
www.usenix.org	   WI N T ER 20 19  VO L . 4 4 , N O. 4  11

SECURITY

50 Ways to Leak Your Data
An Exploration of Apps’ Circumvention of the Android
Permissions System
J O E L R E A R D O N , Á L V A R O F E A L , P R I M A L W I J E S E K E R A , A M I T E L A Z A R I B A R O N ,
N A R S E O V A L L I N A - R O D R I G U E Z , A N D S E R G E E G E L M A N

Smartphones are general-purpose computers that store a great deal of
sensitive personal information. Apps are prevented from accessing
this information at will through the use of a permission system at the

operating-system level. These security mechanisms are reasonable because
we carry our smartphones alongside us all day, and they can gain access to
our intimate communications and social network, our web browsing history,
our location at all times—even if the GPS is disabled. When apps are denied
permissions, however, they still have options to cheat the permission system
by using side and covert channels. In our research we found a small number of
such channels being actively exploited when we tested Google Play Store apps.

Are Mobile Permission Models Bullet-Proof?
There are lots of valid criticisms for the current permissions system. Users cannot reliably
understand what permissions mean or why they are needed. Apps request more permissions
than necessary. Users don’t have easy means to find alternate apps that request fewer per-
missions, or to omit search results for apps that request dangerous permissions, like being
able to turn on your microphone at all times.

The increasing presence of third-party software development kits (SDKs) in mobile appli-
cations amplifies the dissemination of personal data from mobile applications to online
services. Most developers use third-party SDKs in their apps for advertising, analytics,
crash reporting, or social network integration [5]. Both Android and iOS permission models
allow third-party SDKs to piggyback on the permissions that the user grants to the host app.
Unfortunately, users cannot distinguish between a permission given to enable a feature in
the app and one to be used by a data-hungry third-party SDK [5].

StartApp’s official guidance for integrating its SDK into apps provides a perfect example of
this problem. It tells developers that it will improve performance if they add extra permis-
sions for location, Bluetooth, and silent starting on boot [4]—that is, it tells developers to add
location access to their apps even though the apps would have no legitimate need for such
access. Users aren’t made aware when permissions have been requested by an advertising
library that simply wants to track them and harvest their private information.

Additionally, mobile apps can circumvent the permission model and gain access to protected
data without user consent by using both covert and side channels, attacks described in Figure
1. Side channels manifest through vulnerabilities present in the implementation of the OS
permission system that allow apps to access protected data and system resources without
permission. Covert channels manifest when inter-app communication, which may be legiti-
mate, is leveraged for illegitimate purposes, such as having one app abuse its privileges by
acting as a facade for another app’s desire to access permission-protected data.

Joel Reardon is an Assistant
Professor at the University
of Calgary. He received his
master’s degree from the
University of Waterloo, his

doctoral degree from the ETH Zurich, and
spent a postdoctoral year at UC Berkeley and
the International Computer Science Institute
(ICSI). His research interests relate to security
and privacy, including storage compliance
issues as well as systems to make it easier to
use. He also loves mountains, bicycles, and
writing poetry. joel@moosematch.com

Álvaro Feal is a second-year
PhD student working at
IMDEA Networks Institute. He
focuses on analyzing privacy
threats to web and mobile

applications from a technical and regulatory
perspective. Prior to working at IMDEA
Networks, Alvaro interned at IMDEA Software,
working in Android privacy and anonymous
communication systems. He has published
in peer-reviewed conferences such as ACM
IMC, USENIX Security, and workshops like
IEEE Consumer Protection (ConPro). Álvaro’s
work received a Distinguished Paper Award at
USENIX Security 2019. alvaro.feal@imdea.org

Primal Wijesekera is a Research
Scientist in the Usable Security
and Privacy Group at the
International Computer Science
Institute at Berkeley and is

a Postdoctoral Researcher in the Electrical
Engineering and Computer Science Department
at UC Berkeley. His prior work includes
contextual permission models for Android,
mobile app analysis for privacy and security
violations. His recent work focuses on smart
speakers for the home, vulnerability discovery
mechanisms in the wild, and ecosystems
surrounding fake news. primal@berkeley.edu

12    WI N T ER 20 19  VO L . 4 4 , N O. 4 	 www.usenix.org

SECURITY
50 Ways to Leak Your Data

Amit Elazari Bar On
is a Director of Global
Cybersecurity Policy at Intel
Corporation and a Lecturer
at UC Berkeley’s School of

Information. She holds a JSD from UC Berkeley
School of Law and graduated summa cum
laude in gaining three prior degrees. Her
research in cybersecurity law and policy
has appeared in leading journals, has been
presented at conferences such as RSA, Black
Hat, and USENIX Security, and was featured at
leading news sites such as the New York Times.
She practiced law in Israel.
amit.elazari@berkeley.edu

Narseo Vallina-Rodriguez is an
Assistant Research Professor
at IMDEA Networks and a
Research Scientist at ICSI in
Berkeley. His research interests

fall in the area of network measurements,
privacy, and security. Narseo’s work has
received distinguished paper awards at
USENIX Security 2019, ACM IMC 2018, and
ACM CoNEXT 2014, and was awarded the
IETF Applied Networking Research Prize in
2016. Narseo’s research in mobile privacy has
influenced industry practices and regulation
and has been covered by international media
outlets. narseo.vallina@imdea.org

Discovering Covert and Side Channels in the Wild
Previous research focused on understanding personal data collection using system-supported
access control mechanisms (i.e., Android permissions). The research community has also
explored the potential for covert channels in Android using local sockets, shared storage
[2], and other unorthodox means, such as using vibrations to send data and accelerometers
to receive it [1]. Accelerometer data can further act as a side channel to uniquely identify
the user [9, 11] or infer demographic data such as gender [3]. However, there has been little
research in detecting and measuring at scale the prevalence of both covert and side channels
in apps that are available in the Google Play Store.

Instead of imagining new channels, our USENIX Security ’19 paper focuses on collect-
ing evidence of apps abusing side and covert channels in practice [7]. We leveraged our
AppCensus app auditing platform to search for instances of Android applications dissemi-
nating permission-protected data over the network without requesting the permission to
access it. We then reverse engineered the apps and third-party libraries responsible for this
behavior to determine how the unauthorized access occurred.

It is important to note that AppCensus is not a regular security-oriented sandbox: detecting
and analyzing both privacy abuses and regulatory violations require specific research meth-
ods. To that end, AppCensus implements mechanisms to exhaustively monitor apps’ runtime
behavior and personal data leaks at system and network levels, including a TLS man-in-the-
middle proxy. Then, we leverage heuristics inspired by different regulatory frameworks to
contextualize these observations and to hunt for potential abuses and violations.

Research Findings
We automatically executed over 88,000 Android apps in our AppCensus platform to see
when permission-protected data was transmitted by the device, and scanned the permis-
sions that apps requested to see which ones should not even be able to access the transmitted
data in the first place (Figure 2). We focused on a subset of the dangerous permissions that
prevent apps from accessing location data and unique identifiers. We grouped our findings
by where on the Internet data was sent and what data type was sent, as this allows us to
attribute the observations to the actual app developer or embedded third-party libraries. We
then reverse engineered the responsible component to determine exactly how the data was
accessed so that we could statically analyze our entire data set to measure the prevalence of
each attack. We found the following side and covert channels being exploited in Google Play
Store apps:

Serge Egelman is the Research
Director of the Usable Security
and Privacy Group at the
International Computer Science
Institute. He conducts research

to help people make more informed online
privacy and security decisions. He has received
the USENIX Distinguished Paper Award, seven
ACM CHI Honorable Mention Awards, and
the SOUPS Impact and best paper awards; his
research has been cited in numerous lawsuits
and regulatory actions, as well as being featured
in the New York Times, Washington Post, and
Wall Street Journal. egelman@cs.berkeley

Figure 1: Covert and side channels. (a) A security mechanism allows app1 access to resources but denies
app2 access; this is circumvented by app2 using app1 as a facade to obtain access over a communica-
tion channel not monitored by the security mechanism. (b) A security mechanism denies app1 access
to resources; this is circumvented by accessing the resources through a side channel that bypasses the
security mechanism.

www.usenix.org	   WI N T ER 20 19  VO L . 4 4 , N O. 4  13

SECURITY
50 Ways to Leak Your Data

◆◆ We discovered apps getting the BSSID of the connected WiFi
Access Point (i.e., the router’s MAC address) by reading the
OS ARP cache (/proc/net/arp), which was not protected by
permissions. This information can be used as a surrogate for
location data. We found five apps exploiting this vulnerability
and 355 with the pertinent code to do so.

◆◆ We discovered Unity (a popular third-party cross-platform
game engine and advertising network) obtaining the device
MAC address of the device using ioctl system calls. This
information can be used to track users even if they factory
reset their devices. We found 42 apps exploiting this vulner-
ability and 12,408 apps with the pertinent code to do so. We
realized (after our paper was published) that starting from
the version of Android we used (Marshmallow), all attempts
to access the MAC address of the device return a fake value of
02:00:00:00:00:00—even if the access network state permis-
sion is granted; therefore all 711 apps that transmitted the MAC
address must have accessed it this way.

◆◆ We also discovered that third-party libraries provided by two
Chinese companies—Baidu and Salmonads—independently
make use of the SD card as a covert channel, so that when an
app can read the phone’s IMEI, it stores it for other apps that
cannot. We found 159 apps with the potential to exploit this
covert channel and empirically found 13 apps doing so.

◆◆ We found one app, Shutterfly, that used picture metadata as a
side channel to access precise historical location information
despite not holding location permissions. It included code that
processed location from the raw EXIF data; that is, it copied the
data intentionally instead of simply uploading photos and hav-
ing location data by mistake.

The Impact of Our Work
The permissions system is not perfect, but it serves an important
purpose. Requesting permission serves as a system to give users
notice about the app’s behavior; users installing apps further
serves as a system of consent. The use of deceptive practices
like covert and side channels is unacceptable as they not only
undermine users’ privacy and consumer rights, but they also
give rise to legal and regulatory concerns. Circumventing the
permissions system means that notice was not given nor consent
obtained. In one case, the third-party library OpenX first tried to
obtain the WiFi BSSID through the permission system and only
went the cheating route through the ARP cache when it saw that
it was denied access.

Data protection legislation around the world, like the General Data
Protection Regulation (GDPR) in Europe or the California Con-
sumer Privacy Act (CCPA), enforce transparency on the data col-
lection, processing, and sharing practices of mobile applications.
In this regulatory context, designing and using these techniques
suggests an actual attempt to access data without user consent.
Developers and SDK providers implementing these techniques
have to take extra measures to set up covert channels or discover
side channels that can be exploited. We responsibly disclosed
our findings to Google, so they could address the issues in the
Android operating system, as well as the US Federal Trade Com-
mission (FTC). Google has given us a bug bounty for our efforts.

Our Stepping Stones
Our research originates from a line of work designed to improve
the accuracy and usability of the Android permission system
[10]. Anyone who has installed an app on Android and paid atten-
tion to the permissions that are requested has probably run into
one that demands permissions that fall well outside their scope,
like an alarm clock app that needs to read your SMSes. The
best explanation we’ve come up with is that this allows some-
one trusted to set important alarms for you after you’ve gone to
sleep—like if there’s going to be a huge dump of fresh snow in the
mountains and they’ll come to pick you up.

Part of this earlier work involved instrumenting the permission
system to track permission usage by apps and collecting ground
truth data about how users would prefer to handle those permis-
sion requests. This knowledge was used to inform a machine
learning classifier that significantly improved the permission
granting accuracy over the existing ask-on-first-use and was
much better than the ask-on-install ultimatum.

Figure 2: Overview of our analysis pipeline. Apps are automatically run,
and the transmissions of sensitive data are compared to what would be
allowed. Those suspected of using a side or covert channel are manually
reverse engineered.

14    WI N T ER 20 19  VO L . 4 4 , N O. 4 	 www.usenix.org

SECURITY
50 Ways to Leak Your Data

This work was followed by a field study where we built a modi-
fied version of Android that actually enforced denying permis-
sions. We did this gracefully when possible and used both user
input and our machine learning classifier. Users liked the con-
trol they got, and our results from earlier studies were validated.
One observation from our field studies was that apps made fre-
quent requests to access data protected by sensitive permissions.

In parallel, another line of research involved studying trackers—all
the data-hungry ads and analytics companies that are spying on
users—in the mobile ecosystem and personal data dissemination
over the network [6]. This study took advantage of a purpose-
built man-in-the-middle VPN on Android, the Lumen Privacy
Monitor, a tool that can monitor applications’ traffic locally on
the device, even if encrypted. Lumen allowed us to build a data-
base of all network traffic going to different organizations that
an app contacts.

Spying on Children
These lines of research joined together when some of us decided
to read the Children’s Online Privacy Protection Act (COPPA)—
a particularly strong privacy regulation with serious conse-
quences for violations—and realized that, based on what we’ve
seen in practice, there’s no way that all of these apps are in
compliance. Plus, we have all the tools to monitor for this. We
combined our OS instrumentation with our traffic monitor-
ing to obtain evidence of applications’ actual runtime behavior
regarding when personal data is accessed and where it is sent. We
could automate our analysis and thus scale our study by simulat-
ing human interaction with apps using the Android Automator
Monkey, which is essentially a UI fuzzer for testing purposes.

Our findings about COPPA compliance in children-oriented
Android apps were shocking [8]. The majority of children’s games
are sending persistent identifiers to ads and analytics companies
capable of tracking them. Ten percent are sending the IMEI of
the device, which is like an un-resettable super cookie of infinite
tracking. Four percent were sending precise geolocation, for which
COPPA requires verified parental consent to access. How on earth
a company can feel confident in having verified parental consent
from a system that randomly clicks and swipes, we’ll never know!

For apps that we know used the location permission while
running but that we didn’t catch sending location, we found a
bunch of obfuscated location sending happening. This category
of app includes the company StartApp, which Google lists as one
of their accepted children advertisers in their updated designed
 for families program (https://android-developers.googleblog.
com/2019/05/building-safer-google-play-for-kids.html).
StartApp was using a Vernam-style cipher to XOR in two repeat-
ing masks ($T@RT@PP and ENCRYPTIONKEY) and in doing so
were transmitting precise geolocation and even WiFi scan data
including router MAC and signal strength.

From all these stepping stones we end up at this work. We have
the ability to run lots of apps at scale, to monitor their network
traffic, and to scrutinize the permissions that they request in
runtime. So we compared these two sets: what’s the data an app
is allowed to access, and what’s the data that an app actually
sends out on the Internet. Are there any transmissions by an app
that didn’t have permission to access it in the first place?

Our Confession
Now it’s time for our confession. Our original goal in our meth-
odology was not to discover and disclose these side and covert
channels; we were actually looking for bugs in our own code
but discovered these attacks by chance. That is, we implicitly
assumed that the Android permission system was absolutely
sound and were looking for false positives in our data set
because, as we imagined, if we flagged the transmission of the
IMEI without the READ_PHONE_STATE permission, it must be the
result of a bug in our code.

A few false positives and negatives can be expected with such
large-scale work, and we spot-checked lots of flagged transmis-
sions of PII but by no means manually every transmission (so
we’ll have some false positives). And we looked at lots of packets
trying to find all sorts of obfuscations, but there are many that
still confound us (so we expect some false negatives as well).
Still, as long as we do enough manual checking of our findings,
the false positive rates are statistically low enough to not have
any impact on headline results like four percent of apps sending
location.

But our study on rampant (potential) privacy violations in
thousands of children’s games was getting media and regula-
tory attention. This prompted us to become extra certain of our
findings. Being confident about the average value is no longer
enough, and rooting out any false positives became even more
crucial. We can live with the false negatives (where we don’t
catch a company who is actually sending data), but now false
positives have become critical to avoid, because even one false
positive casts doubt on any specific finding that we claim. For
example, in response to a letter from one of the lawyers at Iron-
Source who did not like our characterization of their behaviors,
we double-checked our results in order to verify our initial find-
ings and actually found more things we had missed!

So we went looking for false positives. We filtered out all the data
where the app had the corresponding permission, assuming that
what was left must all be false positives. And in fact we did find
some! One favorite was the fact that we did our tests in Berkeley,
California, which has an area code of 510—it so happened that
some of our testing began with the UNIX timestamp 1510 and so
there’s a block of time during which a harmless timestamp was
misconstrued as apps transmitting the user’s phone number.

www.usenix.org	   WI N T ER 20 19  VO L . 4 4 , N O. 4  15

SECURITY
50 Ways to Leak Your Data

Another was the fact that IP-based geolocation happened to
be surprisingly accurate for IPs from our research institute.
Perhaps this was because we uploaded both our IP and location
thousands of times after running all these apps, and eventually
the Internet learned where this IP was. Digging deeper, however,
we found that this did not replicate at other locations and with
other IPs. Finally, some apps sent really invasive fingerprints,
including the hostname of our own machines that built our cus-
tom Android version, and it just so happened that the SSID of our
WiFi router was a substring of that.

Our hunt was a useful exercise and we fixed all the false posi-
tives that we found, making our tools more robust and reliable.
But we also found true positives. We found actual transmissions
of data carrying the correct values and (unlike incoming geolo-
cation) first seen as an outgoing transmission from the app. It
turns out that we found evidence consistent with the use of side
and covert channels, and in order to figure out what exactly was
going on we had to start reverse engineering. The results of this

exercise were those four side and covert channels we presented
earlier in the article: ioctls, EXIF metadata, ARP cache, and
plain old sharing data on the SD card. And in so doing we put app
and SDK developers on notice that, going forward, we are looking
for these kinds of deceptive and fraudulent practices.

Acknowledgments
This work was supported by the US National Security Agency’s
Science of Security program (contract H98230-18-D-0006),
the Department of Homeland Security (contract FA8750-18-2-
0096), the National Science Foundation (grants CNS-1817248
and grant CNS-1564329), the Rose Foundation, the European
Union’s Horizon 2020 Innovation Action program (grant Agree-
ment No. 786741, SMOOTH Project), the Data Transparency
Lab, and the Center for Long-Term Cybersecurity at UC Berke-
ley. The authors would like to thank John Aycock, Irwin Reyes,
Greg Hagen, René Mayrhofer, Giles Hogben, and Refjohürs
Lykkewe.

References
[1] A. Al-Haiqi, M. Ismail, and R. Nordin, “A New Sensors-Based
Covert Channel on Android,” The Scientific World Journal,
September 2014.

[2] C. Marforio, H. Ritzdorf, A. Francillon, and S. Capkun,
“Analysis of the Communication between Colluding Applica-
tions on Modern Smartphones,” in Proceedings of the 28th
Annual Computer Security Applications Conference (ACM,
2012), pp. 51–60.

[3] Y. Michalevsky, D. Boneh, and G. Nakibly, “Gyrophone:
Recognizing Speech from Gyroscope Signals,” in Proceedings of
the 23rd USENIX Security Symposium (USENIX Security ’18),
pp. 1053–1067: https://www.usenix.org/system/files/conference​
/usenixsecurity14/sec14-paper-michalevsky.pdf.

[4] S. Milo, StartApp SDK Android—Android (Standard):
https://support.startapp.com/hc/en-us/articles/360002411114​
-Android-Standard-, 2019.

[5] A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez,
S. Sundaresan, M. Allman, C. Kreibich, and P. Gill, “Apps,
Trackers, Privacy, and Regulators: A Global Study of the Mobile
Tracking Ecosystem,” in Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS ’18).

[6] A. Razaghpanah, N. Vallina-Rodriguez, S. Sundaresan,
C. Kreibich, P. Gill, M. Allman, and V. Paxson, “Haystack: In
Situ Mobile Traffic Analysis in User Space, arXiv preprint
arXiv:​1510.01419v1, (2015), pp. 1–13.

[7] J. Reardon, Á. Feal, P. Wijesekera, A. Elazari Bar On,
N. Vallina-Rodriguez, and S. Egelman, “50 Ways to Leak Your
Data: An Exploration of Apps’ Circumvention of the Android
Permissions System,” in Proceedings of the 28th USENIX
Security Symposium (USENIX Security ’19), pp. 603–620:
https://www.usenix.org/conference/usenixsecurity19​
/presentation/reardon.

[8] I. Reyes, P. Wijesekera, J. Reardon, A. Elazari Bar On,
A. Razaghpanah, N. Vallina-Rodriguez, and S. Egelman,
“Won’t Somebody Think of the Children? Examining COPPA
Compliance at Scale,” in Proceedings on Privacy Enhancing
Technologies, 2018, no. 3, pp. 63–83.

[9] L. Simon, W. Xu, and R. Anderson, “Don’t Interrupt Me
While I Type: Inferring Text Entered through Gesture Typing
on Android Keyboards,” in Proceedings on Privacy Enhancing
Technologies, 2016, no. 3, pp. 136–154.

[10] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman,
D. Wagner, and K. Beznosov, “Android Permissions Remysti-
fied: A Field Study on Contextual Integrity,” in Proceedings of
the 24th USENIX Security Symposium (USENIX Security ’15),
pp. 499–514: https://www.usenix.org/system/files/conference​
/usenixsecurity15/sec15-paper-wijesekera.pdf.

[11] J. Zhang, A. R. Beresford, and I. Sheret, “SensorID: Sensor
Calibration Fingerprinting for Smartphones,” in Proceedings of
the 40th IEEE Symposium on Security and Privacy (SP), IEEE,
May 2019.

https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-michalevsky.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-michalevsky.pdf
https://support.startapp.com/hc/en-us/articles/360002411114-Android-Standard-
https://support.startapp.com/hc/en-us/articles/360002411114-Android-Standard-
arXiv:1510.01419v1
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-wijesekera.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-wijesekera.pdf

