
44    WI N T ER 20 1 8  VO L . 4 3 , N O. 4 	 www.usenix.org

COLUMNS

Custom Binaries to Ease Onboarding Using Go
C H R I S “ M A C ” M C E N I R Y

It recently came up that I needed to release a helper tool for our work
environment. I was limited with regards to my distribution methods
since much of the user base is BYOD based. Having Go in my toolbox, I

knew that I could use Go to ease the distribution. One of Go’s selling points is
its ability to package up all of its dependencies and runtime at compile time,
so that you can avoid the runtime dependencies management issues that
often arise.

In this case, the executable I built required a lot of configuration information—our list of
compute clusters, the authentication endpoint, and an authentication client ID (OAuth 2
based)—so I wrote up and released the documentation on how a user can configure the tool
for our environment.

After several weeks with supporting users and the binary, I observed two key behaviors:

1.	 Every user eventually used the same configuration file, and

2.	 I needed to regularly update the configuration file as we built, deleted, or moved clusters.

Every time there was a change in the latter, I had to inform the users, publish a new set of
documentation, and ask everyone to update. This had mixed success. The extra amount of
work, the amount of internal works that were exposed to every user, and the limit of effec-
tiveness of the updates made me look for an easier way to accomplish this.

I started to compare it to another rising situation: mobile device application management.
Mobile devices operate under similar circumstances. They tend to be dominated by BYOD.
Applications are distributed as large single installs that similarly embed the runtime. The
one big difference that I noticed is that with mobile devices, the users are limited with some
configuration items. Most configuration items are either compiled into the binary or fetched
and cached on the device. Some of those configuration items include secrets such as applica-
tion identifiers and client tokens.

In an attempt to make life easier, I decided to try moving the configuration around with my
helper executable.

In this column, we’re going to explore moving the configuration for organizational applica-
tions out of configuration files. Along the way, we’re going to use this as an opportunity to
pick up the AWS object storage, S3, to help us out. We’re going to store our basic configura-
tion in an S3 bucket, and we’re going to provide access to that bucket by hard coding the
access values into the executable.

The code for this example can be found at https://github.com/cmceniry/login/ in the “hard-
code” directory. hardcode contains a customizer directory, which is our example application
without any organizational-specific configuration.

For this example, you’ll need:

Chris “Mac” McEniry is a
practicing sysadmin responsible
for running a large e-commerce
and gaming service. He’s been
working and developing in

an operational capacity for 15 years. In his
free time, he builds tools and thinks about
efficiency. cmceniry@mit.edu

www.usenix.org	   WI N T ER 20 1 8  VO L . 4 3 , N O. 4  45

COLUMNS
Custom Binaries to Ease Onboarding Using Go

1. 	 An AWS account.

2. 	 To create a bucket and upload a sample. If you are new to S3,
use this guide: https://docs.aws.amazon.com/AmazonS3
/latest/gsg/GetStartedWithS3.html.

3. 	 Set up an IAM user with access keys. This user should have
the AmazonS3ReadOnlyAccess policy applied to it (or a more
restrictive one if you are familiar with IAM). If you are new to
AWS access management, see https://docs.aws.amazon.com
/IAM/latest/UserGuide/id_users_create.html#id_users
_create_console.

You can also choose to use a different, off-site storage technique,
but a point of this article is to learn how to use the AWS Go
interface for S3.

Storing Remote Configuration
The first part is to move the bulk of configuration into an exter-
nal store.

Amazon’s Simple Storage Service (S3) is a household name for
many working in cloud environments. It provides an authenti-
cated and globally available storage location for static contents.
We’re fetching our configuration from an S3 bucket. In this exam-
ple, that configuration is going to be a simple string message, but it
could easily be a block of structured data to hold various values.

We’re dependent on the AWS Go SDK. You can obtain this with
go get github.com/aws-sdk-go/... or using a Go dependency man-
agement tool.

Since we’re only accessing S3 in one place, we’re going to wrap
all of that in a single function. It expects four inputs: the access
key, its secret key, and the bucket name and path. Instead of
returning a value, it will set a global configuration—we’ll return
to this in the next section.

fetch.go: fetch.

 func fetch(ak, sk, bucket, path string) error {

Inside of fetch, we start by configuring an AWS session. This is
used for all of the interactions with the AWS APIs. We’re going
to give it our authentication keys and provide a region for the pro-
file to use. Outside of the static credentials, the AWS SDK does
not operate directly on Go types, so we’ll need to wrap these with
the AWS SDK types.

fetch.go: session.

 sess, err := session.NewSession(&aws.Config{

 Region: aws.String(“us-west-2”),

 Credentials: credentials.NewStaticCredentials(

 ak, sk, “”,

),

 })

Before we download, we need a place to download to. Since the
application will be using this configuration, we want to keep
this configuration in a memory buffer. Underneath the hood, S3
may download across multiple streams and data segments. This
means that an ordinary buffer, specifically one that expects just
to append to the end, will not work. AWS provides a buffer—aws
.WriteAtBuffer—that can be written to in multiple locations at
the same time so we can use that.

fetch.go: writeatbuf.

 writeAtBuf := aws.NewWriteAtBuffer([]byte{})

Next we construct the downloader and run the download. The
s3manager.Downloader is an intelligent transfer manager and
capable of downloading many different objects in parallel. In
this case, we’re just downloading the one object, but we still
funnel everything through it. When creating it, we need to tell
it our AWS API session so that it has the proper authentication
information. Download requires a destination—our writeAtBuf
buffer—and a source—the aws.String wrapped bucket name and
path or key name.

One thing to note: the writeAtBuf parameter passed into down-
load is an io.WriteAt interface. This means anything that has a
WriteAt member method can be used there. For instance, if you
were downloading straight to a file, then os.File can be used
directly since it has the WriteAt member method. This is an
excellent example of using Go interfaces for flexibility.

fetch.go: download.

 downloader := s3manager.NewDownloader(sess)

 _, err = downloader.Download(

 writeAtBuf,

 &s3.GetObjectInput{

 Bucket: aws.String(bucket),

 Key: aws.String(path),

 },

)

Once we’re complete on the download, we then convert that into
a string we can use in our configuration. For presentation pur-
poses, we strip leading and trailing whitespace from our value.

fetch.go: config.

 globalConfig = strings.TrimSpace(

 string(

 writeAtBuf.Bytes(),

),

)

Again, we stored the configuration in a customizer-level variable
instead of returning it from the function. As we’ll see next, that
will help us with our custom application configuration.

46    WI N T ER 20 1 8  VO L . 4 3 , N O. 4 	 www.usenix.org

COLUMNS
Custom Binaries to Ease Onboarding Using Go

Packaging the Configuration Access
Also inside of the customizer directory is a main.go containing
a Main method. This is not a standard Go main—it is not in the
main package, and it is exported. It is, however, meant to be the
entry point for execution of our application. It lacks specific orga-
nizational customizations and only has variables to allow for this.

To simplify naming, it takes a customizer.Options type. In this
example, we just mirror the four items we need to access our S3
bucket. In other situations, this could also include authentica-
tion endpoint URLs, specific DNS names, or any other generally
unchanging values.

main.go: options.

 type Options struct {

 AccessKeyID string

 SecretAccessKey string

 BucketName string

 BucketPath string

 }

This is instantiated as a customizer-level variable so that any
function inside of customizer has access to it. For this same
reason, we put our globalConfig value from the S3 bucket at the
same level. This mirrors how many Go command line tools oper-
ate—especially ones that use the Standard Library flag or Steve
Francia’s pflag libraries.

main.go: vars.

 var opt Options

 var globalConfig string

Once the inputs and variables are established, we can define our
pseudo-Main. It should be passed an Options parameter, which is
what will be provided to make an organization-specific appli-
cation build. The customizer-level opt parameter is set to the
provided Options parameter for these values to take effect.

main.go: mainopt.

 func Main(o Options) {

 opt = o

Beyond that, it behaves akin to any main, including parts such as
command line argument parsing. Since we’re pulling additional
configuration from S3, we also want to ensure that we perform
that as part of this Main.

main.go: mainfetch.

 err := fetch(

 opt.AccessKeyID,

 opt.SecretAccessKey,

 opt.BucketName,

 opt.BucketPath,

)

Since this is an example, it does not do anything other than print
the value of the retrieved configuration file from S3.

main.go: mainprint.

 fmt.Printf(“Using Configuration: %s\n”, globalConfig)

Creating a Custom Binary
The customizer library can’t execute on its own. We need to call
it from our own main.main method where we pass the specific
organizational Options values to it.

 package main

 import “github.com/cmceniry/login/hardcode/customizer”

 func main() {

 customizer.Run(

 customizer.Options{

 AccessKeyID: “appspecific1”,

 SecretKeyID: “orgspecific2”,

 BucketName: “orgspecific3”,

 BucketPath: “orgspecific4”,

 },

)

 }

Any number of these organization-specific builds can be done,
and all end up being approximately the same number of lines of
code (depends on the number of options). The marginal effort to
create organization-specific builds is limited to ensuring that
the configuration items are specified.

Considerations
While this approach certainly aids in the ease-of-use depart-
ment, there are several considerations and tradeoffs to at least
look at. Many exist, but here are some of the more pressing ones.

All of the configuration items in the binary or remote storage
should be limited to low-risk items. Low risk is relative, but the
rule of thumb is that there is not anything more disclosed than
could be available to anyone inside of the organization. Typically,
this limits it to coarse-level information disclosures. Conversely,
if this opens to arbitrary code execution—e.g., download a binary
and run it—you should ensure that the code is signed or vali-
dated. It’s arguable that no secret should even be hard coded into
a binary, especially one that is expected to be widely distributed
in an organization. The worry is that this is a slippery slope and
encourages bad practices. The balance of security and usability
is a constant navigation of slippery slopes.

Any time you use hard-coded values in user applications, you
need to account for the fact that you’ll have multiple applications
in the wild at a time. This means that you’ll need to ensure that
the use of these configuration items could exist at the same time.

www.usenix.org	   WI N T ER 20 1 8  VO L . 4 3 , N O. 4  47

COLUMNS
Custom Binaries to Ease Onboarding Using Go

For instance, in this example, AWS supports two API keys per
user. This allows you to rotate the key, and both the old and new
values are valid while you rotate it.

This is not limited to the server side. If there are validation keys,
your application will need to support an array of keys so that the
old and new can exist at the same time.

 customizer.Options{

 VerifyKeys: []string{“abcd”, “efgh”},

 }

For remote configuration, your application will need to support
the configuration format of the future. In practice, this means
that your application will probably rely on non-strict validation
of the configuration data and reasonable defaults when the con-
figuration is unspecified on the remote storage.

You have to decide what goes in the application and what is
stored in remote configuration storage. This will largely come
down to a question of flexibility. If you expect something to
remain largely static or static over a longer period of time, you
can put it into the binary. If you expect it to change on a regu-
lar basis—at least more often than you want to release binary
updates—put it into the configuration repository.

Conclusion
I long held the belief that you should not hard code anything into
your binary. If you did, it was a sign that your infrastructure
lacked good distribution mechanisms. Best practice was to build
and distribute them separately using strong central configura-
tion tools.

Those assumptions came from a specific perspective. That
perspective was common, but, with the rise of decentralizing
practices such as BYOD and remote work, it has become less so.

Sometimes you have to question your assumptions about best
practices. When best practices are established, they are done
so in a certain environment. If the environment of the nature of
the problem has changed, then the practices need to adjust with
them. We’re seeing more and more environments where control-
ling the end device is a very different prospect than it used to be.

Don’t be afraid to question the assumptions that you’ve held.
Sometimes you’ll find that you’re not held to the same con-
straints that you used to be or that you’re not enabled by the
same capabilities that you used to be. When this happens, you
have to adjust and come up with new best practices.

USENIX Supporters

USENIX Patrons
Facebook • Google • Microsoft • NetApp • Private Internet Access

USENIX Benefactors
Amazon • Bloomberg • Oracle • Squarespace • VMware

USENIX Partners
BestVPN.com • Booking.com • CanStockPhoto • Cisco Meraki

Fotosearch • Teradactyl • thebestvpn.com

Open Access Publishing Partner
PeerJ

