter created pass-
words that were 44% more resistant to guessing attacks than 
those who did not. Interestingly, we also found that partici-
pants who saw the human-readable suggestions produced even 
stronger passwords than those who only saw the measurement 
of strength. This implies that not only does providing real-time 

space for some accuracy. Finally, we used standard lossless com-
pression methods to further shrink the size of the model, even-
tually reaching a model size of 850 KB. To make our network 
produce low-latency results, we pre-computed an approximate 
mapping for estimating the strength of the password, which was 
sent to the client along with the network. In addition, we cached 
specific intermediate computations, so that the common case, in 
which a character is added to the end of the password, is quicker 
because the strength estimator only needs to update its previous 
computation. We were able to get the average response time to be 
17 ms for this common case. Some of our optimizations sacri-
ficed accuracy for the sake of quicker results or a smaller model; 
we empirically measured the impact that such optimizations 
introduced and found the error rate to be small enough to be 
acceptable for our purposes. In addition, we tuned the network 
so that it was much more likely that we would make safe errors—
underestimating a password’s strength—than unsafe errors.

We compared the accuracy of our client-side strength estimation 
based on neural networks to existing password meters: “zxcvbn” 
and Yahoo’s password meter. zxcvbn, in particular, measures 
password strength using a number of highly tuned heuristics for 
password strength. We found our method of measuring pass-
word strength to be more accurate—correlating more highly 
with password strength measured by simulating a guessing 
attack—than either meter, having between 39% and 83% fewer 
unsafe errors, depending on the meter and the password policy. 
At the same time, our strength measurement also had fewer safe 
errors. In addition, our more principled method of simulating 
adversarial guessing entirely on the client-side has the benefit 
that it can be easily reconfigured—by re-training the neural 
network—for new password policies or new situations. We know 
that certain password sets often have special patterns that are 
unique to that set: for example, passwords for a sports Web site 
may contain more sports terminology than other password sets. 
Our method would be able to be easily retargeted to learn such 
patterns.

Design of a Password Meter
While the development of an accurate client-side strength-
estimation tool is necessary for a password meter, it is not 
sufficient. There is a gap between a practical measurement of 
strength and providing effective real-time feedback about how 
to make a better password. We wanted to bridge this gap. Our 
main goal was to give human-understandable feedback about 
password creation; our neural-network strength estimation by 
itself can tell the user that a password is weak or strong, but it 
cannot say how to improve the password to be more resistant to 
guessing. To accomplish this, we aimed to give two types of sug-
gestions: first, we wanted to be able to provide concrete sugges-
tions for specific passwords that are stronger; second, we wanted 
to provide users with high-level guidance specific to their exact 

Figure 2: Screenshot of our password meter’s interface. The bar shows 
the strength estimate of the user’s password. The popup dialog shows 
specific password feedback based on the user’s password.
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strength estimates help users make stronger passwords, but also 
that providing actionable suggestions about what users should 
do provides additional benefit.

Conclusion
We showed how neural networks can be used to guess passwords 
and that they can do so more accurately than other methods for 
adversarial password guessing. We also showed how leverag-
ing neural networks can lead to more practical estimations of 
password strength on resource-constrained client machines in 
real time. Finally, we built and tested a password meter, based on 
neural networks, that gives human-understandable feedback and 
guides users to make better passwords. We have released our 
meter as open source software (at https://github.com/cupslab​
/neural_network_cracking and https://github.com/cupslab​
/password_meter) and invite people to use it.
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