
70    WI N T ER 20 17  VO L . 42 , N O. 4 	 www.usenix.org

COLUMNS

Practical Perl Tools
Perl without Perl

D A V I D N . B L A N K - E D E L M A N

It’s not exactly a Zen koan, but it will have to do for this issue’s column.
Today we’re going to talk about how a method for parsing Perl without
using the actual Perl interpreter can offer a whole host of benefits. This

idea may be somewhat surprising because Perl has a reputation (perhaps
deserved) as being a language where “the only thing which can parse Perl
(the language) is perl (the binary).” For some detailed examples of this criti-
cism, see one of the well-known essays at http://www.perlmonks.org/index
.pl?node_id=44722, which is where that quote came from, originally attrib-
uted to Tom Christiansen.

Part of the problem is that there are some ambiguities in the language that only resolve
themselves definitively during runtime. This reality harshed many the mellow of aspiring
tool creators until at some point someone asked the question, “Could we write something
that could parse enough Perl to be useful? Maybe we won’t get 100% correct behavior, but
how good does it have to be to let us get real work done?” Turns out, we can actually get
really, really close. The leap in thinking that made this possible was a small shift in mindset:
instead of thinking of the program/file as code that is executed, we can think of it as a static
document we can parse. This lets us get close enough that very useful tools can be created,
and that’s what this column will focus on.

PPI
The heart of all of this work is the PPI module and the small ecosystem that surrounds it. PPI
is a Perl module (so perhaps the title isn’t entirely accurate) that knows how to parse existing
Perl code. Even though this module is at the center of everything we’re going to talk about
today, we’re going to do almost nothing with it directly. Directly using PPI is easy (excerpted
from the docs):

	 use PPI;

	

	 # Create a new empty document

	 my $Document = PPI::Document->new;

	

	 # Load a Document from a file

	 $Document = PPI::Document->new(‘Module.pm’);

	

	 # Does it contain any POD?

	 if ($Document->find_any(‘PPI::Token::Pod’)) {

	 print “Module contains POD\n”;

	 }

	

	 # Remove all that nasty documentation

	 $Document->prune(‘PPI::Token::Pod’);

	 $Document->prune(‘PPI::Token::Comment’);

David has over thirty years
of experience in the systems
administration/DevOps/SRE
field in large multiplatform
environments and is the author

of the O’Reilly Otter book (new book on SRE
forthcoming!). He is one of the co-founders
of the now global set of SREcon conferences.
David is honored to serve on the USENIX
Board of Directors where he helps to organize
and engineer conferences like LISA and
SREcon.  dnb@usenix.org

www.usenix.org	   WI N T ER 20 17  VO L . 42 , N O. 4  71

COLUMNS
Practical Perl Tools: Perl without Perl

	

	 # Save the file

	 $Document->save(‘Module.pm.stripped’);

Basically, you create the object that will represent the Perl docu-
ment and then tell PPI to parse the file (or a chunk of Perl code in
a string, not shown here). In the code above we tell PPI to find or
remove different Perl structures from the parsed info and write
this document back out to disk. This is pretty simple, so what can
we build on this model?

Make It Pretty
One thing we can do once we “understand” the Perl document
that has been parsed is to output the document in a way that
improves its readability. One example of this is PPI::Prettify.

PPI::Prettify bootstraps on the work done by Google to pro-
duce a syntax highlighting tool that would make it easy to
embed readable code in a Web page. This is the same software
that Stack Overflow uses for its code examples. Their package,
prettify.js (https://code.google.com/archive/p/google-code-
prettify/), consists of a JavaScript module to do the highlight-
ing and accompanying CSS that lets you “theme” the results.
PPI::Prettify lets you skip the JavaScript part and just make use
of the CSS themes that work with prettify.js (plus the highlight-
ing is allegedly more accurate).

Using the module is basically a single call:

	 use File::Slurp;

	 use PPI::Prettify ‘prettify’;

	 my $document = read_file($ARGV[0]);

	 print prettify({ code => $document });

Here you see me using File::Slurp to pull an entire file into
memory because PPI::Prettify expects to have code fed to it via
a scalar.

The output looks a little like this:

	 <pre class=”prettyprint”>use</span

> WebService

::Spotify;

	

	 ...

which is only “pretty” when displayed in an HTML document
that references the right prettify.js CSS file for those classes.

Count It
Another helpful class of things built on top of PPI are the mod-
ules that can give us some stats about our code. For example, the
Perl::Metrics::Simple package comes with a countperl utility,
which gives the following output:

$ countperl spotify2.pl

Perl files found: 1

Counts

total code lines:	 14

lines of non-sub code:	 8

packages found:	 0

subs/methods:	 1

Subroutine/Method Size

min:	 6

max:	 6

mean:	 6.00

std. deviation:	 0.00

median:	 6.00

McCabe Complexity

Code not in any subroutine

min:	 5

max:	 5

mean:	 5.00

std. deviation:	 0.00

median:	 5.00

Subroutines/Methods

min:	 2

max:	 2

mean:	 2.00

std. deviation:	 0.00

median:	 2.00

List of subroutines, with most complex at top

--

complexity	 sub	  path	 size

  5	 {code not in named subroutines}	 ./spotify2.pl	  8

  2	 print_artists	 ./spotify2.pl	  6

If you really get into this sort of static analysis, there are more
complex modules like Perl::Metrics and Code::Statistics you
may want to explore.

Find It
A perhaps more exciting consequence of being able to parse Perl
from Perl is the ability to create utilities that can selectively
operate on source files based on the semantics of the code they
contain. For example, we can now write programs that only work
on Perl files that contain documentation (or better yet, are miss-
ing documentation). We can search for text just in the comments
of the code (looking at only real comments vs. a crude guess that
looks at strings that start with a #). We can look for code that has
“barewords” in it, and so on. PPI opens this all up for us.

72    WI N T ER 20 17  VO L . 42 , N O. 4 	 www.usenix.org

COLUMNS
Practical Perl Tools: Perl without Perl

Two easy ways to get into this are using the Find::File::Rule:PPI
module and utilities like App::Grepl. Let’s look at both.

We’ve talked about the Find::File::Rule family before in this
column (I’m very fond of it), but let’s do a quick review anyway.
Find::File::Rule is a module family meant to extend the func-
tionality of the Find::File module that ships with Perl and also
make it easier to use. Instead of writing a special subroutine
whose job it is to determine whether an object found when tra-
versing a directory tree is of interest, you write code that looks
more like this (from the doc):

find all the subdirectories of a given directory

my @subdirs = File::Find::Rule->directory->in($directory);

and

find all the .pm files in @INC

my @files = File::Find::Rule->file()

	 ->name(‘*.pm’)

	 ->in(@INC);

Basically, you string together a bunch of methods that express
rules for determining the files or directory names of interest.
I find it easiest to read the code backwards—in the last code
sample, it says to look in the directories listed in the @INC array.
In those directories, collect the names of all of the files and
directories that have a name ending in .pm. Of these, return
those that are files.

Find::File::Rule:PPI adds a ppi_find any method that lets you
specify the same sort of selectors we saw at the very beginning of
the column. So, for instance, if we wanted a list of all of the Perl
files in a directory (and its subdirectories) that have embedded
POD documentation, we could write:

use File::Find::Rule;

use File::Find::Rule::PPI;

my @podfiles =

 File::Find::Rule

 -> file()

 -> name(‘*.pm’)

 -> ppi_find_any(‘PPI::Token::Pod’)

 -> in(‘.’);

print join(“\n”, @podfiles), “\n”;

App::Grepl takes this a little further in that you can search for
text (à la grep) in specific Perl structures. For example, you could
look for the string “USENIX” in just the POD part of files with
code like this:

use App::Grepl;

my $grepl = App::Grepl->new({

 dir => “.”,

 look_for => [‘pod’],

 pattern => ‘USENIX’

});

$grepl->search;

or from the command line:

	 grepl --dir . --pattern ‘USENIX’ --search pod

There are modules that can do less general scanning as well. For
example, App::ScanPrereqs offers a nice CLI that can show all of
the prerequisites for the code in a directory:

$ scan-prereqs .

+---+-------------+

| module	 |	 version	 |

+---+-------------+

| blib	 |	 1.01	 |

| ExtUtils::MakeMaker 	 |	 0	 |

| File::Find	 |	 0	 |

| File::Spec	 |	 0	 |

| Filename::Backup	 |	 0	 |

| IO::Handle	 |	 0	 |

| IPC::Open3	 |	 0	 |

| Log::ger	 |	 0	 |

| Module::CoreList	 |	 0	 |

| Perinci::CmdLine::Any	 |	 0	 |

| perl	 |	 5.010001	 |

| Perl::PrereqScanner	 |	 0	 |

| Perl::PrereqScanner::Lite	 |	 0	 |

| Perl::PrereqScanner::NotQuiteLite	 |	 0	 |

| Pod::Coverage::TrustPod	 |	 0	 |

| strict	 |	 0	 |

| Test::More	 |	 0	 |

| Test::Pod	 |	 1.41	 |

| Test::Pod::Coverage	 |	 1.08	 |

| warnings	 |	 0	 |

+---+-------------+

It’s a little meta, but that’s what the module reports for itself
when I run the scanner.

A similar tool comes from the Perl::MinimumVersion module
which can output information like:

www.usenix.org	   WI N T ER 20 17  VO L . 42 , N O. 4  73

COLUMNS
Practical Perl Tools: Perl without Perl

| file	 |	 explicit	 |	 syntax	 |	 external	 |

| --- |

| Makefile.PL	 |	 v5.10.1	 |	 v5.10.0	 |	 n/a	 |

| bin/scan-prereqs	 |	 v5.101	 |	 v5.6.0	 |	 n/a	 |

| lib/App/ScanPrereqs.pm	 |	 v5.10.1	 |	 v5.10.0	 |	 n/a	 |

| t/00-compile.t	 |	 v5.6.0	 |	 v5.6.0	 |	 n/a	 |

| t/author-pod-coverage.t	 |	 ~ 	 |	 ~	 |	 n/a	 |

| t/author-pod-syntax.t	 |	 ~	 |	 v5.6.0	 |	 n/a	 |

| t/release-rinci.t	 |	 ~	 |	 ~	 |	 n/a	 |

| --- |

| Minimum explicit version	 :	 v5.10.1	 |

| Minimum syntax version	 :	 v5.10.0	 |

| Minimum version of perl	 :	 v5.10.1	 |

 --

If you want to go one step fancier, there’s the App::PrereqGrapher
module which makes pretty pictures like the one in Figure 1.

Make Your Code Better
Okay, the last set of PPI-powered modules to cover: those that
help us write better code. Examples of this are the several mod-
ules like Log::Report::Extract::PerlPPI that make it easier to
find, extract, and replace translatable strings in the code (e.g.,
error messages) for when you need to write code that will work in
several languages.

Even more fun is software like Code::DRY, which calls itself “Cut-
and-Paste-Detector for Perl code” and says, “The module’s main
purpose is to report repeated text fragments (typically Perl code)
that could be considered for isolation and/or abstraction in order
to reduce multiple copies of the same code (aka cut and paste
code).” This can produce reports like (from the doc):

1 duplicate(s) found with a length of 8 (>= 2 lines) and 78 bytes

 reduced to complete lines:

1. File: t/00_lowlevel.t in lines 57..64 (offsets 1467..1544)

2. File: t/00_lowlevel.t in lines 74..81 (offsets 1865..1942)

===================

...<duplicated content>

===================

As a last and perhaps most useful module to visit, we return to
something we’ve seen in past columns: Perl::Critic. Perl::Critic
attempts to “critique Perl source code for best-practices.” I think
its doc says it best:

Perl::Critic is an extensible framework for creating
and applying coding standards to Perl source
code. Essentially, it is a static source code analysis
engine. Perl::Critic is distributed with a number of
Perl::Critic::Policy modules that attempt to enforce
various coding guidelines. Most Policy modules are
based on Damian Conway’s book Perl Best Practices.
However, Perl::Critic is not limited to PBP and will
even support Policies that contradict Conway. You can
enable, disable, and customize those Policies through
the Perl::Critic interface. You can also create new
Policy modules that suit your own tastes.

When I write code, I tend to use a few tools to improve it, even
as I’m writing. First, there’s the internal checks of use strict.
Then there is perltidy (which doesn’t use PPI because it existed
a couple of years before PPI came into being, but there are bug
reports that suggest it should) for aligning and generally pretty
printing the code. And finally, there’s perlcritic, the command
line tool that calls Perl::Critic on the code to look for best prac-
tices being violated by the code. For example, here’s a run on the
CSS::Tiny module file:

$ perlcritic Tiny.pm

Bareword file handle opened at line 27, column 2. See pages

 202,204 of PBP. (Severity: 5)

Don’t modify $_ in list functions at line 53, column 16. See

 page 114 of PBP. (Severity: 5)

Expression form of “eval” at line 69, column 19. See page

 161 of PBP. (Severity: 5)

Expression form of “eval” at line 69, column 46. See page

 161 of PBP. (Severity: 5)

Bareword file handle opened at line 90, column 2. See pages

 202,204 of PBP. (Severity: 5)

Not everything it complains about is crucial to change, but it
does occasionally point out flaws in the code that can and should
be easily remedied.

With this tip, I’ll say take care, and I’ll see you next time.

Figure 1: Output from App::PrereqGrapher

