
www.usenix.org	   WI N T ER 20 1 8  VO L . 4 3 , N O. 4  41

COLUMNSAnd Now for Something Completely Different
P E T E R N O R T O N

I use Python in my day-to-day work, and I aspire to being able to write
about things that I would want to know more about if I were reading
this column instead of writing it. I use Python with Saltstack for writ-

ing internal APIs, for templating, for writing one-off tools, and for trying out
ideas. It’s my first choice as a go-to tool for almost anything at this point. I’ve
come to realize that it’s the lens that I view my computer and my job through.

Between writing my first column and this one, there was the announcement that Python
is changing in a fundamental way. So I feel the need to take this opportunity to reflect on
the extraordinary nature of this change: on July 12, 2018, Guido van Rossum elected to step
down as the BDFL of the Python language [1].

A lot has been written about the circumstances, and I am not able to add useful commentary
or knowledge about Guido’s decision to retire from his title and his position in the commu-
nity. I just want to add my own voice to those who have thanked him for shepherding the
language for as long as he has done.

This is also a great chance to give props to all of Python’s maintainers who will be guiding
the language to its next phase of governance and to discuss what that may mean for those of
us who mainly use the language. So while this article will be non-technical, I hope it will at
least be informative, interesting, and useful.

Conway’s Law
Conway’s Law [2] is often invoked when asking how some piece of software developed into
its current state. The version at Wikipedia attributed to Melvin Conway says, “organizations
which design systems…are constrained to produce designs which are copies of the commu-
nication structures of these organizations.” If you’ve ever wondered why a system is written
in a byzantine-seeming way including paths in and out of various modules and dependencies
that don’t appear to make sense to you, it is often because of Conway’s Law: the software
needed to be worked on is under the constraints imposed by the organization writing it, not
just based on the needs of the software.

However, the law also describes systems organized in a clear and sensible, easy-to-follow
manner, which often doesn’t get noted in describing positive aspects of software.

Python
So let’s take a step back and think about Python. The core of the model for changes to Python
is most typical of a new programming language: someone wrote it, and that person is in
charge. It makes intuitive sense on almost every level. When Python was new, it was mostly
simple to defer all decisions to Guido, since he clearly cared and was willing to shoulder
the burden. As it developed, in order to accommodate the wishes of its growing community,
Python developed a PEP (Python Enhancements Proposal) process for proposing changes to
the language, its core modules, the C API, and to make clear what was “standard” (e.g., what
other implementations needed to do in order to be considered “an implementation of Python”
that could use code written for other Python implementations and not merely be considered
“like Python”) and what was specific to the C implementation.

Peter works on automating
cloud environments. He loves
using Python to solve problems.
He has contributed to books
on Linux and Python, helped

with the New York Linux Users Group, and
helped to organize past DevOpsDays NYC
events. In addition to Python, Peter is slowly
improving his knowledge of Rust, Clojure, and
maybe other fun things. Even though he is a
native New Yorker, he is currently living in and
working from home in the northeast of Brazil.
pcnorton@rbox.co.

42    WI N T ER 20 1 8  VO L . 4 3 , N O. 4 	 www.usenix.org

COLUMNS
And Now for Something Completely Different

The PEP process was there to provide feedback to language
maintainers, and Guido was given the jocular title of the BDFL,
“Benevolent Dictator for Life.” This title has always been con-
ditioned on Guido actually wanting it, and the flexibility given
to him and to the language by that nuance has meant that even
though Python made that acronym popular, it has become a
fairly common term to give to maintainers in programming com-
munities ever since it was coined.

Most of the languages I’ve seen other people enjoy using have
been governed by an involved benevolent leader. Most of these
have also been dynamic scripting languages: Ruby, Python, Tcl,
and Perl are all somewhat similar as languages, and all follow a
similar model: they each have a large audience, core developers,
and a single leader whom they flourish/flourished under at some
point.

Outside of “scripting languages,” some other languages that have
the same broad leadership model are Clojure and Scala. When I
stopped to think about it, most of the hot languages of the past
decade benefitted from having an undisputed leadership and
support from the core group of users and maintainers.

In addition to these examples, there is evidence that the BDFL
leadership model isn’t a critical part of the success of a lan-
guage—successful languages curated by a company or a commit-
tee include Java, C, C++, Haskell, and OCaml, among others. In
addition, in a “similar to Python” vein, node.js, for one, is clearly
successful, and its governance is managed quite differently. So
even though there are many successful models, it’s not a stretch
to think that the languages that have thrived under a leader have
done well solely because of that leadership.

If you use Python as a nontrivial codebase, you’ve probably
considered how Python’s organization around a minimal core
with many modules matches what enables central language
maintainers to do the best job they can. The fun and interesting
question is how and whether it has affected the structure and the
development of your software.

Going forward, the Python core maintainers and broader
committer community have begun the difficult and admirable
process of describing what they need in order to feel like they can
make good decisions. This means that they are creating docu-
mentation on the process and also the context of the decisions
that are being made. As you might expect, a new series of PEPs
have been produced in order to describe the future of Python
governance. Starting at PEP 8000 [3] a series of decisions will
be made, and in the end PEP 13 [4] will get filled in with the deci-
sions that are reached.

A deliberate part of the outcome of this will be documentation
and data about how other software projects and companies are
managed. I understand that they are seeking a common under-

standing so that everyone participating can make an informed
decision towards a common goal of helping Python thrive. This
is being acted on as an opportunity to provide future maintain-
ers—themselves and others—with the guidelines and knowledge
of how and why they made their decisions. If it’s ever necessary
to change the governance model again, this will probably make
the process easier.

PEP 8002 [5, 6] is absolutely fascinating—the Python commu-
nity is reaching out to other communities and is asking ques-
tions about their governance, which may not be documented
clearly enough for outsiders to simply comprehend, and the
resulting survey provides material for the Python community
to understand where they—where we—fit in the broader com-
munity of software users. Looking at the Git log of the text of this
PEP, I see more and more information being added to it weekly,
and each addition is fascinating.

A notable point is that the communities in PEP 8002 are not
just other languages. As of this writing, it does include Rust and
Typescript, but it also includes Jupyter, Openstack, and Django,
as well as Microsoft to add a significantly different and contrast-
ing perspective.

Speculation
I’m now going to put out some very unreliable and probably base-
less speculation about what will be done to the language in the
future.

First, it is uncontroversial that there is an industry trend that
CPU speeds have leveled off. Even though special purpose com-
pute units like GPUs are taking over some workloads, threading
that isn’t bound to a single CPU is becoming more important, not
less. I hope that something new could come to Python to improve
its story here, even though it’s unlikely considering the current
and past state of the language.

In recent 3.x releases, however, the addition of async features
and libraries emphasize how important it is to have some way
of scaling that gets closer to true parallel multithreading. In the
long term, could a change in the governance model prioritize
multithreaded scheduling?

Another recent change in 3.6+ is type hints and their use for
static type checks, even though one of the great things about
Python is that the usage of types is very beginner-friendly: that
is, flexible and forgiving (as they are in Ruby, Perl, and many
other languages!). They are also very expert-friendly! If you
know what you are doing, the thinking goes, the lack of compile-
time type checking lets you get through prototyping faster.

However, in spite of how friendly Python and similar languages
are, it’s clear that in many cases strict compile-time checks are
a huge benefit. An example of this is the development of HHVM

www.usenix.org	   WI N T ER 20 1 8  VO L . 4 3 , N O. 4  43

COLUMNS
And Now for Something Completely Different

(HipHop Virtual Machine). In case you’re not aware, PHP is also
a very flexible dynamically typed language. It is the underpin-
ning of a huge enterprise, and that enterprise created a version
of PHP for its own use where they added static type annotations.
This feature then made its way to mainstream PHP 7 and above.

I feel that the needs of the business fundamentally altered how
they perceived the benefits and difficulties of the language they
were using, to the degree that they changed fundamental aspects
of that language, trading away some ease of use for what I under-
stand to be a huge benefit. They did this by creating a slightly dif-
ferent language, and while communicating with the maintainer
of PHP, and the benefit became a part of mainstream PHP.

If you view this progression as an extension of Conway’s Law,
that could tell us something about some of the potential direc-
tions that Python could go in, and also could perhaps indicate
some of the benefits along with the costs. A lot of the benefit of
HHVM and PHP derive from the type hints being provided to
a JIT, though, and that sounds like something that is closer to
PyPy than to standard C-Python. But as long as I’m speculating
wildly: there you have it.

Changes
I am not trying to predict anything here and now except the
obvious: there is potential for huge changes in Python in the long
term if the community of maintainers and users come together
and agree on the inherent benefits. I am not hoping that anyone
try to burn down the amazing system that we have and love! My
message is that it will be important to have civil conversations as
the maintainers peer into their crystal balls, predict the future,
and try to guide the language—but there may be some things that
were considered unstoppable, immovable, or invariant that could
be called into question now!

It simply seems more possible that there will be a chance to
accommodate experiments that haven’t been getting done
because the opinions of the BDFL were known and would make
some suggestions dead on arrival. For the most part, it seems
unlikely that the maintainers of Python will want to change the
language drastically, but looking at the possibilities with an open
mind will benefit everyone greatly.

To follow past, present, and future developments, go to the PEP
index at https://www.python.org/dev/peps/, where you will find:

◆◆ PEP 8002 describing the governance models of other software
projects

◆◆ PEP 8010 describing the BDFL governance model

◆◆ PEP 8011 describing the council governance model

◆◆ PEP 8012 describing the community governance model

◆◆ PEP 8013 describing the external council governance model

Ongoing meta-discussion in the community is forming the
PEPs above. It’s also important to pay attention to the python-
committers mailing list (https://mail.python.org/pipermail
/python-committers/). At this time there have been discussions
about how to time box the discussion so that a decision can be
made, though I’m not clear on whether there is an agreement
about an actual date just yet.

Decisions are being made in large and small ways constantly,
and they always have been. Python sprints (https://python
-sprints.github.io/) are places where developers get together and
discuss Python in addition to hacking on it. Obviously, Python’s
past, present, and future are discussed at the sprints and will
continue to be discussed there.

Conclusion
For anyone who is considering picking up or becoming involved
with Python or a Python-based project, the change in leader-
ship shouldn’t discourage you—in fact, the process so far should
encourage all of us to understand more about how this language
has been governed and how it will be in the future.

This column is being written months before its publication, so
when you finally read this, a lot more progress should have been
made towards describing how Python’s future may be guided,
but the process will still be alive and dynamic and in motion. So
this is a great opportunity to alert those of you who may not be
aware that this is happening, and to invite those of you who may
have filed this under “look at how this is going later” to see how
things are going now.

References
[1] Guido van Rossum, “Transfer of Power,” python-committers
list: https://mail.python.org/pipermail/python-committers​
/2018-July/005664.html.

[2] Conway’s Law: https://en.wikipedia.org/wiki/Conway​
%27s_law.

[3] B. Warsaw, Python Language Governance Proposal Over-
view: https://www.python.org/dev/peps/pep-8000/.

[4] B. Warsaw, Python Language Governance: https://www​
.python.org/dev/peps/pep-0013/.

[5] B. Warsaw, L. Langa, A. Pitrou, D. Hellmann, C. Willing,
Open Source Governance Survey: https://www.python.org​
/dev/peps/pep-8002/.

[6] History for PEP 8002: https://github.com/python/peps​
/commits/master/pep-8002.rst.

https://www.python.org/dev/peps/
https://mail.python.org/pipermail
https://python
https://mail.python.org/pipermail/python-committers/2018-July/005664.html
https://mail.python.org/pipermail/python-committers/2018-July/005664.html
https://en.wikipedia.org/wiki/Conway%27s_law
https://en.wikipedia.org/wiki/Conway%27s_law
https://www.python.org/dev/peps/pep-8000/
https://www.python.org/dev/peps/pep-0013/
https://www.python.org/dev/peps/pep-0013/
https://www.python.org/dev/peps/pep-8002/
https://www.python.org/dev/peps/pep-8002/
https://github.com/python/peps/commits/master/pep-8002.rst
https://github.com/python/peps/commits/master/pep-8002.rst

