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A Survey of Open-Source Python Profilers
P E T E R  N O R T O N

In my day-to-day work, I am fortunate enough to have access to a lot 
of tools that give me insight into our running services, including data 
collection and visualizations of distributed traces. Distributed tracing 

at its core shows the flow of requests through the various services that they 
are handled by and usually includes the information about the time they take 
in each service, along with some special plumbing that allows a particular 
connection, or event, or action to be tracked across those different systems so 
they can be correlated. Based on the sheer volume of the data of tracking and 
tracing requests across different processes on different systems in a network, 
the thing that makes the traced data useful is good data being fed into good 
visualization tools.

Working on a smaller scale—for example, when I’m writing tools for my own use or writing 
standalone scripts—doesn’t feed into the same tracing infrastructure (often called Applica-
tion Performance Monitoring, or APM), and so I don’t get the benefit of the tooling and the 
visualizations that I’m used to.

In order to get similar insight into my own smaller use cases, I usually take a side trip that 
involves researching the available profiler and then visualization options. Since I use them 
infrequently, I have tried a few profiling tools over the years, and I haven’t settled on a single 
best tool.

So I’m going to use this opportunity to survey the field, focus on my opinions of the most 
important features, and summarize what I see as the pros and cons for the profilers I think 
will be the most useful to me when I don’t have to or don’t want to work within a larger 
infrastructure.

In addition, I’m going to favor mentioning available options that can be invoked without hav-
ing to modify the code being run. While there are times when adding profiling code to your 
program may be the proper approach, that’s something that would be done after some plan-
ning and discussion, and I’m hoping to look at useful first options here. 

Why Profiling Is Done
When we release a program for use by others, the goal is to create a self-contained experience 
that works in isolation. By this I mean that it’s considered a flaw, and confusing to the user, 
when a program fails with a stack trace, memory contents, or in some other manner that 
exposes its internal state, code, or anything that breaks the fourth wall of software.

On the other hand, when we write a program, we need to see it as a complex composition of a 
whole lot of independent pieces that have to be carefully arranged to work as intended. Con-
firming that it is working involves being able to review each piece of the infrastructure and 
ensuring that its expected form and function are in place.
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The contrast between what we present to the user and how we 
work on the inside leads to our having to solve the conundrum of 
making the same program that we don’t want to expose also able 
to give those who understand it (us, me, you, the developer, or the 
technical user) the capability to look into the running program 
and characterize it in whole and in its parts.

There are a few different methods of gaining insight. The lowest-
effort way, and often the first, is some variations on printing or 
logging the internal state you’re interested in. This is always 
an important method, but if you have code that’s out of your 
control (like in a library), logging isn’t an option since you can 
only coarsely select what is logged. Also, if you have code in a 
fast loop, logging isn’t usually an option because it has a way of 
causing more problems than it solves—either filling disks or just 
making it impossible to see any other context.

Applying a debugger is the other method that is always good 
to use to understand a program. Debuggers accomplish their 
primary purpose, which is to look inside the state of the program 
without having to modify it at all. The debugger is always a good 
choice when the program in question is misbehaving. One of 
the key points of a debugger is that it will stop the program, and 
keep everything stopped, so that you can inspect the state of 
the program, or it will work off of a core dump—either way the 
program will not make progress while you work in the debugger. 
That is absolutely what you want, but it is a potential problem if 
you are interested in investigating the uninterrupted behavior of 
a program as it continues running.

Other methods include recording and emitting metrics. This is 
always useful in the long run, but it requires modifying the pro-
gram and, to be really useful, summarizing and visualizing the 
trends. So it requires infrastructure, which we’d like to not have 
to wire up if there are lower-effort methods.

Profiling
A profiler is another way of investigating the way a program 
works. Both logging/printing and using a debugger allow us to 
look at specific isolated bits of code as needed—for example, with 
the addition of unusual numbers of print statements or logging 
lines or when the program’s dead and its only traces are a core 
dump after a failure. In contrast, profilers work by characterizing 
the performance of the functions as the program continues to run. 

There are two approaches that are taken to do this in general 
and in the Python scene. The first way is that the actual running 
program is modified in an automated fashion when the profiler 
is invoked in a way that each invoked function is enriched so that 
the time it takes is recorded; the aggregate time spent in each 
function is thus recorded so that you are presented with cold 
hard facts about where your program spent its time and where it 
really didn’t.

Alternatively, instead of recording the fact of every action taken 
on the stack, the profiler will look at the state of the stack by 
sampling at a steady interval, say every 100 ms. By showing you 
over time what was on the stack, it can infer approximately the 
same information as watching every function entry and exit, 
but without imposing as much overhead. This is usually called 
statistical profiling or sampling.

In either case, the generated statistics, together, are called the 
profile, showing you the program’s metaphorical outline and 
contours—importantly, where a lot of its time is spent. Since it’s 
rare to get much benefit from optimizing things that aren’t tak-
ing a lot of time, the profile is the lens that lets you focus on your 
performance. Once a profile is created it gives you real data that is 
the starting point for forming a hypothesis about your next steps, 
helping you follow the scientific method to continue to improve 
your program by making changes, then re-running your code and 
looking for differences between the before and after profiles.

Some Code to Profile
I spent some time looking through some of the available AWS 
public data sets and decided to use the NEXRAD data, modifying 
one of the example Jupyter notebooks as the base of a small bit of 
example code that just loads data through a few layers of libraries.

To make the graphs and screenshots in this column reproducible, 
I have put up a Docker file on GitHub that you can use to run the 
same steps I have (https://github.com/pcn/ogin-some-pyprofiling).

The Available Profilers
Using the Built-in Profilers
The Python documentation describes in good detail the profile 
and cProfile modules. They ship in the standard library (if 
you’re reading the 2.x documentation, ignore the unmaintained 
hotshot module). In practice the cProfile module will be the only 
one of these that you’ll ever use.

Because these are part of the base Python, it’s an easy first thing 
to reach for. I almost always invoke the profiler from the com-
mand line and record output to a profile file, which saves the info 
about the run. This is so much more versatile than the default of 
having the profiler print out its result once the run has finished.

Since the provided documentation really does cover the modules 
well, I’ll just present my take on the tradeoffs when using the 
cProfile or profile modules. Basically, they require that you stop 
your program and invoke it in a one-off manner. 

One less-used feature is that you can enable and disable the 
profiler modules via their enable() and disable() methods; you 
can choose to run your program normally and turn on profiling 
when some condition is hit, e.g., if you hit it with a signal, send a 
specific message, or if the program itself notices that it’s slowing 
down. Then you can turn profiling off after some amount of time.
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On the downside, no matter what else you do, the profiling is 
done in the same process as your code. You can imagine that 
the profiling is conceptually done by decorating each function 
entrance and exit on the stack with time, resource info, etc., 
so it’s unfortunately not necessarily appropriate for high-
performance situations where the loss of cycles in production 
is not allowable. So profiling is frequently done by enabling the 
profiler while running a representative chunk of code with a 
representative chunk of data in a QA or staging situation, and 
using that to simulate production, which can work as well.

Let’s look at an example:

    $ python -m cProfile -o generate.prof generate_data.py

This runs the generate_data.py script and records profile data 
in generate.prof, which we can process using the profilers 
pstats module.

The default output from the profiler isn’t very useful and requires 
a lot of cogitation. Instead, you pretty much always need to use 
the pstats module in order to start to find actionable info.

    import pstats

    from pstats import SortKey

    p = pstats.Stats(‘generate.prof’)

    p.strip_dirs().sort_stats(1).print_stats()

This is a slight modification of the example from the standard 
library docs, which prints the most impactful function invoca-
tions at the top of the list instead of the end, which is just my 
preference. The output looks like this:

$ python basic_stats.py | head -20 2>/dev/null

Sun Sep  8 14:56:36 2019    generate.prof

  1459508 function calls (1424219 primitive calls) in 

24.581 seconds

  Ordered by: internal time

	 ncalls	 tottime	percall	cumtime	percall	 filename:lineno

(function)

	 257	 19.124	 0.074	 19.124	 0.074	 {method ‘recv_into’ 

of ‘_socket.socket’ objects}

	 6	 3.988	 0.665	 3.988	 0.665	 {method ‘connect’ 

of ‘_socket.socket’ objects}

	 1022	 0.148	 0.000	 0.148	 0.000	 {built-in method 

marshal.loads}

	 2307	 0.057	 0.000	 0.057	 0.000	 {built-in method 

builtins.compile}

	 52/133	 0.050	 0.000	 0.091	 0.001	 {built-in method _imp.

create_dynamic}

33/2629		 0.044	 0.000	 0.163	 0.000	 {built-in method 

builtins.__build_class__}

	1652/322	 0.031	 0.000	 0.085	 0.000	 sre_parse.py:475(_parse)

	 5787	 0.028	 0.000	 0.028	 0.000	 {built-in method 

posix.stat}

	 4745	 0.027	 0.000	 0.031	 0.000	 {method ‘sub’ of 

‘re.Pattern’ objects}

	 2467	 0.023	 0.000	 0.039	 0.000	 inspect.py:613(cleandoc)

	 2	 0.022	 0.011	 0.026	 0.013	 core.py:1005(__call__)

	 146627	 0.020	 0.000	 0.020	 0.000	 {method ‘startswith’ 

of ‘str’ objects}

	 129897	 0.020	 0.000	 0.026	 0.000	 {built-in method 

builtins.isinstance}

If you know that this is downloading data, and you know that 
means it’s getting data over a socket, this is telling you that 
most of the actual time spent waiting for the program was spent 
receiving data from a socket.

While this is good information, it doesn’t try to take on the 
responsibility of helping you to understand the code and the 
relationships between bits of code. It’d be much more useful if 
it could tell you where in the call stack these were invoked to 
some extent—in short if it could provide more context. In a way 
it can—in basic_stats.py, which is printing the pstats data, 
you can iterate and choose which functions to print out and 
how to describe whether to print their callers, their callees, etc. 
This means that in order to get some really useful data, you’re 
required to step out of the problem you’re really trying to solve 
(getting more performance out of your code) and think about 
how to get better data out of the profiling module. It seems like 
there should be a better way.

So the state of the built-in profiler is that it definitely profiles 
functions, but it relies on you inferring the state of the stack, 
and in order to get a useful overview and to zoom in on what you 
want, you will need to become familiar with the pstats module.

Let’s look at some other profilers that include more batteries.

A Little Bit About Sampling vs. Deterministic Profilers
The built-in Python profiling modules call themselves “deter-
ministic,” which basically means that they will completely 
encompass every function entry and return—you can read a lot 
more about that in the standard library documentation. The 
determinism is in the fact that if you run the same program 
twice with the same inputs, it’s guaranteed that you’ll get the 
same functions profiled both times.

However ideal this seems, it is not always the appropriate 
approach. The approach of statistical or sampling for profiling 
can have some pretty attractive advantages. First and foremost, 
the mechanism can be implemented both within the process 
and, with some fancy work, externally.
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When done internally (that is, within the same interpreter), 
it can result in much less performance impact on the running 
process. When done externally, it can result in even less impact 
by running the profiler into a separate CPU entirely while it’s 
doing its work.

There can be some doubt whether it’s appropriate to switch 
from a deterministic problem-solving method that completely 
covers all possibilities if there’s a chance that something could be 
missed—for example, an invocation of a function going unno-
ticed. In practice, for a profiler this should almost never be a 
real problem since the point of profiling is not to describe every 
detail of a program’s running, but to help determine where the 
program is spending significant amounts of time. A statistical or 
sampling profiler is very unlikely to miss functions, and the call 
stacks leading to them using a lot more CPU time than expected, 
for example, because these should clearly stick out when the 
sampling process is collecting data.

One more almost incidental advantage is that since there is a 
series of events being triggered, it’s also useful to potentially 
gather other environmental factors with a statistical profiler, 
that is, overall system health indicators like CPU load, I/O 
utilization, etc.

pyinstrument
pyinstrument is the first of these open-source projects I’ve found 
recently (https://github.com/joerick/pyinstrument). It’s simple 
to invoke as the built-in profiler, it’s installable via pypi, and it’s 
been releasing versions since 2014. Unlike the built-in profiler, 
it not only prints output at the end but also records a profile you 
can use to rerun it with different display parameters. All you 
need to do is run pyinstrument with your command after any 
options (Figure 1).

pyinstrument’s default output starts out as useful. It displays 
the functions in order from those with the most time seen to the 
least. It also defaults to hiding library calls in order to help you 
focus on your own code to start with. In addition, it colors the 
output red/yellow/green, so you can use that as a starting point 
for identifying where problems may be found and also for exclud-
ing code paths in the profile that you probably don’t need to see.

A thoughtful, useful, and simple output option is that it can 
display function calls in the order they were invoked rather 
than ordering by their cumulative time; in this way, you can also 
relate the program’s behavior from the user’s perspective to long 
times spent in a particular function.

Because it automatically saves the profile without your hav-
ing to think about it, pyinstrument makes it one step easier to 
export the profile as JSON, text, or, for simple-ish profiles, a nice 
self-contained HTML page that is easy to share and to explore 
interactively by twiddling pull-down triangles.

Part of the simplicity that I’ve found when profiling with 
pyinstrument is that it helps you look in your own code first. 
This is always a sensible starting point since that should be the 
only code that’s changing, and thus the most likely place you 
should look at for some kind of performance regression. In line 
with this bit of common sense, pyinstrument will default to not 
expanding info about functions from files whose file system 
paths include the string /lib/ by default, though you can toggle 
this behavior.

py-spy
The next profiler, py-spy (https://github.com/benfred/py-spy), 
works entirely differently from the other two profilers I’ve men-
tioned so far and, along with the next one, in a way that I think 
is exciting to have for Python. There are two big distinctions: it 
focuses on showing you what your program’s profile looks like 
over time, and it operates outside of the process being profiled.

py-spy takes its inspiration from a project called pyflame, which 
appears to be unmaintained at this point. The “f lame” part 
of pyflame refers to support for displaying Python profiles as 
flame graphs, which are a very useful visualization technique 
that Brendan Gregg has been developing and advocating. Flame 
graphs are a way to visually represent what the stack looks like 
over time, which allows answers to questions that are otherwise 
hard to get.

py-spy is significantly different from the built-in profilers and 
pyinstrument specifically because it now takes the profiling out-
side of the process being profiled. py-spy has the very interesting 
approach of using the OS-provided stack inspection calls to look 
at the process for a vanishingly small amount of time, record the 
state of the stack, query the Python interpreter, and do a whole 
lot of frankly very clever work to gather and present that data. 

Figure 1: A simple run of pyinstrument with the generate_data.py 
script
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py-spy can attach to a running program and gather information 
without interrupting a running task or server, so you don’t need 
to modify your code.

Since it’s grouping the events it records into slices of time, it 
will default to a top-like display, which updates the summary 
of what functions/stack the program is spending the most time 
executing.

$ py-spy—python ./generate_data.py 

Collecting samples from ‘python ./generate_data.py’ (python v3.7.4)

Total Samples 400

GIL: 0.00%, Active: 2.00%, Threads: 1

%Own   %Total  OwnTime  TotalTime  Function (filename:line)                                                                       

2.00%   2.00%   0.020s    0.020s    readinto (socket.py:589)

0.00%   0.00%   0.000s    0.010s    <module> (siphon/cdmr/

   cdmrfeature_pb2.py:11)

0.00%   0.00%   0.000s    0.020s    <module> (matplotlib/

   rcsetup.py:25)

0.00%   0.00%   0.000s    0.290s    <module> (siphon/

   catalog.py:21)

    [etc.]

One important note is that when sampling and attempting to 
output a flame graph of the sampled data, a lot of data will be pre-
sented, even at the rate of 100 samples per second. By default the 
flame graph mode will sample limiting output to two seconds. 
Though you can run it for longer if you need to, the principle is 
that you should invoke this when you are experiencing a slow-
down since the flame graph is very dense. In some cases, you 
may need to run it for longer periods, but two seconds is forever 
in CPU time, so when delving into the detail you’ll get from a 
flame graph output, you should usually not need much more. 
The black lines in the following example represent the actual 
progress bar. 

$ py-spy -n -f pyspyflame.svg -r 100—python ./generate_data.py 

Sampling process 100 times a second for 2 seconds. Press 

Control-C 

  to exit.

▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅
▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅ 200/200

Wrote flame graph ‘pyspyflame.svg’. Samples: 200 Errors: 0

This results in an SVG file that you can explore in your browser, 
with stack frame info available in tooltips that come up as you 
mouse over.

The above example demonstrates running a script under py-spy, 
but it is much more interesting when attaching to a running 
program. 

And Lastly, Austin
The last profiler I’ll mention is whimsically named after the 
movie character Austin Powers (I’ll venture a guess that like 
py-spy, it’s spying for you, and the movie character is a spy, so 
I guess that’s the connection?), and it’s just called Austin. You 
can get it from https://github.com/P403n1x87/austin, and even 
though it overlaps with many of the best features of py-spy and 
pyinstrument, it’s not exactly as easy to just reach for it. py-spy 
and pyinstrument are both easily installed via pip install 
(though py-spy’s author has done some very cool trickery to 
make that possible). Austin requires you to return to the days of 
Autotools and Make, but it does ease the way by also offering a 
few pre-packaged methods of installing it.

For people who’ve been around for a while, this shouldn’t get in 
the way of trying out a useful tool, but I find that most of my col-
leagues over the past decade or so are not excited about anything 
with instructions that include autoconf and make. That said, 
the Austin maintainer has made it available as a snap package, 
which is certainly a step in the right direction.

Figure 2: The flame graph for a two-second sample of the generate_
data.py script
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Austin is as simple to run as pyinstrument or py-spy. Austin is 
very similar in features and scope to py-spy, with some addi-
tional modules that are provided when installing with pip/
setuptools—a terminal top-like view similar to py-spy, as well 
as a web UI that lets you observe a process being traced in a 
browser, which is a nice touch. While these are both promis-
ing directions, in my testing I haven’t found a use case for these 
features in my workflow.

There are two major distinctions in my mind between py-spy 
and Austin. py-spy limits the amount of time you can sample a 
trace when outputting to a flame graph, while Austin is happy to 
continue tracing until you stop it. I’m not sure which is right—

both could be a best practice, but I think I would lean towards 
py-spy in this aspect.

The other major distinction is that Austin attempts to record 
the changes in memory usage by the process while it’s tracing, 
which is a very nice touch—unfortunately, I haven’t found a way 
to visualize that alongside the flame graphs yet.

Once it’s installed, Austin will output profile data to STDOUT, 
which can be read by the flamegraph.pl tool. The same data can 
be saved to a file with the -o flag, and then post-processed as well:

$ austin -s -i 500 -o austin.profile -f -m python 

  ./generate_data.py

$ cat austin.profile | flamegraph.pl --countname=us  

  > austin_generated.svg

Ignored 11 lines with invalid format

Something Like a Conclusion
I think that the most interesting thing I’ve realized is how much 
easier the profiling tools I’ve described here are when it comes to 
getting some insight—they’re much more useful than the default 
profiling modules. I’ve got a definite preference among these 
tools:

First, I would probably not bother loading up the default profile 
modules anymore. They provide a feeling of poorly made flatpack 
furniture—a bunch of pieces with a guiding document and a 
rough idea of what you could accomplish if only you had already 
done this a lot.

For a quick overview of what a program is doing, if I could stop 
and start it in isolation, I would reach for pyinstrument given its 
simplicity and easy formatting capabilities.

For a running service, I’d currently reach for py-spy. I think it 
covers the important features of sampling, understanding the 
stack, and outputting useful data and visualizations.

I am interested in Austin for one of the distinctions that I men-
tioned about it: one of the data points it can collect is the memory 
usage of the process being profiled on each tick. The more I think 
about this feature, the more I think that there’s a good case to be 
made for tracking increasing memory usage and other informa-
tion usually provided by vmstat/mpstat/iostat as part of the 
profile. Relating the profile of the program to the profile of the 
system that’s running it is very useful and would bring Python 
profilers closer to the capabilities of APM products.

Figure 3: The flame graph for a full run, sampled by Austin.




