
40    WI N T ER 20 19  VO L . 4 4 , N O. 4 	 www.usenix.org

SRE AND SYSADMIN

Multi-Tenancy in a Microservice Architecture
A M I T G U D

Microservice architecture is increasingly common for a scalable
system with high developer velocity and short time-to-market.
It allows the flexibility for teams to operate on independent

schedules while meeting the externally committed service level agreements
(SLAs). As architectural complexity evolves along with a business, some
aspects of the microservice architecture become critical for the developer
and business velocity.

One such aspect is to be able to safely and reliably roll out new changes to the architecture
in the areas of actual code, service configuration, data semantic, and data schema. With
diverse teams working on interoperating services, it becomes critical to be able to roll out a
change to a service only after ascertaining the change’s impact on dependent services. As
multiple teams churn out features for their services, they often have to validate whether the
new changes meet the SLAs. Being able to do this easily has direct and positive impact on
developer velocity.

Another aspect critical for business continuation and growth is being able to reuse parts of
the architecture in a modular way to add new product lines. With the right layers of abstrac-
tion and modularity this can not only be cost effective but can also speed up time to market.

One of the most effective ways of addressing both these aspects is by allowing multiple ten-
ants to co-exist in a microservice architecture. A tenant could be a test, canary, shadow, a
different service tier, or a different product line altogether. Being able to guarantee isolation
and make routing decisions based on the tenancy of the traffic would provide us the infra-
structure agility needed for developer velocity and effectively new product innovations.

Having the ability to be able to attach a notion of tenancy to both data-in-flight (e.g., requests,
messages in the messaging queue) as well as data-at-rest (e.g., storage, persistent caches)
allows for isolation guarantees, fairness guarantees, and tenancy-based routing opportuni-
ties. This helps us achieve a variety of things, including better integration testing frame-
work, shadow traffic routing, recording and replaying traffic, hermetic replay of live traffic
for experimentation, capacity planning, realistic performance and stress testing, and even
things like canary deployments and being able to run multiple business-critical product lines
on the same microservice stack.

Stateless services, which are typically containerized applications that do not keep state
locally, are more widely deployed than stateful applications and short-lived “serverless” or
lambda services. Architecture discussed here is more suited to stateless services.

Microservices Landscape
In this section we will explore microservice landscape and various use-cases for multi-
tenancy within microservice architecture.

Amit has worked for multiple
companies in the storage and
systems domain, from early-
stage startups to multi-billion
dollar companies. Currently

focused on making Uber’s infrastructure
robust, Amit has a track record of tackling
impactful issues relating to large-scale
systems, performance, and scalability. Amit
has a master’s degree from Kansas State
University. He has worked on multiple research
papers and has authored multiple (pending)
patents. amitgud@gmail.com

www.usenix.org	   WI N T ER 20 19  VO L . 4 4 , N O. 4  41

SRE AND SYSADMIN
Multi-Tenancy in a Microservice Architecture

Integration Testing
One of the most appealing aspects of a microservice architecture
is developer velocity. It allows teams to roll out new features
and bug fixes for their services independent of others. A team
may typically own a handful of services. These services could be
interacting with multiple other services as part of its business
logic and would have agreed upon SLAs.

For example, consider Figure 1. Here we have a simple scenario
of four microservices A, B, C, and D. Service A gets a request
from the outside world. It processes the request by connecting to
B, which in turn connects to C and D to process the request.

In this example, if we make a change to service B, we will have
to make sure it still interoperates well with A, C, and D. Services
A, C, and D may belong to different teams, and we may not have
control over their deployment schedules. This can be considered
an integration testing scenario where we want to test a service’s
interaction with other services in the system. In this example,
and in any microservice architecture in general, there are two
fundamental ways of doing integration testing.

Parallel Testing Stack
One approach would be to create a parallel stack, sometimes
referred to as a staging environment, which looks and feels like a
production stack, but will be used only for handling test traffic.
This stack always exists and is always running production code
although it is completely isolated from the production stack and
is smaller in scale. In this approach, the team making a change
would deploy the service with the new code in the test stack.
This approach allows us to safely test any service without affect-
ing the production stack. Any bugs or issues would be contained
in the test stack only.

In this approach we will need the ability to ascertain that test
traffic never leaks to the production stack. This can be achieved
by physically isolating the two stacks into separate networks and
also by making sure test tools only operate on the test stack.

Although this approach sounds logical, there are a number of
downsides.

Operational Cost
Having to provision an entire stack along with all its data stores,
message queues, and other infrastructure components means
additional hardware and maintenance cost.

Synchronization Issues
The test stack is only useful if it is identical to the production
stack. As the two stacks deviate from each other, the testing
becomes far less effective. There is an additional burden on the
infrastructure components to keep the stacks in sync. A lag is
possible while the two stacks are being brought in sync, and this
lag may degrade over a period of time.

Unreliable Testing
Since teams are going to deploy their experimental and poten-
tially buggy code to the test stack, services may or may not be
able to handle the traffic correctly, leading to frequently failing
tests. For example, the team owning service A would trigger a
test of their new code that fails due to a bug in service B. This
would be hard to diagnose, and we couldn’t ascertain changes to
service A were safe until the test passes, which means we would
be blocked until the team owning service B deployed clean code
back to the test stack. This particular downside can be mitigated
by having a routing framework to route traffic to yet another
sandbox environment where the service-under-test is instantiated.
This also requires the ability to tag traffic with additional informa-
tion (e.g., the service-under-test, where it can be located, etc.).

Inaccurate Capacity Planning
To be able to assess the capacity of an entire stack or sub stack,
we would have to push the test load on the test stack. If we want
to test for a particular capacity that we want to achieve, we
would have to increase the capacity of the test stack before we
could apply the delta load (target capacity minus current produc-
tion load) on to the test stack. This delta load may not be able to
saturate the test stack, thus making it unclear as to how much
more capacity we should add to the production stack to achieve
the target capacity.

Figure 1: Request flow in a microservice architecture

Figure 2: Parallel testing stack architecture

42    WI N T ER 20 19  VO L . 4 4 , N O. 4 	 www.usenix.org

SRE AND SYSADMIN
Multi-Tenancy in a Microservice Architecture

Testing in Production
Another approach to integration testing in a microservice archi-
tecture would be to make the current production stack multi-
tenant and allow both test as well as production traffic to flow
through it. Figure 3 shows one such example. This rather ambi-
tious approach does mean making sure every service in the stack
is able to handle production requests alongside test requests.

In this approach, since service B is to be tested, the test build
will be instantiated in an isolated sandbox area which is allowed
to access production services C and D. The test traffic will be
routed to B. Production traffic will flow as usual through the
production instances.

Although this is a simplified view, it helps explain that multi-
tenancy can help solve integration testing use cases. There are
two basic requirements that emerge from testing in a production
use case, which also form the basis of multi-tenant architecture:

◆◆ Traffic routing: being able to route traffic based on the kind of
traffic flowing through the stack.

◆◆ Isolation: being able to reliably isolate resources between test-
ing and production thereby ascertaining no side effect.

The isolation requirement here is particularly broad since we
want all the possible data-at-rest to be isolated, including con-
figuration, logs, metrics, storage (private or public), and message
queues. This isolation requirement is not only for the service that
is under test but for the entire stack. We will look at the details in
the next section.

Multi-tenancy paves the way for other use cases beyond integra-
tion testing. We discuss some such use cases below.

Canary Deployments
When a developer makes a change to their service, even though
the change is well reviewed and tested, we may not want to
deploy the change to all the running instances of the service at
once. This is to make sure the entire user base is not vulnerable

should there be an issue or bug with the change being made. The
idea is to roll out the change first to a smaller set of instances,
with limited blast radius, called “canaries,” monitor the canaries
with a feedback loop, and then gradually roll them out widely.

A canary can be treated as yet another tenant in our multi-tenant
architecture where the canary is a property of a request that
can be used for making routing decisions and where resources
are isolated for canary deployments. At any given time a service
might have a canary deployed to which all the canary traffic
will be routed. The decision to sample requests as canary can be
made closer to the edge of the architecture based on attributes of
the request itself: user type, product type, user location, etc.

Capture/Replay and Shadow Traffic
Being able to see how a change to a service would fare while
serving actual production traffic is a great way of getting a
strong signal on the safety of the change being made. Replay-
ing already captured live traffic or replaying a shadow copy of
live production traffic in a hermetically safe environment is
another use case of multi-tenancy. Figure 4 shows an example
of routing shadow traffic to a sandbox environment. In this we
stub responses for any outbound calls made by the instance
being tested. This can be treated as a subcategory of integration
testing since these use cases are within the realm of testing and
experimentation.

Replay traffic is technically test traffic and can be part of a
test tenancy allowing for isolation from other tenancies. We do
have the flexibility to assign a separate tenancy to allow further
isolation from other test traffic. We discuss in later sections
the implications of increasing the cardinality of tenancies and
mitigation strategies.

Another important use case for a multi-tenant architecture is
to protect and isolate multiple business-critical product lines or
different tiers of the user base.

Figure 3: Testing in production Figure 4: Shadow traffic routing to sandbox environment

www.usenix.org	   WI N T ER 20 19  VO L . 4 4 , N O. 4  43

SRE AND SYSADMIN
Multi-Tenancy in a Microservice Architecture

Tenancy-Oriented Architecture
In a tenancy-oriented microservice architecture, tenancy is
a first-class citizen. The notion of tenancy is attached to both
data-in-flight (e.g., requests, messages in the messaging queue)
as well as data-at-rest (e.g., storage, persistent caches, configu-
ration data, logs, metrics). In this section, we will look in a bit
more detail at the aspect of making a microservice architecture
multi-tenancy.

Tenancy Context
Since microservice architecture is a group of disparate services
running on an interconnected network, we need the ability
to attach a tenancy context to an execution sequence. As the
request enters the system through an edge gateway, we would
want to learn more about the tenancy of the request by attach-
ing tenancy context to it. We want this context to stay with the
request for the life of the request and get propagated to any new
requests that are generated in the same business logic context.

Here is a simple tenancy context format and some examples:

{ “request-tenancy” : <product-code>/<tenancy-id>/<tenancy

-tags>... }

Examples:

“request-tenancy” : “product-foo/production”

“request-tenancy” : “product-bar/production/canary”

“request-tenancy” : “product-bar/production/health-probe”

“request-tenancy” : “product-foo/testing/TID1234”

“request-tenancy” : “product-bar/testing/shadow/SID5678”

Context Propagation
In general, when any service in the call chain receives a request,
we want tenancy context to be available with it. The service
may or may not make decisions based on the tenancy context as
part of its business logic. However, it is required that the service
propagates the context as it makes further requests as part of
processing the same original incoming request. Most services
may not need to look at the tenancy context, but some may option-
ally look into the request context to bypass some business logic.
For example, an audit service verifying users’ phone numbers may
want to bypass the check for test traffic since the users involved
in a test request would be test users. In the example of transaction
processing services talking to a bank gateway to transfer funds for
users, for test traffic, we would want to stub out the bank gateway
or alternatively talk to the bank’s staging gateway, if one is avail-
able for testing, to prevent any real transfer of money.

Tenancy context propagation can be achieved with open source
tools like OpenTracing [1] and Jaeger [2]. These tools allow
distributed context propagation in a language- and transport-
agnostic way.

Tenancy context should also be propagated to other data-
in-f light objects, like messages in a messaging queue like
Kafka. Newer versions of Kafka support adding headers, and
OpenTracing tools can be used to add context to messages flow-
ing through Kafka. We will touch upon how we can achieve iso
lation for messaging systems like Kafka in a subsequent section.

Another set of objects that we would want tenancy context to be
propagated to is data-at-rest. This includes all the data storage
systems that are used by the services for storing their persistent
data, like MySQL, Cassandra, AWS, etc. Distributed caches like
Redis and Memcached can also be classified under data-at-rest.
All the storage systems and caches that get used in the architec-
ture need to be able to support the ability to store context along
with the data at a reasonable granularity to allow retrieval and
storage of data based on the tenancy context. At a high level the
only requirement from the data-at-rest component is the ability
to isolate data and traffic based on the tenancy.

Exactly how the data is isolated and how the tenancy context
is stored along with the data is an implementation detail that
is specific to the storage system. We will take another look at
tenancy-based isolation in storage in the next section.

Tenancy-Based Routing
Once we have the ability to tag a request with tenancy, we can
route requests based on its tenancy. Such routing is crucial for
the testing use cases: testing in production, record/replay, and
shadow traffic. Also, canary deployment requires the ability to
route the canary requests to particular service instances run-
ning in the isolated canary environments.

It is important to consider the deployment and services tech
stack for coming up with a routing solution that works seam-
lessly without overhead. Languages in which services are
written as well as the transports and encoding they use to com-
municate with each other might need to be considered for pro-
viding a fleet-wide routing solution. Open source service mesh
tools like Envoy [3] or Istio [4] are highly suited for providing
tenancy-based routing that works agnostic to service language
and the transport or encoding used.

Generically, the tenancy-based routing can be implemented
either at ingress or at the egress of the service. At egress, the ser-
vice discovery layer can help determine what service instance
to talk to depending on the request’s tenancy. Alternatively, the
routing decision can be made at the ingress with the request
rerouted to the correct instance, as shown in Figure 5.

44    WI N T ER 20 19  VO L . 4 4 , N O. 4 	 www.usenix.org

SRE AND SYSADMIN
Multi-Tenancy in a Microservice Architecture

In this example, a sidecar can be used to forward the request to
a test instance if the request tenancy is test. A sidecar can be a
process acting as a proxy to all the traffic to the service and is
co-located with the service. The traffic first is received by the
service’s sidecar where we are able to inspect the request’s ten-
ancy context and make a routing decision based on that context.

We do need additional metadata in the tenancy context depend-
ing on the use case we want to address. For example, for testing-
in-production, we want to redirect test traffic to test instance
of a service if the service is under test. We can add additional
information in the context that will allow this behavior.

{

 “request-tenancy” : <product-code>/<tenancy-id>/

	 <tenancy-tags>...

 “services_under_test” : [

 “foo” : {

 “redirect” : <test instance Id>,

 },

 ...

]

}

When we are making routing decisions, we can check if the
request-tenancy is test traffic and the request recipient is one
of the services_under_test. If these conditions are satisfied, we
route the request to the <test instance Id>.

Data Isolation
We want to get to an architecture where every infrastructure
component understands tenancy and is able to isolate traffic
based on tenancy. Typical infrastructure components that are
used in a microservice architecture are: logging, metrics, stor-
age, message queues, caches, and configuration. Isolating data

based on tenancy requires dealing with the infrastructure com-
ponents individually. For example, we might want to start emit-
ting tenancy context as part of all the logs and metrics generated
by a service. This helps developers to filter based on the tenancy,
which might help avoid erroneous alerts or prevent heuristics or
training data getting skewed.

Similarly for storage, underlying storage architecture needs
to be taken into account to efficiently create isolation between
tenants. Some storage architectures might lean more readily
towards multi-tenancy than others. Two high-level approaches
are either to embed the notion of tenancy explicitly alongside the
data and co-locate data with different tenancies or to explicitly
separate out data based on the tenancy. The latter approach
provides better isolation guarantees, while the former might
offer less operational overhead. For messaging queue systems
like Kafka, we can either transparently roll out a new topic for
the tenancy or dedicate a separate Kafka cluster altogether for
that tenancy.

For data isolation, context needs to be propagated up to the infra-
structure components. It is important to make sure services
have minimal overhead with respect to data isolation. We would
ideally want services to not deal with tenancy explicitly. We
would also ideally want to place the isolation logic at a central
choke point from which all the data flows through. The Edge
Gateway is one such choke point where the isolation logic can be
implemented and is the preferred approach. Client libraries can
be another alternative to implement tenancy-based isolation,
although coding language diversity makes it a bit harder to keep
the logic in sync among all the language-specific client libraries.

Similarly for config isolation, we want the configuration data
for a service to be tenancy-specific, making sure configuration
change for one tenancy does not affect another.

Figure 5: Tenancy-based router routing between test and production traffic

www.usenix.org	   WI N T ER 20 19  VO L . 4 4 , N O. 4  45

SRE AND SYSADMIN
Multi-Tenancy in a Microservice Architecture

Conclusion
Microservice-based architectures are still evolving and are
becoming instrumental in providing the agility that businesses
and developers need. A carefully planned multi-tenant archi-
tecture can help realize ROI in terms of increased developer
productivity and ability to support evolving lines of business.

References
[1] Open-Tracing: https://opentracing.io/.

[2] Jaeger: https://www.jaegertracing.io.

[3] Envoy: https://www.envoyproxy.io/.

[4] Istio: https://istio.io/.

Figure 6: Data isolation for logs, metrics, storage, cache, and message queues

