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The Secure Socket API
TLS as an Operating System Service
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TLS APIs are often complex, leading to developer mistakes. In addi-
tion, even with well-written applications, security administrators 
lack control over how TLS is used on their machines and don’t have 

the ability to ensure applications follow best practices. Our solution is to 
provide a Secure Socket API that is integrated into the well-known POSIX 
sockets API. This is both simple for developers to use and allows system 
administrators to set device policy for TLS. In this article, we both explain 
and demonstrate how the Secure Socket API works.

Transport Layer Security (TLS) is the most popular security protocol used on the Inter-
net. Proper use of TLS allows two network applications to establish a secure communica-
tion channel between them. However, improper use can result in vulnerabilities to various 
attacks. Unfortunately, popular security libraries, such as OpenSSL and GnuTLS, while 
feature-rich and widely used, have long been plagued by programmer misuse. The complexity 
and design of these libraries can make them hard to use correctly for application developers 
and even security experts. For example, Georgiev et al. find that the “terrible design of [secu-
rity library] APIs” is the root cause of authentication vulnerabilities [1]. Significant efforts 
to catalog developer mistakes and the complexities of modern security APIs have been 
published in recent years. As a result, projects have emerged that reduce the size of security 
APIs (e.g., libtls in LibreSSL), enhance library security [2], and perform certificate validation 
checks on behalf of vulnerable applications [3, 4]. A common conclusion of these works is 
that TLS libraries need to be redesigned to be simpler for developers to use securely.

A related problem is that the reliance on application developers to implement security inhib-
its the control administrators have over their own machines. For example, administrators 
cannot currently dictate what version of TLS, which ciphersuites, key sizes, etc. are used by 
applications they install. This coupling of application functionality with security policy can 
make otherwise desirable applications unadoptable by administrators with incompatible 
security requirements. This problem is exacerbated when security flaws are discovered in 
applications and administrators must wait for security patches from developers, which may 
not ever be provided.

The synthesis of these two problems is that developers lack a common, usable security API, 
and administrators lack control over secure connections. To address these issues, we present 
the Secure Socket API (SSA), a TLS API that leverages the existing standard POSIX socket 
API. This reduces the TLS API to a handful of functions that are already offered to and 
used by network programmers, effectively making the TLS API itself nearly transparent. 
This drastically reduces the code required to use TLS, as developers merely select TLS as 
if it were a built-in protocol, such as TCP or UDP. Moreover, our implementation of this API 
enables administrators to configure TLS policies system-wide and to centrally update all 
applications using the API.
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Secure Socket API Design
Under the POSIX socket API, developers specify their desired 
protocol using the last two parameters of the socket function, 
which specify the type of protocol (e.g., SOCK_DGRAM, SOCK_

STREAM) and optionally the protocol itself (e.g., IPPROTO_TCP). 
Corresponding network operations such as connect, send, and 
recv then use the selected protocol in a manner transparent to 
the developer. In designing the SSA, we sought to cleanly inte-
grate TLS into this API. Our design goals are as follows:

1.	 Enable developers to use TLS through the existing set of func-
tions provided by the POSIX socket API without adding any 
new functions or changing function signatures. Modifications 
to the API are acceptable only in the form of new values for 
existing parameters.

2.	 Support direct administrator control over the parameters and 
settings for TLS connections made by the SSA. Applications 
should be able to increase, but not decrease, the security pre-
ferred by the administrator.

3.	 Export a minimal set of TLS options to applications that allow 
general TLS use and drastically reduce the amount of functions 
in contemporary TLS APIs.

4.	 Facilitate the adoption of the SSA by other programming 
languages, easing the security burden on language implementa-
tions and providing broader security control to administrators.

To inform the design of the SSA, we first analyzed the OpenSSL 
API and its use by popular software packages. This included 
automated and manual assessment of 410 Ubuntu packages 
using TLS in client and server capacities, and assessment of the 
OpenSSL API itself. More details regarding our methods and 
results for this analysis are available at https://owntrust.org.

The API
Under the Secure Socket API, all TLS functionality is built 
directly into the POSIX socket API. The POSIX socket API was 
derived from Berkeley sockets and is meant to be portable and 
extensible, supporting a variety of network communication 
protocols. Under our SSA extension, developers select TLS by 
specifying IPPROTO_TLS as the protocol in socket. Applications 
send and receive data using standard functions such as send and 
recv, which will be encrypted and decrypted using TLS, just as 
network programmers expect their data to be placed inside and 
removed from TCP segments under IPPROTO_TCP. To transpar-
ently employ TLS in this fashion, other functions of the POSIX 
socket API have specialized TLS behaviors under IPPROTO_TLS 
as well. In particular, getsockopt and setsockopt are used for 
developer configuration. A complete listing of the behaviors 
of the POSIX socket functions and the TLS socket options are 
provided in our recent paper [5]. 

To avoid developer misuse of TLS, the SSA is responsible for 
automatic management of various TLS parameters and settings, 
including selection of TLS versions, ciphersuites and extensions, 
and validation of certificates. All of these are subject to a system 
configuration policy with secure defaults, and customization 
options are exported to system administrators and developers.

To offer concrete examples of SSA use, we show code for a 
simple client and server below. Both the client and the server 
create a socket with the IPPROTO_TLS protocol. The client uses 
the standard connect function to connect to the remote host, 
also employing a new AF_HOSTNAME address family to indicate 
which hostname it wishes to connect to. In this case, the con-

nect function performs the necessary host lookup and performs 
a TLS handshake with the resulting address. Alternatively, the 
client could have specified the hostname via a new socket option 
and called connect using traditional INET address families. The 
former method obviates the need for developers to explicitly 
call gethostbyname or getaddrinfo, which further simplifies 
their code. Either way, the SSA uses the provided hostname for 
certificate validation and the Server Name Indication extension 
to TLS. Later, the client uses send to transmit a plaintext HTTP 
request to the server, which is encrypted by the SSA before 
transmission. The response received is also decrypted by the 
SSA before placing it into the buffer provided by recv. 

In the server case, the application binds and listens on port 443. 
Before it calls listen, it uses two calls to setsockopt to provide 
the location of its private key and certificate chain file to be used 
for authenticating itself to clients during the TLS handshake. 
Afterward, the server iteratively handles requests from incom-
ing clients, and the SSA performs a TLS handshake with clients 
transparently. As with the client case, calls to send and recv 
have their data encrypted and decrypted in accordance with the 
TLS session, before they are delivered to their destinations.

/* Use hostname address family */

struct sockaddr_host addr;

addr.sin_family = AF_HOSTNAME;

strcpy(addr.sin_addr.name, “www.example.com”);

addr.sin_port = htons(443);

/* Request a TLS socket (instead of TCP) */

fd = socket(PF_INET, SOCK_STREAM, IPPROTO_TLS);

/* TLS Handshake (verification done for us) */

connect(fd, &addr, sizeof(addr));

/* Hardcoded HTTP request */

char http_request[] = “GET / HTTP/1.1\r\n...”

char http_response[2048];

memset(http_response, 0, 2048);

/* Send HTTP request encrypted with TLS */
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send(fd,http_request,sizeof(http_request)-1,0);

/* Receive decrypted response */

recv(fd, http_response, 2047, 0);

/* Shutdown TLS connection and socket */

close(fd);

return 0;

Listing 1: A simple HTTPS client example under the SSA. Error checks and 
some trivial code are removed for brevity. 

/* Use standard IPv4 address type */

struct sockaddr_in addr;

addr.sin_family = AF_INET;

addr.sin_addr.s_addr = INADDR_ANY;

addr.sin_port = htons(443);

/* Request a TLS socket */

fd = socket(PF_INET, SOCK_STREAM, IPPROTO_TLS);

bind(fd, &addr, sizeof(addr));

/* Assign certificate chain */

setsockopt(fd, 	IPPROTO_TLS, 

	 TLS_CERTIFICATE_CHAIN,

	 CERT_FILE, sizeof(CERT_FILE));

/* Assign private key */

setsockopt(fd, 	IPPROTO_TLS,

	 TLS_PRIVATE_KEY,

	 KEY_FILE, sizeof(KEY_FILE));

listen(fd, SOMAXCONN);

while (1) {

  struct sockaddr_storage addr;

  socklen_t addr_len = sizeof(addr);

  /* Accept new client and do TLS handshake

  using cert and keys provided */

  int c_fd = accept(fd, &addr, &addr_len);

  /* Receive decrypted request */

  recv(c_fd, request, BUFFER_SIZE, 0);

  handle_req(request, response);

  /* Send encrypted response */

  send(c_fd, response, BUFFER_SIZE, 0);

  close(c_fd);

}

Listing 2: A simple server example under the SSA. Error checks and some 
trivial code are removed for brevity.

Administrator Options
Reflecting our second goal, administrator control over TLS 
parameters, the SSA gives administrators a protected configura-
tion file that allows administrators to indicate their preferences 
for TLS versions, ciphersuites, certificate validation method
ologies, extensions, and other TLS settings. These settings 
are applied to all TLS connections made with the SSA on the 

machine. However, additional configuration profiles can be cre-
ated or installed by the administrator for specific applications 
that override global settings.

Our definition of administrators includes both power users 
as well as operating system vendors, who may wish to provide 
strong default policies for their users. 

Developer Options
The setsockopt and getsockopt POSIX functions provide a 
means to support additional settings in cases where a protocol 
offers more functionality than can be expressed by the limited 
set of principal functions. Linux, for example, supports 34 TCP-
specific socket options to customize protocol behavior. Arbitrary 
data can be transferred to and from the API implementation 
using setsockopt and getsockopt, because they take a generic 
pointer and a data length (in bytes) as parameters, along with an 
optname constant identifier. Adding a new option can be done 
by merely defining a new optname constant to represent it and 
adding appropriate code to the implementation of setsockopt 
and getsockopt.

In accordance with this standard, the SSA adds a few options 
for IPPROTO_TLS. These options include setting the remote 
hostname, specifying a certificate chain or private key, setting 
a session TTL, disabling a cipher, requesting client authentica-
tion, and others. A full list is given in our recent paper [5]. Our 
specification of TLS options reflects a minimal set of recom-
mendations gathered from our analysis of existing TLS use by 
applications, in keeping with our third design goal. 

Porting Applications to the SSA
We modified the source code of four network programs to use 
the SSA for their TLS functionality. Two of these already used 
OpenSSL for their TLS functionality, and two were not built to 
use TLS at all. Table 1 summarizes the results of these efforts.

Both the command-line wget web client and the lighttpd web 
server required fewer than 20 lines of source code (Table 1), and 
each application was modified by a developer who had no prior 
experience with the code of these tools, the SSA, or OpenSSL. In 
addition, the modifications made it possible to remove thousands 
of lines of existing code. In porting these applications, most of 
the time spent was used to become familiar with the source code 
and remove OpenSSL calls.

We also modified an in-house web server and the netcat utility, 
neither of which previously supported TLS. The web server 
required modifying only one line of code—the call to socket 
to use IPPROTO_TLS on its listening socket. Under these cir-
cumstances, the certificate and private key used are from the 
SSA configuration. However, these can be specified by the 
application with another four lines of code to set the private 



18    WI N T ER 20 1 8   VO L .  4 3 ,  N O.  4 	 www.usenix.org

SECURITY
The Secure Socket API: TLS as an Operating System Service

key and certificate chain and check for corresponding errors. 
The TLS upgrade for netcat for both server and client connec-
tions required modifying five lines of code. In both cases, TLS 
upgrades required less than 10 minutes. 

Language Support
One of the benefits of using the POSIX socket API as the basis 
for the SSA is that it is easy to provide SSA support to a vari-
ety of languages, which is in line with our fourth design goal. 
This benefit accrues if an implementation of the SSA instru-
ments the POSIX socket functionality in the kernel through the 
system-call interface. Any language that uses the network must 
interface with network system calls, either directly or indirectly. 
Therefore, given an implementation in the kernel, it is trivial to 
add SSA support to other languages.

To illustrate this benefit, we have added SSA support to three 
additional languages beyond C/C++: Python, PHP, and Go. Sup-
porting these first two languages merely required making their 
corresponding interpreters aware of the additional constant val-
ues used in the SSA, such as IPPROTO_TLS. Since Go uses system 
calls directly and exports its own wrapper for these, we followed 
the same pattern by creating new wrappers for SSA functional-
ity, which required fewer than 50 lines of code.

Implementation
We have developed a loadable Linux kernel module that imple-
ments the Secure Socket API. Source code is available at https://
owntrust.org. A high-level view of a typical network application 
using a security library for TLS is shown in Figure 1. The appli-
cation links to the security library, such as OpenSSL or GnuTLS, 
and then uses the POSIX socket API to communicate with the 
network subsystem in the kernel, typically using a TCP socket.

A corresponding diagram, Figure 2, illustrates how our imple-
mentation of the SSA compares to this normal usage. We split 
our SSA implementation into two parts: a kernel component 
and a userspace encryption daemon. At a high-level, the kernel 
component is responsible for registering all IPPROTO_TLS func-
tionality with the kernel and maintaining state for each TLS 

socket. The kernel component offloads the tasks of encryption 
and decryption to the encryption daemon, which uses OpenSSL 
and obeys administrator preferences.

Note that our prototype implementation moves the use of a secu-
rity library to the encryption daemon. The application interacts 
only with the POSIX socket API, and the encryption daemon 
establishes TLS connections, encrypts and decrypts data, imple-
ments TLS extensions, and so forth. The daemon uses adminis-
trator configuration to choose which TLS versions, ciphersuites, 
and extensions to support.

Program LOC 
Modified

LOC 
Removed Time Taken

wget 15 1,020 5 hrs.

lighttpd 8 2,063 5 hrs.

ws-event 5 0 5 min.

netcat 5 0 10 min.

Table 1: Summary of code changes required to port a sample of applica-
tions to use the SSA. wget and lighttpd used existing TLS libraries, 
ws-event and netcat were not originally TLS-enabled. 

Figure 1: Data flow for traditional TLS library by network applications. The 
application shown is using TCP.

Figure 2: Data flow for SSA usage by network applications. The applica-
tion shown is using the TLS, which uses TCP internally for connection-
based SOCK_STREAM sockets.
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Alternative Implementations
POSIX is a set of standards that defines an OS API—the imple-
mentation details are left to system designers. Accordingly, 
our presentation of the SSA with its extensions to the existing 
POSIX socket standard and related options is separate from the 
presented implementation. While our implementation leveraged 
a userspace encryption daemon, other architectures are possible. 
We outline two of these:

◆◆ Userspace only: The SSA could be implemented as a userspace 
library that is either statically or dynamically linked with an 
application, wrapping the native socket API. Under this model 
the library could request administrator configuration from 
default system locations to retain administrator control of 
TLS parameters. While such a system sacrifices the inherent 
privilege separation of the system-call boundary and language 
portability, it would not require that the OS kernel explicitly 
support the API.

◆◆ Kernel only: Alternatively, an implementation could build all 
TLS functionality directly into the kernel, resulting in a pure 
kernel solution. This idea has been proposed within the Linux 
community [6] and gained some traction in the form of patches 
that implement individual cryptographic components. Some 
performance gains in TLS are also possible in this space. Such 
an implementation would provide a back end for SSA function-
ality that required no userspace encryption daemon.

Discussion
Our work explores a TLS API conforming to the POSIX socket 
API. We reflect now on the general benefits of this approach and 
the specific benefits of our implementation.

By conforming to the POSIX API, using TLS becomes a matter 
of simply specifying TLS rather than TCP during socket creation 
and setting a small number of options. All other socket calls 
remain the same, allowing developers to work with a familiar 
API. Porting insecure applications to use the SSA takes minutes, 
and refactoring secure applications to use the SSA instead of 
OpenSSL takes a few hours and removes thousands of lines of 
code. This simplified TLS interface allows developers to focus 
on the application logic that makes their work unique rather than 
spending time implementing standard network security.

Because our SSA design moves TLS functionality to a central-
ized service, administrators gain the ability to configure TLS 
behavior on a system-wide level, and tailor settings of individual 
applications to their specific needs. Default configurations can 
be maintained and updated by OS vendors, similar to Fedora’s 
CryptoPolicy [7]. For example, administrators can set prefer-
ences for TLS versions, ciphersuites, and extensions, or auto-
matically upgrade applications to TLS 1.3 without developer 
patches.

By implementing the SSA with a kernel module, developers who 
wish to use it do not have to link with any additional userspace 
libraries. With small additions to libc headers, C/C++ appli-
cations can use IPPROTO_TLS. Other languages can be easily 
modified to use the SSA, as demonstrated with our efforts to add 
support to Go, Python, and PHP.

Adding TLS to the Linux kernel as an Internet protocol allows 
the SSA to leverage the existing separation of the system call 
boundary. Due to this, privilege separation in TLS usage can 
be naturally achieved. For example, administrators can store 
private keys in a secure location inaccessible to applications. 
When applications provide paths to these keys using setsock-

opt (or use them from the SSA configuration), the SSA can read 
these keys with its elevated privilege. If the application becomes 
compromised, the key data (and master secret) remain outside 
the address space of the application.

Conclusion
We feel that the POSIX socket API is a natural fit for a TLS API 
and hope to see it advanced through its use, new implementa-
tions, and standardization. We hope to encourage community 
involvement to further refine our implementation and help 
develop support in additional operating systems. For source code 
and documentation, please visit https://owntrust.org. For a more 
in-depth look at the SSA, see our paper presented at USENIX 
Security 2018 [5].
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