
2  WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org I’ve sometimes been asked why computers are still so insecure, so emi-

nently hackable. Didn’t Bill Gates once shut down development at Micro-
soft so they could improve the security of Windows decades ago? While

not quite decades ago, Gates really did shut down Windows development in
2002 and sent 7,000 systems programmers to special security training with
the goal of “Trustworthy Computing.”

It didn’t work. While some things got better, and the rampage of worms slowed down, admin-
istrators and users continued to have to install patches frequently. In 2003, Patch Tuesday
became a regular feature, followed by Exploit Wednesday for those who had ignored the rou-
tine of installing patches on the second Tuesday of the month.

Part of Microsoft’s problem was a matter of programming culture, with a focus on new
features. Exchange server, the email server product, actually had a good record for security,
while the IIS web server certainly did not. Two distinct groups, with a different culture,
worked on these products, resulting in very different security outcomes.

But the problem of insecurity is not unique to Microsoft. Sun Microsystems started deliver-
ing insecure workstations in the early 1980s, and continued to do so through the ’90s. Sun
employees announced at USENIX Security that they had a program for securing SunOS, but
it was for internal use only. Dan Farmer, Brad Powell, and Matt Archibald released Titan
for Solaris in 1998 as a public solution to tightening and securing Solaris. Linux was having
severe issues with security at the end of the ’90s but quickly improved over the next couple of
years. But today, people build malware specifically for Linux, as Linux servers and desktops
have become important targets for invading networks.

So far, all I’ve done is write about how the struggle to defend software against exploits has
been a failure, but not why. The answer lies partially in the nature of software and largely
because of our hardware designs.

First, programming is hard. I am constantly amazed at people announcing that they intend to
turn everyone into a programmer. Perhaps these well-meaning projects can turn some people
into middling programmers, but not ones who will be writing the next generation of services. I
have had the misfortune of consulting in IT shops and have seen the carnage firsthand. On the
plus side, when I turned out a handful of lines of shell script that did what they had failed to do
in weeks, it made me look like a wizard. I have said this before: most programmers, by defini-
tion, have an average skill level, and half are below average. This is hard to remember when
you work in Silicon Valley or at a top-ten university and all of your coworkers are geniuses.

Second, our computer systems were not designed for security. They were designed to be flex-
ible. There are hardware security mechanisms that are important to security, such as the so-
called rings, with the lowest numbered ring having the most access to hardware, and higher
rings being reserved for “untrusted” code. Yet the largest and most complex programs run on
most systems are the operating systems, and these run at the innermost ring. That makes the
operating system the most important target for any attacker.

Microsoft has taken advantage of the ring added to support virtualization, called ADM-V or
Intel VT, in Windows 10. They load kernel modules using Virtual Secure Mode, where the

www.usenix.org	 WI N T ER 2020  VO L . 45 , N O. 4 3

EDITORIAL
Musings

operating system and critical system modules get executed in
virtual containers. This beats the pants off the Linux model,
where the kernel resides in a single address space, but still hasn’t
prevented bootkits from being installed in Windows 10 systems.
This is supposed to be prevented by UEFI, but this can be worked
around using firmware rootkits and on many motherboards
because of the wrong settings being used.

Memory management is the next level of protection, but it
was designed to protect programs running in one process from
programs running in another process. Through abuse of the
operating system, usually after an exploit, memory management
can be bypassed.

Intel has introduced another level of protection, although this
one is largely unused today. MPK (memory protection keys)
allows programmers to split a single process’s memory space into
16 different regions with the same protection provided by page
tables [2]. Sixteen regions doesn’t sound like a lot, but as a method
for isolating threads, or portions of a program involved in parsing
input, MPK could help.

The CHERI researchers have taken a slightly different tack by
creating CPU designs with segment registers. MULTICS used
segment registers to separate portions of programs, with a seg-
ment having a base address and a range, and accesses outside of
this base and range being prohibited. CHERI represents another
great idea, one that’s been in development over a decade, making
segments associated with capabilities, and one quite unlikely to
be adopted by most programmers.

I guess I should mention enclaves, the tiny, encrypted execution
domains, so I can also mention Meltdown, Spectre, and Load
Value Injection [1]. Enclaves will not be of use to most program-
mers, and transient execution flaws have painted targets on them
already.

Software
That leaves us with software. Software can either make comput-
ers more secure or less secure, and our favorite languages make
our systems less secure.

.cfi_startproc
pushq %rax
.cfi_def_cfa_offset 16
movslq %edi, %rax
leaq _ZN5hello4main17hd078db076938ab99E(%rip), %rdi
movq %rsi, (%rsp)
movq %rax, %rsi
movq (%rsp), %rdx
callq _ZN3std2rt10lang_start17he5a718dea3bb834eE
popq %rcx
.cfi_def_cfa_offset 8
retq

Listing 1: Some assembler

Listing 1 depicts the main() function for a “Hello World!” pro-
gram. Compilers produce assembler as an intermediate format,
and that’s what appears in Listing 1. You can learn to program
in assembler, but you have to handle things that compilers make
easy to do, like choosing the register to use (anything beginning
with %), managing the stack, managing memory. Each CPU archi-
tecture has a different set of registers and assembly instructions,
although assemblers themselves, like as, work the same. You still
have comments, but assembler is hard to read and is not portable
between CPU architectures.

That’s why the geniuses who created UNIX created the C lan-
guage: they needed a language that made porting an operating
system easier. They also wanted something that would be fast
and that provides little in the way of handholding. If you don’t
know better, you can easily make “fatal” mistakes, like using a
pointer after the memory it points to has been freed or writing
into memory beyond the end of an array. On the other hand, you
can treat pointers as function entry points and perform arith-
metic on pointers, very handy things to have when writing an
operating system—especially one that runs on hardware with
32K words of RAM.

C is my favorite language, but it is a language without seatbelts,
airbags, or even bumpers. C, and its younger cousin C++, assume
that you know what you are doing and you never make a mistake.
The first of these points is rarely true, and the second is never
true—even the best programmers make mistakes.

There are safer languages to use, ones with safety features. Gen-
erally, these languages remove access to pointers and provide
strong types. Go and Rust are examples of safer languages, with
Rust being designed particularly for safety. Go is not as fast as C
or C++, but perhaps a 10–15% penalty for a lot of execution safety
is worthwhile. Rust, meanwhile is nearly as fast as C, and perhaps
will be when LLVM can produce code as performant as GCC.

Safer languages leverage hardware support for security by mak-
ing it much more difficult to write programs that are terribly
insecure. I think this is a very good idea, especially if we are going
to teach everyone to program.

The Lineup
We start out this issue with an opinion piece by Michael Mattioli,
who feels that tools like Zoom, Meet, Teams, and so on are miss-
ing something important.

Next, I picked two papers from USENIX Security ’20 that were
clearly written and included points that I felt were especially
worth sharing. There were another half-dozen papers that I
really liked, but those either weren’t as well written, had deep
dives into statistics, or were too narrow for the wide audience
represented by the USENIX membership.

4    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

EDITORIAL
Musings

Votipka et al. examine programmer mistakes, but not just any
type of errors. They used the Build It, Break It, Fix It (BIBIFI)
program as their data source. BIBIFI challenges programmers
who have had training or work experience to write three, non-
trivial programs with some security requirements, share the
sources to these programs with other teams, and then analyze
the programs and the faults found by the teams. What they found
was distressing to me and is part of the reason why security is so
hard to get right.

Garfinkel et al. have written a tool, RLBox, that makes sand-
boxing libraries easier. Most programs incorporate libraries,
and many of these libraries process input that may come from
attackers, such as image or video decoders. RLBox simplifies the
process of sandboxing these libraries. The authors worked with
Mozilla to sandbox several key libraries, and their tool will work
for other programs as well.

Huang et al. volunteered to write about their research project,
Senx, an automatic program repair tool. The authors argue that
waiting for security patches to appear often takes much too long,
and with access to source code and an example of an attack, Senx
can create patches for three different types of vulnerabilities.

I interviewed Sergey Bratus. There were several papers at
USENIX Security ’20 that appeared to be directly related to
Language Security principles, or LangSec. Bratus has written for
;login: before, has been running a workshop on LangSec for years,
and seemed to me to be the perfect person to explain LangSec
principles. And this worked, as LangSec seems much clearer to
me now and is important if we are ever going to be able to write
secure software.

The USENIX Annual Technical Conference also happened this
summer, and I chose two papers and one talk as the basis for
articles. Shahrad et al. explain a key feature of running cloud
functions: deciding how long a function should be kept warm,
that is, ready to run. They provide examples taken from Azure
and a new scheme that improves performance and efficiency.

Raghavan et al. discuss Posh, a distributed shell. To me, Posh is a
great example in the tradition of USENIX ATC, an improvement
on the shell that works by moving execution closer to the sources
of data, when that data is available over NFS. Posh can also add
parallelism to shell scripts without rewriting the scripts.

I interviewed Margo Seltzer, who gave an afternoon keynote at
USENIX ATC ’20. Seltzer encouraged her audience to explore
beyond the safe confines of their personal specialties and con-
sider “fringe” ideas. Seltzer provides several examples of doing
this in her own highly successful career.

Torres and Colish cover capacity planning for SREs. They divide
capacity planning into two areas: resource provisioning and
capacity planning to safeguard the future potential of a service.

The authors cover redundancy for reliability and how this must
include back-end services as well.

Adam McKaig explains why he thinks that it’s important for
SREs to understand algorithms and data structures. McKaig
takes us through three examples of a service that initially is
performing well, uncovering the reasons why the service starts
failing SLOs, and explaining the solutions that he and the teams
he worked with came up with for repairing the service.

Laura Nolan has written a book review of Alex Hidalgo’s recently
published book about SLOs. Nolan explains why she considers
Hidalgo’s book one of the most important for SREs. Hidalgo
wrote an article for ;login: in the Summer 2020 issue, so you can
also sample his writing there.

Cory Lueninghoener shows us how to create different aspects of
containers from the command line. While you may be more likely
to use a tool like Docker for this, you will gain understanding of
what Docker is doing by trying Lueninghoener’s examples.

Dave Josephsen continues his exploration of eBPF, this time
focusing on histograms as a clever technique for displaying
potential performance issues. Josephsen dives into how to select
bin sizes for histograms and exactly why histograms are so good
at unveiling problems that would be buried in data otherwise.

Simson Garfinkel covers the history and uses of cryptographic
hashes. While the use of hashes has become commonplace in
programming, cryptographic hashes provide the foundation for
assuring the authenticity of code or messages, timestamps for
documents, and in forensics.

Terence Kelly demonstrates a technique for storing graphs as
compressed sparse row format. First, Kelly shows the most com-
monly used ways of storing graphs, explains why these methods
waste memory, and then details how to use the compressed
sparse row format and when other formats will work better.

Dan Geer, along with coworkers John Speed Meyers and Bentz
Tozer, has researched software supply chain insecurity. They
have collected data about how often attackers have modified the
source code for open source libraries as well as how often this
has resulted in successful attacks, work that I believe is really
important so long as we continue to include other people’s code,
via libraries, in our own programs.

Robert Ferrell distracts us with his views on social media
influencers. Ferrell deletes himself from this clan, while ponder-
ing on the usefulness of content that is itself nothing more than
advertising.

Mark Lamourine has reviewed three books this time, Effective
Python, Dependency Injections, Practices, and Patterns, and
Building Secure and Reliable Systems. I reviewed a book about
rootkits for Windows.

www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 5

EDITORIAL
Musings

Most of us have little to no influence on hardware design. To
be honest, most of us won’t have the type of ideas necessary to
even get the CPU industry to move at all toward better security.
Personally, I’d like to see designs that support message passing
without involving context switches, as that would allow our serv-
ers to appear more like clouds than 1970s mainframes.

We do have choices we can make about the programming
languages we use. Well, some of us do, while those working at
corporations often have that decision made by someone far off
in the top of the management hierarchy, based on the latest buzz.
For those who have choices, I recommend languages like Rust
that emphasize both security and performance. For a different
way of looking at things, I found this article at Northeastern an
interesting way to view programming languages [3]. Hopefully,
someone will keep this page up-to-date so we don’t have to rely on
sites like TIOBE.

And as for making systems more secure, we do need to stop hand-
ing out assault rifles like C++ and get more people to use inher-
ently safer programming languages like Rust or Go. Python has
its faults, like the lack of strong types and being single threaded
like JavaScript, but it doesn’t have pointers and the types of
memory issues that C and C++ have had for decades. Decisions
at institutions of higher education do have an influence over the
future security, or insecurity, of computers.

Remember Listing 1, the assembly language example? That
was helloworld.rs, the Rust version, but you can hardly tell by
looking at the intermediate assembly code. All programming
languages wind up as machine code, and while that may sound
like all languages are equal, they are not. Some languages take
advantage of advances in compiler designs so they make it much
easier to write secure code. You can choose the 1970s model with
some upgrades, or learn something new that can help make the
world a safer place.

The Future of ;login:
This issue marks the end of print ;login:. You can read about why
this is happening and learn more about how the digital version
of ;login: will work in USENIX Notes, beginning on page 95.

Some people have found the reference to “peer-reviewed” in this
description a bit confusing, thinking that the digital version of
;login: will be like a journal. That’s not true. The peer-review has
long been a part of editing ;login:, and consisted of PC members
who accepted the papers that many articles are based upon. For
the rest, I was the “peer,” with responsibility for accepting arti-
cles only from subject matter experts. I did rely on other experts
in areas where I was unfamiliar with the authors. The digital
version will expand the number of peers, so I will no longer be
responsible for culling out articles that should not be published
in ;login:.

Another advantage of a digital ;login: will be shorter elapsed
time between submitting an article and its appearance online.
Printing ;login: takes a long time—just dealing with the print-
ing process itself took almost three weeks. While I might see a
draft, get a final version, format it and turn it in in just one week,
the process that includes copy editing and typesetting takes a
great deal longer. Michele Nelson, the Managing Editor, received
articles from me and sheparded them through this long process.

I think we will miss our copy editors, Steve Gilmartin and Amber
Ankerholz. Good copy editors improve your writing, often taking
something not written that well and turning it into something
that makes you start believing you really can write well. The
copy editor must improve your written English without distort-
ing your meaning, and Steve did a great job. Amber’s task was to
approve Steve’s edits from a technical standpoint. That process,
and proofreading, added three weeks to the process. Typesetting,
expertly done by Linda Davis, added yet another week. When you
add all of this up, and start from the point when I ask authors to
write or get a proposal, the process can take over four months. I
don’t even want to think about how long your ;login: magazine sat
in a pile before you started reading it….

The digital ;login: will be open access. Laura Nolan has written
about the value of open access in this issue. All articles will
be open access when posted, as opposed to members-only for
one year. Only USENIX members will be able to comment on
articles, something we hope will lead to discussion about articles
and feedback to authors. With print ;login:, about the only time
authors get feedback is during in-person conferences, and from
personal experience I can tell you that even that is rare. I hope the
ability to respond to articles results in useful feedback, or at least
acknowledgement that someone has read and appreciates the
work someone put into an article.

We—that is the committee composed of three board members,
Laura Nolan, Arvind Krishnamurthy, and Cat Allman, along
with Casey Henderson—came up with several other ideas to
celebrate this, the final print issue. I was assigned to interview
two early USENIX members. Clem Cole has the honor of being
USENIX member number seven, and I interviewed him first.
Kirk McKusick represents, at least for me, the Berkeley side of
UNIX and makes up the second interview. They both partici-
pated in the story of how USENIX helped Rick Adams start
UUNET in the late 80s, as did Deborah Scherrer (the Board VP),
Steve Johnson (Treasurer), and Rick Adams. Adams recom-
mended reading Peter Salus’ (Executive Director) article [4].
Adams also deserves thanks for donating UUNET stock from
his fledgling company that later became the foundation for the
endowment that is keeping USENIX alive during COVID-19.

6  WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

EDITORIAL

References
[1] D. Goodin, “Intel SGX Is Vulnerable to an Unfixable Flaw
That Can Steal Crypto Keys and More,” Ars Technica, March
10, 2020: https://arstechnica.com/information-technology​
/2020/03/hackers-can-steal-secret-data-stored-in-intels​
-sgx-secure-enclave/.

[2] Memory Protection Keys: https://www.kernel.org/doc​
/html/latest/core-api/protection-keys.html.

[3] B. Eastwood, “The 10 Most Popular Programming Lan-
guages to Learn in 2020,” Northeastern University Graduate
Programs, June 18, 2020: https://www.northeastern.edu​
/graduate/blog/most-popular-programming-languages/.

[4] P. Salus, “Distributing the News: UUCP to UUNET,”
;login:, vol. 40, no. 4 (August 2015): https://www.usenix.org​
/system/files/login/articles/login_aug15_09_salus.pdf.

Musings

Finally, Laura Nolan, Arvind Krishnamurthy and I picked out our
favorite articles from ;login: issues starting with 2005. I learned
that my ability to edit ;login: has improved over the years. I had
started to edit special security-focused issues of ;login: in 1998,
but to my eyes, the first five years of being the regular edi-tor,
starting in 2005, seem pretty rough.

You might be wondering what I plan to do with all the time I will
have because I will be sharing the editorial responsiblities. I plan
on writing some science fiction, and hope to have at least one
short story up at https:/rikfarrow.com/fiction/ by the time this
issue appears. I’ve started at least five stories, and have one close
to completion—about computers and future myths, of course.

https://arstechnica.com/information-technology/2020/03/hackers-can-steal-secret-data-stored-in-intels-sgx-secure-enclave/
https://arstechnica.com/information-technology/2020/03/hackers-can-steal-secret-data-stored-in-intels-sgx-secure-enclave/
https://arstechnica.com/information-technology/2020/03/hackers-can-steal-secret-data-stored-in-intels-sgx-secure-enclave/
https://www.kernel.org/doc/html/latest/core-api/protection-keys.html
https://www.kernel.org/doc/html/latest/core-api/protection-keys.html
https://www.northeastern.edu/graduate/blog/most-popular-programming-languages/
https://www.northeastern.edu/graduate/blog/most-popular-programming-languages/
https://www.usenix.org/system/files/login/articles/login_aug15_09_salus.pdf
https://www.usenix.org/system/files/login/articles/login_aug15_09_salus.pdf

