
2    WI N T ER 20 19  VO L . 4 4 , N O. 4 	 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org While I was attending my very first FAST conference, in 2006, a

journalist told me that he had a question for a file system expert.
I walked him toward registration and quickly spotted someone

who I thought could answer his question. After all, I didn’t think it would be
that hard.

“Why are there so many file systems?” he asked. I was floored. At the time, I thought this was
a naive question and felt embarrassed for the journalist. But I later realized I shouldn’t have
been, because while I had accepted the fact that there were many file systems, multiple ones
for every popular operating system, there actually are many reasons why there are so many.

On the surface, you might think that each group of operating systems designers wants to
write their very own file system. And you’d be right, up to a point. If you look at the Wikipe-
dia page that compares file systems [1], all of the most commonly used file systems share
features. But this misses two important points.

First, the underlying operating systems cannot support dropping in existing file systems. The
interfaces to key support functions—for example, allocation of memory—will be different.
These differences go even deeper than interfaces. Windows NT, now known as Windows, has
a very different design philosophy from any UNIX-related operating system. One manifes-
tation of this is that the NTFS keeps file and directory names, attributes, and block lists in
the Master File Table whenever possible. This allows for much faster filename searches and
file openings but at the price of having a single point-of-failure—yes, the MFT is a file. I’m
exaggerating slightly, as there is a copy of the MFT, and the locations of each are stored in
the boot block. UNIX-style systems have superblocks for file-system metadata, inodes for
the attributes and blocks in files, and directories themselves are files. I’m skipping over how
large files and extended attributes are handled for simplicity, but UNIX and NT file systems
handle key features very differently.

The second reason for the variety found in file systems is that the science behind building
fast and reliable file systems advances. Fragmentation was a huge problem for the Version
7 UNIX file system, which continued to be used in System V. The Fast File System solved
this through the use of cylinder groups, something used in Linux ext and the NTFS as well.
FFS also introduced the notion of having multiple copies of the superblock. But ext2 experi-
mented with a dangerous technique that has turned out to work: it dispensed with synchro-
nous writes of metadata, which block any further writing to the file system. Unpacking a tar
archive on the same hardware was 10 times faster using ext2 than FFS. I know, because I
experimented with both BSDI and Linux in 1992.

Finally, file systems exist to support applications, and not all applications require the same
style of operations. Some applications create large sequential reads or writes, some create
lots of small files (mail systems), high performance computing systems create thousands of
checkpoint files nearly simultaneously, and so on. So while ext4 works fine for most Linux
installs, some applications demand the use of XFS for handling large files.

www.usenix.org	   WI N T ER 20 19  VO L . 4 4 , N O. 4  3

EDITORIAL
Musings

The NSF Visioning Workshop [2], with a report published in
2019, focuses on the potential future design requirements for
storage and file systems. Some things in the report just seem
like common sense: for example, creating support for commonly
used lower level file system tasks that can be reused. Other facets
of this report cover newer applications, such as edge comput-
ing and machine learning, that have different needs than older
applications.

The five lead authors of the workshop report (you can find a list
of the workshop participants at [2]), wrote about some of the
report’s findings for this issue of ;login:.

The Lineup
Given that build-up, you might expect that this issue will be all
about file systems and storage, but you’d be wrong. We actually
start out with several articles related to security.

Jean Camp writes about her experience monitoring BGP mis
takes and attacks. BGP was designed when there was little
concern for security, and Internet operators were happy enough
to have a routing advertisement protocol that just worked. There
have been many attempts to secure routing updates that have not
succeeded in the decades since BGP was adopted. Camp explains
how important it is to consider the geopolitical aspects of running
BGP safely, and describes a tool that permits blocking access to
networks affected by mistaken or malicious route updates.

Reardon et al. share their work on finding side and covert chan-
nels in Android. They built upon their prior work in improving
the usability of the Android permission system and creating
a monitoring tool to check how well the permissions systems
worked. While testing the accuracy of their tools, they uncov-
ered lots of malfeasance, including in libraries specifically for
apps for children, a violation of the law in many countries.

Kulandaivel et al. talk about the CAN bus scanner they developed,
called CANvas. While you can purchase information about
replacing your car’s Electronic Control Units, that tells you only
about the ECUs the manufacturer installed in your car, not any-
thing added later. The authors explain why a scanner is useful
but also difficult to implement for the CAN bus.

Peter Peterson and Rob Jansen have produced a summary of the
CSET ’19 workshop. CSET had a broader focus this year, and
the chairs describe how this new focus and a larger program
committee worked out. They also include summaries of all the
presentations from CSET ’19.

Kirill Levchenko is interested in aviation, but his interest goes
deeper than just being a passenger. Levchenko has been working
with a multi-institution group to create testbeds for the commu-
nication buses used in large passenger aircraft, like the Boeing
737. Some of what they have discovered turns out to be comforting
rather than frightening, as I discovered while interviewing him.

Amvrosiadis et al. share some of the results of the NSF-sponsored
future of file systems and storage 2025 workshop mentioned in
the opening. The idea behind the workshop was to provide direc-
tions for future research and development in these areas. In par-
ticular, the workshop participants determined important new
areas that have, or are expected to have, unusual storage require-
ments, such as machine learning and the Internet of Things.

Terence Kelly has been designing programming paradigms for
persistent memory for many years. In this article, Kelly demon-
strates two different techniques, one a programming style for
traditional storage-backed memory, and the second, a mecha-
nism for making changes to the backing-store atomic.

Effie Mouzeli shares her perspective on “Ask-Me-Anything”
engineering. Not all system engineers (SEs) work at huge com-
panies. Mouzeli provides useful advice for people working alone
or in small teams of SREs in the often chaotic environments
of startups and at smaller organizations, where the SE must be
able to solve almost any problem—thus the AMA designation.
Mouzeli writes from her own life experiences, including about
the five stages of technical debt, with humor and honesty.

Amit Gud explains the benefits of multi-tenancy in microservice
environments. Multi-tenancy means that data in f light and
when stored include labels that are used to control the flow and
usage of data in these environments. Uses include testing code
or configuration changes and designing more modularity into
systems.

Laura Nolan writes about the pitfalls of dynamic control sys-
tems. Ever wonder why the servers you once had in your racks
were more reliable than the complex systems run by gigantic
cloud services? Wonder no more.

Peter Norton wants to teach you how to add useful profiling to
your Python scripts with the goal of looking at different visual-
izations. The default Python profiler doesn’t produce as useful
results as newer tools, so Norton demonstrates other tooling.

Dave Josephsen tells us about distributed tracing. There have
been two popular projects, OpenTracing and OpenCensus, which
are being merged into one. And the IETF has been working on a
way to use HTTP headers to do this called OpenTelemetry. Dave
explains the differences between these approaches.

Dan Geer and Jason Crabtree challenge us to get clear about our
security metrics. If everyone creates and uses their own set of
in-house metrics, we cannot share measurable information
about attacks, risk, and the success or failure of defenses.

Robert Ferrell muses about possible solutions to the wave of
ransomware affecting systems throughout the world. I pointed
out several obvious weaknesses in most of his approaches, and
he reproached me. It is a humor column, Robert reminded me.

4    WI N T ER 20 19  VO L . 4 4 , N O. 4 	 www.usenix.org

EDITORIAL
Musings

Mark Lamourine has reviewed cookbooks about Kubernetes,
Ansible, and OpenStack in this issue, and I cover Randall Mun-
roe’s cookbook for how to solve common problems using absurd
scientific advice.

While considering Robert Ferrell’s absurd solutions to ransom-
ware, I wondered why victims almost never have good backups
prepared. We all know about the importance of backing up
systems and testing these systems before we need them. Could
it be that most IT departments cannot handle this most basic of
tasks, one that comes right after user management?

The failure of so many organizations tells us volumes about the
world we live in. The real world is prone to failure and is not full
of people eager to do the repetitive work of having to create rou-
tine backups—even though the occasional consequences are far
worse than the boredom entailed while spot-checking backups
for correct functionality—or the more difficult task of setting up
and enforcing a site-wise backup system or policy.

Sometimes I think that I live in a world populated by teenagers,
all in revolt against everything that has stood the test of time
and willing to risk everything just because they can. I was glad
when my teenagers outgrew that period of their lives, and I can’t
wait for the rest of the world to get there, too.

References
[1] Comparison of File Systems: https://en.wikipedia.org/wiki​
/Comparison_of_file_systems.

[2] G. Amvrosiadis, A. R. Butt, V. Tarasov, E. Zadok, and
M. Zhao, Data Storage Research Vision 2025 Report on NSF
Visioning Workshop, 2018: https://dl.acm.org/citation.cfm?id​
=3316807.

Letter to the Editor
Thanks for the enthusiastic intro to our “Not So Fast” work in
the Musings editorial in the Fall 2019 issue.

We did want to highlight a few unfortunate misconceptions
about Browsix-Wasm—the biggest being that Browsix is most
emphatically not a browser plugin, and that it does not provide
access to the host’s file system!

Browsix works as a JavaScript/Wasm library that runs
entirely within the browser, without the need to install
plugins. The file system that Browsix exposes to programs
(like SPEC) is entirely independent of the host OS’s file sys-
tem. For SPEC, all the files come from an HTTP server, and a
writeable “overlay” file system provides ephemeral storage for
the duration that a tab is alive (a very similar approach to how
Docker provides layered file systems).

Like the file system, all of the operating system services that
Browsix-Wasm provides (like processes and pipes) are built
on top of standard browser APIs (like WebWorkers) within
the confines of the browser sandbox. This approach is what
enables us to work across all major browsers.

Given that safety, you and everyone else should feel just fine
about running Browsix-Wasm on your daily driver browser,
and indeed you might visit websites that use Browsix without
you even knowing it! (Components of it help power the emula-
tors on archive.org, like the Oregon Trail: https://archive.org​
/details/msdos_Oregon_Trail_The_1990.)

Many thanks in advance,

—Abhinav, Bobby, Emery, and Arjun

Correction
In the book review of Concurrency in Go (Summer 2019 issue,
page 59), C. A. R. Hoare was incorrectly listed as C. Anthony
and R. Hoare in the reference at the end of the review. We
apologize for the error.

https://en.wikipedia.org/wiki/Comparison_of_file_systems
https://en.wikipedia.org/wiki/Comparison_of_file_systems
https://dl.acm.org/citation.cfm?id=3316807
https://dl.acm.org/citation.cfm?id=3316807
https://archive.org/details/msdos_Oregon_Trail_The_1990
https://archive.org/details/msdos_Oregon_Trail_The_1990

Save the Dates!

18th USENIX Conference on
File and Storage Technologies

February 24–27, 2020 | Santa Clara, CA, USA
Sponsored by USENIX in cooperation with ACM SIGOPS
Co-located with NSDI ’20
www.usenix.org/fast20

The 18th USENIX Conference on File and Storage Technologies (FAST ’20) brings together
 storage-system researchers and practitioners to explore new directions in the design,
 implementation, evaluation, and deployment of storage systems.

The program committee will interpret “storage systems” broadly; papers on low-level
storage devices, distributed storage systems, and information management are all of
 interest. The conference will consist of technical presentations including refereed papers,
Work-in- Progress (WiP) reports, poster sessions, and tutorials.

The full programs and registration will be available in December.

17th USENIX Symposium on
Networked Systems Design
and Implementation

February 25–27, 2020 | Santa Clara, CA, USA
Sponsored by USENIX in cooperation with ACM SIGCOMM and ACM SIGOPS
Co-located with FAST ’20
www.usenix.org/nsdi20

NSDI focuses on the design principles, implementation, and practical evaluation of net-
worked and distributed systems. Our goal is to bring together researchers from across the
networking and systems community to foster a broad approach to addressing overlapping
research challenges.

NSDI provides a high-quality, single-track forum for presenting results and discussing ideas
that further the knowledge and understanding of the networked systems community as a
whole, continue a significant research dialog, or push the architectural boundaries of net-
work services.

