
26    WI N T ER 20 17  VO L . 42 , N O. 4 	 www.usenix.org

SECURITY

Better Passwords through Science
(and Neural Networks)
W I L L I A M M E L I C H E R , B L A S E U R , S E A N M . S E G R E T I , L U J O B A U E R ,
N I C O L A S C H R I S T I N , A N D L O R R I E F A I T H C R A N O R

In this article, we discuss how we use neural networks to accurately mea-
sure password strength, and how we use this capability to build effec-
tive password meters. First, we show how neural networks can be used

to guess passwords and how we leveraged this method to build a password
guesser to better model guessing attacks. We report our measurements of the
effectiveness of neural networks at guessing passwords, demonstrating that
they outperform other popular methods of modeling adversarial password
guessing. We then show how we developed a password guesser that can be
compressed so that it is practical for client-side use inside a Web page [1].
Finally, we describe how we designed and built a password meter, based on
neural networks, that gives more accurate and helpful guidance to users for
creating passwords that are resistant to guessing attacks [2].

Passwords are the most common authentication mechanism in use today. We all use pass-
words every day and will likely continue to do so for the foreseeable future. Unfortunately,
human-chosen passwords often follow predictable patterns. For example: exclamation
points are at the end; capital letters are at the beginning of passwords; dictionary words,
well-known phrases, keyboard patterns, and names of people and places are all common.
Such predictable patterns allow attackers to break into accounts by guessing passwords.

Guessing attacks can take the form of online attacks in which attackers make guesses while
trying to log in to a live system. Online attacks are sometimes defended against by limit-
ing the rate at which attackers may make guesses against the system. In contrast, in offline
guessing attacks, attackers can make large numbers of guesses without limits. This com-
monly happens when a database of hashed passwords is stolen, an event that occurs with
disappointing regularity. Attackers guess candidate passwords and compare them against
hashed passwords in the database, limited only by the amount of computer resources they
have. The widespread incidence of password reuse makes such attacks more dangerous
because attackers who crack a user’s password that was leaked from a stolen database may
use that cracked password—or common variations of the password—to guess the creden-
tials for that user’s other accounts. A common and effective defense against both online and
offline guessing attacks is to urge users to create less predictable passwords that are more
resistant to guessing.

To understand how to guide users to make less guessable passwords, our research group
has studied methods for modeling how attackers guess passwords. Previous approaches
for modeling password-guessing attacks include statistical approaches, and tools used in
adversarial password cracking. Statistical methods, such as Markov models and probabi-
listic context-free grammars, work by deriving statistical properties from lists of training
passwords. Adversarial password cracking tools, such as John the Ripper and Hashcat, are
typically used in practice for their ability to crack hashed passwords quickly; often they are
configured by experts to craft special password cracking rules for specific password sets.
Prior work from our group has studied these approaches and shown how the combination

William Melicher is a PhD
student in the College of
Electrical and Computer
Engineering at Carnegie
Mellon University. He works on

passwords, Web security, and online privacy.
He received his undergraduate degree in
computer engineering from the University of
Virginia. billy@cmu.edu

Blase Ur is Neubauer Family
Assistant Professor of
Computer Science at the
University of Chicago. His
research focuses broadly

on usable security and privacy, including
authentication, privacy transparency, and
tools for helping users make better security
decisions. He received his PhD and MS from
Carnegie Mellon University and his AB from
Harvard University. blase@uchicago.edu

Sean Segreti is a Security
Consultant, Developer, and
Passwords Researcher at
KoreLogic. Segreti maintains
Carnegie Mellon University’s

Password Guessability Service, which is used
by over 30 universities to estimate password
strength. Segreti holds a master’s degree in
electrical and computer engineering (ECE) from
Carnegie Mellon University, and a bachelor’s
degree in electrical engineering from the
University of Maryland.
ssegreti@cmu.edu

www.usenix.org	   WI N T ER 20 17  VO L . 42 , N O. 4  27

of multiple automated approaches approximates the ability of professional human experts to
guess passwords [3]. However, modeling a guessing attack in which attackers can make large
numbers of guesses often requires servers with tens of CPU cores and with gigabytes of disk
space for storing models of password guessing. Such models are not practical for giving real-
time feedback to users during password creation; users can’t download gigabytes of data or
wait days or weeks to get feedback for creating a password.

Due to the challenges of accurately modeling password attacks, most password meters are
unable to provide data-driven, principled feedback to users during password creation. Meters
will typically calculate some combination of a variety of heuristics—such as the number
of special characters used or the length of the password—which often has little correlation
to the resistance of passwords to guessing attacks [4]. When faced with such meters, users
often make predictable modifications in order to satisfy the meter’s strength estimate, such
as adding an exclamation point to the end of their password. However, because attackers are
also aware of the predictable patterns in password construction, such modifications do little
to improve the password’s resistance to guessing. In addition, meters are often incapable of
providing positive advice or giving users suggestions about how to make passwords better,
instead rating a password as simply “weak” or “fair.”

Designing a Neural Network Guesser
Neural networks are a machine-learning technique that is particularly adept at fuzzy classifi-
cation problems and problems dealing with computer processing of natural language. The
intuition for our approach was that, because the task of guessing passwords in an adversarial
attack is conceptually related to generating natural language, neural networks would be well
suited to our goal of modeling guessing attacks. Recently, the machine-learning community
has showed how to use neural networks to generate text, which our approach leverages [5].
Generating a password with a neural network involves repeatedly predicting the next
character of a password to build up the password one character at a time. This process can
be extended to generate large numbers of probable passwords. During training, the neural
network is taught to predict the next character when given a real password fragment. The
neural network can then learn to recognize high-level patterns that often arise in password
construction, such as keyboard patterns or exclamation points at the end of a password.

We tried many different variations and tunings for training our neural network guesser.
When training neural networks, there is a large design space of different parameters and
design decisions to explore for better performance. We experimented with a wide range
of different parameters including: the number of parameters in the model; the method of
representing password characters; different recurrent neural-network architectures; using
different types of training data; and using a technique called transference learning, which
specializes neural network predictions for different situations. At the end of these experi-
ments, we had a neural-network training methodology that we found was most accurate for
our application of guessing passwords. Additionally, we used a technique of modeling pass-
word guessing to arbitrarily high numbers of guesses by employing Monte Carlo methods [6],
allowing us to accurately model password guessability against nation-states or other
extremely powerful adversaries who have huge resources for cracking passwords.

When designing our neural-network guessing method, we tested it against the best tunings
of other methods for guessing passwords. In addition, during development of our neural-
network guesser, we comprehensively tested various different versions of the neural-network
guesser against each other to find the best method. We measured the performance of our
guessing approaches both on real passwords collected in recent password leaks and on pass-
words we have collected in our research studies, allowing us to compare the performance of
guessing methods in a wide variety of password policies and situations. To train our guessing

SECURITY
Better Passwords through Science (and Neural Networks)

Lujo Bauer is an Associate
Professor in the Electrical
and Computer Engineering
Department and in the Institute
for Software Research at

Carnegie Mellon University. His research
interests span many areas of computer security
and privacy, and include building usable
access-control systems with sound theoretical
underpinnings, developing languages
and systems for run-time enforcement of
security policies on programs, and generally
narrowing the gap between a formal model
and a practical, usable system. His recent work
focuses on developing tools and guidance to
help users stay safer online and in examining
how advances in machine learning can lead to a
more secure future. lbauer@cmu.edu

Nicolas Christin is an Associate
Research Professor at Carnegie
Mellon University, jointly
appointed in the School of
Computer Science and in

Engineering and Public Policy. He holds MS
and PhD degrees in computer science from the
University of Virginia. His research interests are
in computer and information systems security;
most of his work is at the boundary of systems
and policy research. He has most recently
focused on security analytics, online crime
modeling, and economics and human aspects
of computer security. nicolasc@cmu.edu

Lorrie Faith Cranor is a
Professor of Computer
Science and of Engineering
and Public Policy at Carnegie
Mellon University where she

is director of the CyLab Usable Privacy and
Security Laboratory (CUPS). She is Associate
Department Head of the Engineering and Public
Policy Department and Co-Director of the
MSIT-Privacy Engineering masters program. In
2016 she served as Chief Technologist at the
US Federal Trade Commission. She is also a co-
founder of Wombat Security Technologies, Inc.,
a security-awareness training company. She is
a fellow of the ACM and IEEE and a member of
the ACM CHI Academy. lorrie@cmu.edu

28    WI N T ER 20 17  VO L . 42 , N O. 4 	 www.usenix.org

SECURITY
Better Passwords through Science (and Neural Networks)

methods in our experiments, we required large numbers of real
passwords, which we obtained from leaked password lists. In
total, our data set of passwords contained over 100 million pass-
words from more than 20 password leaks. This huge amount of
data on real-world passwords allows machine-learning tech-
niques to infer deep insights into password construction and to
have the predictive power to model common password patterns.

We found that the neural networks guessed passwords more
accurately than any other individual method. However, while
our best-performing neural networks often performed close to
an optimal guessing strategy, the combination of all methods
including neural networks (MinGuess in Figure 1) performed
better than just neural networks alone, showing that a combina-
tion of many models is still better than any individual method.
Nonetheless, if one is limited to only one method for estimat-
ing password strength, neural networks are the most accurate.
Figure 1 shows a selection of some of our results on guessing
accuracy for different conditions; the neural network approach
guesses a larger proportion of passwords over the same number
of guesses than other methods. This finding holds to various
degrees across all of our test sets, although we find that neural
networks are particularly accurate when guessing passwords
made under the more exotic, stronger password policies, which
are becoming increasingly common as password guessing abili-
ties increase.

Designing a Client-Side Strength Estimator
Besides increasing the accuracy of existing password strength
models, we also strove to develop more practical models. Previ-
ous methods for modeling adversarial password cracking require
large amounts of disk space or bandwidth—hundreds of mega-
bytes or gigabytes—and take hours or days to calculate measures
of password strength. In contrast, to give real-time feedback

SECURITY
Better Passwords through Science (and Neural Networks)

to users during password creation, models must be smaller to
download and give quick results. For this application, we wanted
a model that was less than one megabyte to download, which is
roughly half the size of an average Web page. Additionally, in the
context of real-time feedback, a model must calculate a measure-
ment of password strength within a fraction of a second—ideally
below the threshold of human recognition, which is roughly 100 ms.
In addition to these properties, the measurement should be accu-
rate, and the model should run inside of a Web browser, which
means that JavaScript is the most viable execution platform.

Given the challenges of implementing accurate password-strength
measurement on resource-constrained clients, it might be
tempting to use a system architecture where the password model
is stored on a server and only measurement results are com-
municated to the client. However, in many situations, the user’s
password should never be sent to the server for security reasons,
for example, in the case of device encryption software, keys that
protect cryptographic credentials, or the master password for a
password manager. Even in cases where the user’s password is
eventually sent to an external server, using a remote password-
strength measurement mechanism may allow powerful side
channels based on keyboard timing, message size, and caching
[7]. For these reasons, we preferred architectures where pass-
word modeling and strength estimation are done entirely on the
client side. This design decision has the added benefit of being
easier for Web administrators to deploy.

To summarize our technical approach to meeting these goals:
we started by training a neural network with fewer parameters—
the features of the model that define how to predict the next
character. Using this less complex model made the network
smaller, but did not sacrifice much accuracy compared to our
best-performing network. Then we reduced the precision of the
already shrunken neural network’s parameters, again trading off

(a) Guessing passwords that must be more than
eight characters

(b) Guessing passwords that are required to be
more than eight characters long and have a mix
of character classes

(c) Guessing passwords that are required to be
more than 12 characters long and have a mix of
character classes

Figure 1: Comparison of the ability of different password methods to guess passwords. The x-axis of each graph shows the number of guesses made in log
scale. The y-axis shows the percent of passwords guessed. Higher lines on the graph represent more accurate guessing. “Neural” shows the performance
of our neural-network approach; “Markov” the Markov model approach; “PCFG” probabilistic context-free grammars; “JTR” John the Ripper; “Hashcat”
shows the performance of Hashcat; and “MinGuess” shows a combination of all approaches, where a password receives the minimum guess number from
all approaches. Each graph shows passwords created under a different policy—requiring a different minimum length and different mix of character classes
(uppercase and lowercase characters, digits, and symbols).

www.usenix.org	   WI N T ER 20 17  VO L . 42 , N O. 4  29

SECURITY
Better Passwords through Science (and Neural Networks)

situation—for example, notifying users that using capital letters
at the beginning of the password is a common pattern and does
not meaningfully improve the strength of their password.

We developed a password meter that achieves these goals. Our
meter combines the accuracy of our neural-network strength
measurement with a series of data-driven heuristics that provide
human-understandable feedback about the user’s password.
Figure 2 shows an example of our meter in action. Our meter
uses the neural network to control the bar that shows how strong
the user’s password is, while data-driven heuristics addition-
ally give the user specific feedback about how to improve their
password. The meter can also provide a concrete suggestion for
how to change the password so that it will be stronger. It does
so by creating several candidate suggestions that are similar to
the user’s chosen password and then using the neural network
to gauge their strength. Only those candidate passwords that are
judged stronger by the network are shown to the user.

We tested whether the meter helps users to create stronger
passwords. We recruited participants to create a password for a
hypothetical high-value online account in a variety of different
conditions—some participants used our meter during password
creation, some used modified versions of our meter, and some
did not have the benefit of any meter. Similar methodology has
been used in prior work by our group for measuring the impact of
a variety of different conditions on the security and usability of
human-chosen passwords [8, 9].

We found that participants who used the meter created pass-
words that were 44% more resistant to guessing attacks than
those who did not. Interestingly, we also found that partici-
pants who saw the human-readable suggestions produced even
stronger passwords than those who only saw the measurement
of strength. This implies that not only does providing real-time

space for some accuracy. Finally, we used standard lossless com-
pression methods to further shrink the size of the model, even-
tually reaching a model size of 850 KB. To make our network
produce low-latency results, we pre-computed an approximate
mapping for estimating the strength of the password, which was
sent to the client along with the network. In addition, we cached
specific intermediate computations, so that the common case, in
which a character is added to the end of the password, is quicker
because the strength estimator only needs to update its previous
computation. We were able to get the average response time to be
17 ms for this common case. Some of our optimizations sacri-
ficed accuracy for the sake of quicker results or a smaller model;
we empirically measured the impact that such optimizations
introduced and found the error rate to be small enough to be
acceptable for our purposes. In addition, we tuned the network
so that it was much more likely that we would make safe errors—
underestimating a password’s strength—than unsafe errors.

We compared the accuracy of our client-side strength estimation
based on neural networks to existing password meters: “zxcvbn”
and Yahoo’s password meter. zxcvbn, in particular, measures
password strength using a number of highly tuned heuristics for
password strength. We found our method of measuring pass-
word strength to be more accurate—correlating more highly
with password strength measured by simulating a guessing
attack—than either meter, having between 39% and 83% fewer
unsafe errors, depending on the meter and the password policy.
At the same time, our strength measurement also had fewer safe
errors. In addition, our more principled method of simulating
adversarial guessing entirely on the client-side has the benefit
that it can be easily reconfigured—by re-training the neural
network—for new password policies or new situations. We know
that certain password sets often have special patterns that are
unique to that set: for example, passwords for a sports Web site
may contain more sports terminology than other password sets.
Our method would be able to be easily retargeted to learn such
patterns.

Design of a Password Meter
While the development of an accurate client-side strength-
estimation tool is necessary for a password meter, it is not
sufficient. There is a gap between a practical measurement of
strength and providing effective real-time feedback about how
to make a better password. We wanted to bridge this gap. Our
main goal was to give human-understandable feedback about
password creation; our neural-network strength estimation by
itself can tell the user that a password is weak or strong, but it
cannot say how to improve the password to be more resistant to
guessing. To accomplish this, we aimed to give two types of sug-
gestions: first, we wanted to be able to provide concrete sugges-
tions for specific passwords that are stronger; second, we wanted
to provide users with high-level guidance specific to their exact

Figure 2: Screenshot of our password meter’s interface. The bar shows
the strength estimate of the user’s password. The popup dialog shows
specific password feedback based on the user’s password.

30    WI N T ER 20 17  VO L . 42 , N O. 4 	 www.usenix.org

SECURITY
Better Passwords through Science (and Neural Networks)

strength estimates help users make stronger passwords, but also
that providing actionable suggestions about what users should
do provides additional benefit.

Conclusion
We showed how neural networks can be used to guess passwords
and that they can do so more accurately than other methods for
adversarial password guessing. We also showed how leverag-
ing neural networks can lead to more practical estimations of
password strength on resource-constrained client machines in
real time. Finally, we built and tested a password meter, based on
neural networks, that gives human-understandable feedback and
guides users to make better passwords. We have released our
meter as open source software (at https://github.com/cupslab​
/neural_network_cracking and https://github.com/cupslab​
/password_meter) and invite people to use it.

Acknowledgments
We would like to thank Mahmood Sharif for participating in
discussions about neural networks and Dan Wheeler for his
feedback. This work was supported in part by gifts from the PNC
Center for Financial Services Innovation, Microsoft Research,
John & Claire Bertucci, and a gift from NATO through Carnegie
Mellon CyLab.

References
[1] W. Melicher, B. Ur, S. M. Segreti, S. Komanduri, L. Bauer, N.
Christin, L. F. Cranor, “Fast, Lean, and Accurate: Modeling Pass-
word Guessability Using Neural Networks,” in Proceedings of
25th USENIX Security Symposium, 2016: http://​bit​.ly​/2fB18Jd.

[2] B. Ur, F. Alfieri, M. Aung, L. Bauer, N. Christin, J. Colnago, L.
F. Cranor, H. Dixon, P. E. Naeini, H. Habib, N. Johnson, W.
Melicher, “Design and Evaluation of a Data-Driven Password
Meter,” in Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, ACM, 2017: https://doi.org/10​
.1145/3025453.3026050.

[3] B. Ur, S. M. Segreti, L. Bauer, N. Christin, L. F. Cranor, S.
Komanduri, D. Kurilova, M. L. Mazurek, W. Melicher, R. Shay,
“Measuring Real-World Accuracies and Biases in Modeling
Password Guessability,” in Proceedings of the 24th USENIX
Security Symposium, 2015: https://www.usenix.org/system​
/files/conference/usenixsecurity15/sec15-paper-ur.pdf.

[4] X. de Carné de Carnavalet and M. Mannan. “From Very
Weak to Very Strong: Analyzing Password-Strength Meters,”
in Proceedings of the 18th Network and Distributed System
Security Symposium, 2014: https://www.ndss-symposium.org/
ndss2014/programme/very-weak-very-strong-analyzing-
password-strength-meters/.

[5] I. Sutskever, J. Martens, and G. E. Hinton. “Generating Text
with Recurrent Neural Networks,” in Proceedings of the 28th
International Conference on Machine Learning (ICML-11),
http://www.icml-2011.org/papers/524_icmlpaper.pdf.

[6] M. Dell’Amico and M. Filippone, “Monte Carlo Strength
Evaluation: Fast and Reliable Password Checking,” in Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, 2015: https://doi.org/10.1145​
/2810103.2813631.

[7] D. X. Song, D. Wagner, and X. Tian, “Timing Analysis of
Keystrokes and Timing Attacks on SSH,” in Proceedings of the
10th USENIX Security Symposium, 2001: https://www.usenix​
.org/legacy/events/sec01/full_papers/song/song.pdf.

[8] S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek, L. Bauer,
N. Christin, L. F. Cranor, and S. Egelman, “Of Passwords and
People: Measuring the Effect of Password-Composition Poli-
cies,” in Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, ACM, 2011: https://doi.org/10.1145​
/1978942.1979321.

[9] R. Shay, S. Komanduri, A. L. Durity, P. Huh, M. L. Mazurek,
S. M. Segreti, B. Ur, L. Bauer, N. Christin, and L. F. Cranor, “Can
Long Passwords Be Secure and Usable?” in Proceedings of the
32nd Annual ACM Conference on Human Factors in Computing
Systems, 2014: https://doi.org/10.1145/2556288.2557377.

https://github.com/cupslab/neural_network_cracking
https://github.com/cupslab/neural_network_cracking
https://github.com/cupslab/password_meter
https://github.com/cupslab/password_meter
http://bit.ly/2fB18Jd
https://doi.org/10.1145/3025453.3026050
https://doi.org/10.1145/3025453.3026050
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-ur.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-ur.pdf
https://www.ndss-symposium.org/ndss2014/programme/very-weak-very-strong-analyzing-password-strength-meters/
https://www.ndss-symposium.org/ndss2014/programme/very-weak-very-strong-analyzing-password-strength-meters/
https://www.ndss-symposium.org/ndss2014/programme/very-weak-very-strong-analyzing-password-strength-meters/
http://www.icml-2011.org/papers/524_icmlpaper.pdf
https://doi.org/10.1145/2810103.2813631
https://doi.org/10.1145/2810103.2813631
https://www.usenix.org/legacy/events/sec01/full_papers/song/song.pdf
https://www.usenix.org/legacy/events/sec01/full_papers/song/song.pdf
https://doi.org/10.1145/1978942.1979321
https://doi.org/10.1145/1978942.1979321
https://doi.org/10.1145/2556288.2557377

