
www.usenix.org	   WI N T ER 20 19  VO L . 4 4 , N O. 4  49

COLUMNS

A Survey of Open-Source Python Profilers
P E T E R N O R T O N

In my day-to-day work, I am fortunate enough to have access to a lot
of tools that give me insight into our running services, including data
collection and visualizations of distributed traces. Distributed tracing

at its core shows the flow of requests through the various services that they
are handled by and usually includes the information about the time they take
in each service, along with some special plumbing that allows a particular
connection, or event, or action to be tracked across those different systems so
they can be correlated. Based on the sheer volume of the data of tracking and
tracing requests across different processes on different systems in a network,
the thing that makes the traced data useful is good data being fed into good
visualization tools.

Working on a smaller scale—for example, when I’m writing tools for my own use or writing
standalone scripts—doesn’t feed into the same tracing infrastructure (often called Applica-
tion Performance Monitoring, or APM), and so I don’t get the benefit of the tooling and the
visualizations that I’m used to.

In order to get similar insight into my own smaller use cases, I usually take a side trip that
involves researching the available profiler and then visualization options. Since I use them
infrequently, I have tried a few profiling tools over the years, and I haven’t settled on a single
best tool.

So I’m going to use this opportunity to survey the field, focus on my opinions of the most
important features, and summarize what I see as the pros and cons for the profilers I think
will be the most useful to me when I don’t have to or don’t want to work within a larger
infrastructure.

In addition, I’m going to favor mentioning available options that can be invoked without hav-
ing to modify the code being run. While there are times when adding profiling code to your
program may be the proper approach, that’s something that would be done after some plan-
ning and discussion, and I’m hoping to look at useful first options here.

Why Profiling Is Done
When we release a program for use by others, the goal is to create a self-contained experience
that works in isolation. By this I mean that it’s considered a flaw, and confusing to the user,
when a program fails with a stack trace, memory contents, or in some other manner that
exposes its internal state, code, or anything that breaks the fourth wall of software.

On the other hand, when we write a program, we need to see it as a complex composition of a
whole lot of independent pieces that have to be carefully arranged to work as intended. Con-
firming that it is working involves being able to review each piece of the infrastructure and
ensuring that its expected form and function are in place.

Peter works on automating
cloud environments. He loves
using Python to solve problems.
He has contributed to books
on Linux and Python, helped

with the New York Linux Users Group, and
helped to organize past DevOpsDays NYC
events. In addition to Python, Peter is slowly
improving his knowledge of Rust, Clojure, and
maybe other fun things. Even though he is a
native New Yorker, he is currently living in and
working from home in the northeast of Brazil.
pcnorton@rbox.co.

50    WI N T ER 20 19  VO L . 4 4 , N O. 4 	 www.usenix.org

COLUMNS
A Survey of Open-Source Python Profilers

The contrast between what we present to the user and how we
work on the inside leads to our having to solve the conundrum of
making the same program that we don’t want to expose also able
to give those who understand it (us, me, you, the developer, or the
technical user) the capability to look into the running program
and characterize it in whole and in its parts.

There are a few different methods of gaining insight. The lowest-
effort way, and often the first, is some variations on printing or
logging the internal state you’re interested in. This is always
an important method, but if you have code that’s out of your
control (like in a library), logging isn’t an option since you can
only coarsely select what is logged. Also, if you have code in a
fast loop, logging isn’t usually an option because it has a way of
causing more problems than it solves—either filling disks or just
making it impossible to see any other context.

Applying a debugger is the other method that is always good
to use to understand a program. Debuggers accomplish their
primary purpose, which is to look inside the state of the program
without having to modify it at all. The debugger is always a good
choice when the program in question is misbehaving. One of
the key points of a debugger is that it will stop the program, and
keep everything stopped, so that you can inspect the state of
the program, or it will work off of a core dump—either way the
program will not make progress while you work in the debugger.
That is absolutely what you want, but it is a potential problem if
you are interested in investigating the uninterrupted behavior of
a program as it continues running.

Other methods include recording and emitting metrics. This is
always useful in the long run, but it requires modifying the pro-
gram and, to be really useful, summarizing and visualizing the
trends. So it requires infrastructure, which we’d like to not have
to wire up if there are lower-effort methods.

Profiling
A profiler is another way of investigating the way a program
works. Both logging/printing and using a debugger allow us to
look at specific isolated bits of code as needed—for example, with
the addition of unusual numbers of print statements or logging
lines or when the program’s dead and its only traces are a core
dump after a failure. In contrast, profilers work by characterizing
the performance of the functions as the program continues to run.

There are two approaches that are taken to do this in general
and in the Python scene. The first way is that the actual running
program is modified in an automated fashion when the profiler
is invoked in a way that each invoked function is enriched so that
the time it takes is recorded; the aggregate time spent in each
function is thus recorded so that you are presented with cold
hard facts about where your program spent its time and where it
really didn’t.

Alternatively, instead of recording the fact of every action taken
on the stack, the profiler will look at the state of the stack by
sampling at a steady interval, say every 100 ms. By showing you
over time what was on the stack, it can infer approximately the
same information as watching every function entry and exit,
but without imposing as much overhead. This is usually called
statistical profiling or sampling.

In either case, the generated statistics, together, are called the
profile, showing you the program’s metaphorical outline and
contours—importantly, where a lot of its time is spent. Since it’s
rare to get much benefit from optimizing things that aren’t tak-
ing a lot of time, the profile is the lens that lets you focus on your
performance. Once a profile is created it gives you real data that is
the starting point for forming a hypothesis about your next steps,
helping you follow the scientific method to continue to improve
your program by making changes, then re-running your code and
looking for differences between the before and after profiles.

Some Code to Profile
I spent some time looking through some of the available AWS
public data sets and decided to use the NEXRAD data, modifying
one of the example Jupyter notebooks as the base of a small bit of
example code that just loads data through a few layers of libraries.

To make the graphs and screenshots in this column reproducible,
I have put up a Docker file on GitHub that you can use to run the
same steps I have (https://github.com/pcn/ogin-some-pyprofiling).

The Available Profilers
Using the Built-in Profilers
The Python documentation describes in good detail the profile
and cProfile modules. They ship in the standard library (if
you’re reading the 2.x documentation, ignore the unmaintained
hotshot module). In practice the cProfile module will be the only
one of these that you’ll ever use.

Because these are part of the base Python, it’s an easy first thing
to reach for. I almost always invoke the profiler from the com-
mand line and record output to a profile file, which saves the info
about the run. This is so much more versatile than the default of
having the profiler print out its result once the run has finished.

Since the provided documentation really does cover the modules
well, I’ll just present my take on the tradeoffs when using the
cProfile or profile modules. Basically, they require that you stop
your program and invoke it in a one-off manner.

One less-used feature is that you can enable and disable the
profiler modules via their enable() and disable() methods; you
can choose to run your program normally and turn on profiling
when some condition is hit, e.g., if you hit it with a signal, send a
specific message, or if the program itself notices that it’s slowing
down. Then you can turn profiling off after some amount of time.

www.usenix.org	   WI N T ER 20 19  VO L . 4 4 , N O. 4  51

COLUMNS
A Survey of Open-Source Python Profilers

On the downside, no matter what else you do, the profiling is
done in the same process as your code. You can imagine that
the profiling is conceptually done by decorating each function
entrance and exit on the stack with time, resource info, etc.,
so it’s unfortunately not necessarily appropriate for high-
performance situations where the loss of cycles in production
is not allowable. So profiling is frequently done by enabling the
profiler while running a representative chunk of code with a
representative chunk of data in a QA or staging situation, and
using that to simulate production, which can work as well.

Let’s look at an example:

 $ python -m cProfile -o generate.prof generate_data.py

This runs the generate_data.py script and records profile data
in generate.prof, which we can process using the profilers
pstats module.

The default output from the profiler isn’t very useful and requires
a lot of cogitation. Instead, you pretty much always need to use
the pstats module in order to start to find actionable info.

 import pstats

 from pstats import SortKey

 p = pstats.Stats(‘generate.prof’)

 p.strip_dirs().sort_stats(1).print_stats()

This is a slight modification of the example from the standard
library docs, which prints the most impactful function invoca-
tions at the top of the list instead of the end, which is just my
preference. The output looks like this:

$ python basic_stats.py | head -20 2>/dev/null

Sun Sep 8 14:56:36 2019 generate.prof

 1459508 function calls (1424219 primitive calls) in

24.581 seconds

 Ordered by: internal time

	 ncalls	 tottime	percall	cumtime	percall	 filename:lineno

(function)

	 257	 19.124	 0.074	 19.124	 0.074	 {method ‘recv_into’

of ‘_socket.socket’ objects}

	 6	 3.988	 0.665	 3.988	 0.665	 {method ‘connect’

of ‘_socket.socket’ objects}

	 1022	 0.148	 0.000	 0.148	 0.000	 {built-in method

marshal.loads}

	 2307	 0.057	 0.000	 0.057	 0.000	 {built-in method

builtins.compile}

	 52/133	 0.050	 0.000	 0.091	 0.001	 {built-in method _imp.

create_dynamic}

33/2629		 0.044	 0.000	 0.163	 0.000	 {built-in method

builtins.__build_class__}

	1652/322	 0.031	 0.000	 0.085	 0.000	 sre_parse.py:475(_parse)

	 5787	 0.028	 0.000	 0.028	 0.000	 {built-in method

posix.stat}

	 4745	 0.027	 0.000	 0.031	 0.000	 {method ‘sub’ of

‘re.Pattern’ objects}

	 2467	 0.023	 0.000	 0.039	 0.000	 inspect.py:613(cleandoc)

	 2	 0.022	 0.011	 0.026	 0.013	 core.py:1005(__call__)

	 146627	 0.020	 0.000	 0.020	 0.000	 {method ‘startswith’

of ‘str’ objects}

	 129897	 0.020	 0.000	 0.026	 0.000	 {built-in method

builtins.isinstance}

If you know that this is downloading data, and you know that
means it’s getting data over a socket, this is telling you that
most of the actual time spent waiting for the program was spent
receiving data from a socket.

While this is good information, it doesn’t try to take on the
responsibility of helping you to understand the code and the
relationships between bits of code. It’d be much more useful if
it could tell you where in the call stack these were invoked to
some extent—in short if it could provide more context. In a way
it can—in basic_stats.py, which is printing the pstats data,
you can iterate and choose which functions to print out and
how to describe whether to print their callers, their callees, etc.
This means that in order to get some really useful data, you’re
required to step out of the problem you’re really trying to solve
(getting more performance out of your code) and think about
how to get better data out of the profiling module. It seems like
there should be a better way.

So the state of the built-in profiler is that it definitely profiles
functions, but it relies on you inferring the state of the stack,
and in order to get a useful overview and to zoom in on what you
want, you will need to become familiar with the pstats module.

Let’s look at some other profilers that include more batteries.

A Little Bit About Sampling vs. Deterministic Profilers
The built-in Python profiling modules call themselves “deter-
ministic,” which basically means that they will completely
encompass every function entry and return—you can read a lot
more about that in the standard library documentation. The
determinism is in the fact that if you run the same program
twice with the same inputs, it’s guaranteed that you’ll get the
same functions profiled both times.

However ideal this seems, it is not always the appropriate
approach. The approach of statistical or sampling for profiling
can have some pretty attractive advantages. First and foremost,
the mechanism can be implemented both within the process
and, with some fancy work, externally.

52    WI N T ER 20 19  VO L . 4 4 , N O. 4 	 www.usenix.org

COLUMNS
A Survey of Open-Source Python Profilers

When done internally (that is, within the same interpreter),
it can result in much less performance impact on the running
process. When done externally, it can result in even less impact
by running the profiler into a separate CPU entirely while it’s
doing its work.

There can be some doubt whether it’s appropriate to switch
from a deterministic problem-solving method that completely
covers all possibilities if there’s a chance that something could be
missed—for example, an invocation of a function going unno-
ticed. In practice, for a profiler this should almost never be a
real problem since the point of profiling is not to describe every
detail of a program’s running, but to help determine where the
program is spending significant amounts of time. A statistical or
sampling profiler is very unlikely to miss functions, and the call
stacks leading to them using a lot more CPU time than expected,
for example, because these should clearly stick out when the
sampling process is collecting data.

One more almost incidental advantage is that since there is a
series of events being triggered, it’s also useful to potentially
gather other environmental factors with a statistical profiler,
that is, overall system health indicators like CPU load, I/O
utilization, etc.

pyinstrument
pyinstrument is the first of these open-source projects I’ve found
recently (https://github.com/joerick/pyinstrument). It’s simple
to invoke as the built-in profiler, it’s installable via pypi, and it’s
been releasing versions since 2014. Unlike the built-in profiler,
it not only prints output at the end but also records a profile you
can use to rerun it with different display parameters. All you
need to do is run pyinstrument with your command after any
options (Figure 1).

pyinstrument’s default output starts out as useful. It displays
the functions in order from those with the most time seen to the
least. It also defaults to hiding library calls in order to help you
focus on your own code to start with. In addition, it colors the
output red/yellow/green, so you can use that as a starting point
for identifying where problems may be found and also for exclud-
ing code paths in the profile that you probably don’t need to see.

A thoughtful, useful, and simple output option is that it can
display function calls in the order they were invoked rather
than ordering by their cumulative time; in this way, you can also
relate the program’s behavior from the user’s perspective to long
times spent in a particular function.

Because it automatically saves the profile without your hav-
ing to think about it, pyinstrument makes it one step easier to
export the profile as JSON, text, or, for simple-ish profiles, a nice
self-contained HTML page that is easy to share and to explore
interactively by twiddling pull-down triangles.

Part of the simplicity that I’ve found when profiling with
pyinstrument is that it helps you look in your own code first.
This is always a sensible starting point since that should be the
only code that’s changing, and thus the most likely place you
should look at for some kind of performance regression. In line
with this bit of common sense, pyinstrument will default to not
expanding info about functions from files whose file system
paths include the string /lib/ by default, though you can toggle
this behavior.

py-spy
The next profiler, py-spy (https://github.com/benfred/py-spy),
works entirely differently from the other two profilers I’ve men-
tioned so far and, along with the next one, in a way that I think
is exciting to have for Python. There are two big distinctions: it
focuses on showing you what your program’s profile looks like
over time, and it operates outside of the process being profiled.

py-spy takes its inspiration from a project called pyflame, which
appears to be unmaintained at this point. The “f lame” part
of pyflame refers to support for displaying Python profiles as
flame graphs, which are a very useful visualization technique
that Brendan Gregg has been developing and advocating. Flame
graphs are a way to visually represent what the stack looks like
over time, which allows answers to questions that are otherwise
hard to get.

py-spy is significantly different from the built-in profilers and
pyinstrument specifically because it now takes the profiling out-
side of the process being profiled. py-spy has the very interesting
approach of using the OS-provided stack inspection calls to look
at the process for a vanishingly small amount of time, record the
state of the stack, query the Python interpreter, and do a whole
lot of frankly very clever work to gather and present that data.

Figure 1: A simple run of pyinstrument with the generate_data.py
script

www.usenix.org	   WI N T ER 20 19  VO L . 4 4 , N O. 4  53

COLUMNS
A Survey of Open-Source Python Profilers

py-spy can attach to a running program and gather information
without interrupting a running task or server, so you don’t need
to modify your code.

Since it’s grouping the events it records into slices of time, it
will default to a top-like display, which updates the summary
of what functions/stack the program is spending the most time
executing.

$ py-spy—python ./generate_data.py

Collecting samples from ‘python ./generate_data.py’ (python v3.7.4)

Total Samples 400

GIL: 0.00%, Active: 2.00%, Threads: 1

%Own %Total OwnTime TotalTime Function (filename:line)

2.00% 2.00% 0.020s 0.020s readinto (socket.py:589)

0.00% 0.00% 0.000s 0.010s <module> (siphon/cdmr/

 cdmrfeature_pb2.py:11)

0.00% 0.00% 0.000s 0.020s <module> (matplotlib/

 rcsetup.py:25)

0.00% 0.00% 0.000s 0.290s <module> (siphon/

 catalog.py:21)

 [etc.]

One important note is that when sampling and attempting to
output a flame graph of the sampled data, a lot of data will be pre-
sented, even at the rate of 100 samples per second. By default the
flame graph mode will sample limiting output to two seconds.
Though you can run it for longer if you need to, the principle is
that you should invoke this when you are experiencing a slow-
down since the flame graph is very dense. In some cases, you
may need to run it for longer periods, but two seconds is forever
in CPU time, so when delving into the detail you’ll get from a
flame graph output, you should usually not need much more.
The black lines in the following example represent the actual
progress bar.

$ py-spy -n -f pyspyflame.svg -r 100—python ./generate_data.py

Sampling process 100 times a second for 2 seconds. Press

Control-C

 to exit.

▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅
▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅ 200/200

Wrote flame graph ‘pyspyflame.svg’. Samples: 200 Errors: 0

This results in an SVG file that you can explore in your browser,
with stack frame info available in tooltips that come up as you
mouse over.

The above example demonstrates running a script under py-spy,
but it is much more interesting when attaching to a running
program.

And Lastly, Austin
The last profiler I’ll mention is whimsically named after the
movie character Austin Powers (I’ll venture a guess that like
py-spy, it’s spying for you, and the movie character is a spy, so
I guess that’s the connection?), and it’s just called Austin. You
can get it from https://github.com/P403n1x87/austin, and even
though it overlaps with many of the best features of py-spy and
pyinstrument, it’s not exactly as easy to just reach for it. py-spy
and pyinstrument are both easily installed via pip install
(though py-spy’s author has done some very cool trickery to
make that possible). Austin requires you to return to the days of
Autotools and Make, but it does ease the way by also offering a
few pre-packaged methods of installing it.

For people who’ve been around for a while, this shouldn’t get in
the way of trying out a useful tool, but I find that most of my col-
leagues over the past decade or so are not excited about anything
with instructions that include autoconf and make. That said,
the Austin maintainer has made it available as a snap package,
which is certainly a step in the right direction.

Figure 2: The flame graph for a two-second sample of the generate_
data.py script

54    WI N T ER 20 19  VO L . 4 4 , N O. 4 	 www.usenix.org

COLUMNS
A Survey of Open-Source Python Profilers

Austin is as simple to run as pyinstrument or py-spy. Austin is
very similar in features and scope to py-spy, with some addi-
tional modules that are provided when installing with pip/
setuptools—a terminal top-like view similar to py-spy, as well
as a web UI that lets you observe a process being traced in a
browser, which is a nice touch. While these are both promis-
ing directions, in my testing I haven’t found a use case for these
features in my workflow.

There are two major distinctions in my mind between py-spy
and Austin. py-spy limits the amount of time you can sample a
trace when outputting to a flame graph, while Austin is happy to
continue tracing until you stop it. I’m not sure which is right—

both could be a best practice, but I think I would lean towards
py-spy in this aspect.

The other major distinction is that Austin attempts to record
the changes in memory usage by the process while it’s tracing,
which is a very nice touch—unfortunately, I haven’t found a way
to visualize that alongside the flame graphs yet.

Once it’s installed, Austin will output profile data to STDOUT,
which can be read by the flamegraph.pl tool. The same data can
be saved to a file with the -o flag, and then post-processed as well:

$ austin -s -i 500 -o austin.profile -f -m python

 ./generate_data.py

$ cat austin.profile | flamegraph.pl --countname=us

 > austin_generated.svg

Ignored 11 lines with invalid format

Something Like a Conclusion
I think that the most interesting thing I’ve realized is how much
easier the profiling tools I’ve described here are when it comes to
getting some insight—they’re much more useful than the default
profiling modules. I’ve got a definite preference among these
tools:

First, I would probably not bother loading up the default profile
modules anymore. They provide a feeling of poorly made flatpack
furniture—a bunch of pieces with a guiding document and a
rough idea of what you could accomplish if only you had already
done this a lot.

For a quick overview of what a program is doing, if I could stop
and start it in isolation, I would reach for pyinstrument given its
simplicity and easy formatting capabilities.

For a running service, I’d currently reach for py-spy. I think it
covers the important features of sampling, understanding the
stack, and outputting useful data and visualizations.

I am interested in Austin for one of the distinctions that I men-
tioned about it: one of the data points it can collect is the memory
usage of the process being profiled on each tick. The more I think
about this feature, the more I think that there’s a good case to be
made for tracking increasing memory usage and other informa-
tion usually provided by vmstat/mpstat/iostat as part of the
profile. Relating the profile of the program to the profile of the
system that’s running it is very useful and would bring Python
profilers closer to the capabilities of APM products.

Figure 3: The flame graph for a full run, sampled by Austin.

