
www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 9

SECURITYBuild It, Break It, Fix It Contests
Motivated Developers Still Make Security Mistakes

D A N I E L V O T I P K A , K E L S E Y R . F U L T O N , J A M E S P A R K E R , M A T T H E W H O U ,
M I C H E L L E L . M A Z U R E K , A N D M I C H A E L H I C K S

Secure software development is a challenging task requiring consid-
eration of many possible threats and mitigations. We reviewed code
submitted by 94 teams in a secure-programming contest designed to

mimic real-world constraints—correctness, performance, and security. We
found that the competitors, many of whom were experienced programmers
and had just completed a 24-week cybersecurity course sequence with spe-
cific instruction on secure coding and cryptography, still introduced several
vulnerabilities (182 across all teams), mostly due to misunderstandings of
security concepts. We explain our methodology, discuss trends in the types
of vulnerabilities introduced, and offer suggestions for avoiding the kinds of
problems we encountered.

Developing secure software remains challenging, as evidenced by the numerous vulnerabili-
ties still regularly discovered in production code [6]. There are many approaches that could
be—and often have been—taken to improve this situation: building and deploying more auto-
mated tools for vulnerability discovery, expanding security education, or improving secure
development processes.

But which of these interventions should we prioritize? While all are potentially helpful, we
must carefully consider which provide the best return on investment, maximizing security
while minimizing time, effort, and other resources, all of which are in short supply as devel-
opers are pressured to produce more new services and features.

A key part of this consideration is to understand the kinds and frequency of vulnerabilities
that occur, and why developers introduce them, so that the root causes can be addressed. To
this end, we performed a systematic, in-depth examination using best practices developed for
qualitative assessments of vulnerabilities present in 94 project submissions by teams made
up mostly of experienced programmers—many of whom had just completed a four-course
program on secure development—to the Build It, Break It, Fix It (BIBIFI) secure-coding
competition series [8, 10]. Our six-month examination considered each project’s code and
866 total exploit submissions, corresponding to 182 unique security vulnerabilities associ-
ated with those projects.

Our findings suggest rethinking strategies to prevent and detect vulnerabilities, with more
emphasis on conceptual difficulties rather than mistakes. This article provides an overview
of our work. A more in-depth discussion of the methods followed, survey of related literature,
and description of results can be found in our recent USENIX Security paper [10].

Build It, Break It, Fix It: A Happy Medium to Study
Our work to examine vulnerabilities introduced by software developers complements many
prior efforts. Some researchers have performed large-scale analyses of open-source code
and CVE reports, categorizing vulnerabilities found in production code [2, 3]; others have
explored specific possible sources of error using controlled experiments with small, security-
focused tasks [1, 7]. These field measures and lab studies represent two ends of a method-
ological spectrum. Field measures provide strong ecological validity, reflecting real-world

Daniel Votipka is a computer
science PhD candidate at the
University of Maryland. His
research focuses on information
security, with an emphasis

on the human factors affecting security
professionals. His most recent work focuses
on understanding the processes and mental
models of software vulnerability discovery
to provide research-based improvements for
education and automation to help develop and
leverage human expertise.
dvotipka@cs.umd.edu

Kelsey Fulton is a computer
science PhD student at the
University of Maryland. Her
research explores the human
factors of information security,

with a focus on software developers and
security professionals. Her most recent work
centers on the barriers to adoption of secure
programming languages in order to provide an
empirical foundation for the future design of
secure languages, APIs, and tools.
kfulton@cs.umd.edu

James Parker is a Software
Research Engineer at Galois.
James earned his PhD in
2020 and was advised by
Michael Hicks. His research

spans verifying information flow control
mechanisms, guaranteeing correctness of
distributed systems, and studying secure
development practices. jprider@cs.umd.edu

10    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

SECURITY
Build It, Break It, Fix It Contests: Motivated Developers Still Make Security Mistakes

contexts, but provide no control over conditions like developer motivation and functionality
being implemented that can affect results. In contrast, lab studies provide high levels of con-
trol but only limited ecological validity.

We attempt to balance ecological validity and experimental control by studying vulnerabilities
in the context of BIBIFI competition projects. A BIBIFI competition has three phases. In the
build it phase, teams are given just under two weeks to build a project that (securely) meets
a given specification. Team scores depend on the project’s correctness and efficiency, based
on provided test cases. Submitted projects may be written in any programming language and
can use any open-source libraries, as long as they can be built on a standard Ubuntu Linux
VM. In the break it phase, teams receive access to their competitors’ source code in order to
search for vulnerabilities. Teams can submit test cases, known as breaks, to demonstrate
exploitation. Successful breaks add to the exploiting team’s break-it score, while reducing the
victim’s build-it score. The final fix-it phase allows teams to fix identified vulnerabilities in
order to gain back a portion of their lost build-it points.

BIBIFI data therefore strikes a unique balance between ecological validity and control. Many
implementations of the same functionality, created under similar circumstances, provide
more confidence than field data does to help us understand what happened and why. On the
other hand, teams had weeks (rather than hours) to develop their projects, could use their
choice of languages and libraries, and were incentivized to consider constraints like perfor-
mance and functionality as well as security, creating more ecological validity than many lab
studies. While we know BIBIFI does not provide a perfect view into the development process
(see our original paper [10] for a detailed discussion of limitations), it provides a new and
valuable vantage point for examining the vulnerability landscape and informing future work.

The Competition’s Projects
We analyzed projects from four BIBIFI competitions, covering three different programming
problems: secure log, secure communication, and multiuser database. Each problem specifica-
tion required the teams to consider different security challenges and attacker models.

Secure log (SL). This problem requires teams to implement two programs: one to securely
append records to a log, and one to query the log’s contents. Teams must protect against a
malicious adversary with access to the log and the ability to modify it. The adversary does
not have access to the keys used to create the log. Teams are expected (but not told explicitly)
to utilize cryptographic functions to encrypt the log and protect its integrity.

Secure communication (SC). This problem requires teams to create client/server programs
representing a bank and an ATM. The ATM initiates transactions, including account creation,
deposits, and withdrawals.

Teams must protect bank data integrity and confidentiality against an adversary acting
as a man-in-the-middle (MITM), with the ability to read and manipulate communications
between the client and server. Once again, build teams were expected to use cryptographic
functions and to consider challenges such as replay attacks and side-channels.

Multiuser database (MD). This problem requires teams to create a server that maintains a
secure key-value store. Clients submit scripts written in a domain-specific language. A script
authenticates with the server and then submits a series of commands to read and write data
stored there. Data is protected by role-based access control policies customizable by the data
owner, who may (transitively) delegate access control decisions to other principals.

The problem assumes that an attacker can submit commands to the server but not snoop on
communications.

Matthew Hou is a first year
computer science graduate
student at the University of
Maryland and is expecting to
complete his master’s degree

next May. He recently graduated with honors
from the University of Maryland with a BSc
in computer science. His focus is on machine
learning and artificial intelligence, leveraging
cybersecurity principles. mhou1@cs.umd.edu

Michelle L. Mazurek is an
Associate Professor in the
Computer Science Department
at the University of Maryland.
Her research explores human

aspects of information security and privacy,
with a recent focus on improving security tools
and processes for professionals, including
software developers, network administrators,
and reverse engineers. She also investigates
how and why end users learn and adopt
security and privacy behaviors, and she
develops tools to increase transparency in
online tracking and inferencing.
mmazurek@cs.umd.edu

Michael Hicks is a Professor
in the Computer Science
Department at the University
of Maryland. His research
explores ways to make software

more secure. He has a particular interest in
securing low-level systems software, with a
nearly 20-year stretch of work that started
with the Cyclone safe C-like programming
language (a significant influence on today’s
Rust programming language) and now
involves contributions to Checked C, a safe-C
extension based on clang/LLVM. He is also
exploring synergies between cryptography
and programming languages; techniques for
better random (fuzz) testing and probabilistic
reasoning; and high-assurance tools and
languages for quantum computing. He blogs
at https://www.pl-enthusiast.net/.
mwh@cs.umd.edu

www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 11

SECURITY
Build It, Break It, Fix It Contests: Motivated Developers Still Make Security Mistakes

Vulnerabilities: Type and Prevalence
We manually analyzed 94 (out of 142) BIBIFI projects and 866
exploit submissions against them, ultimately identifying 182
unique vulnerabilities (some of which had not been identified
during the contests). We grouped these vulnerabilities according
to three main types: no implementation, misunderstanding, and
mistake. Table 1 shows how many vulnerabilities, from how many
projects, we identified for each type. This section describes each
type, with examples.

No Implementation
The first step in building a secure system is to attempt to imple-
ment necessary security mechanisms. Unfortunately, half of
all teams introduced a no implementation vulnerability, failing
in this first step for at least one required security mechanism.
This is presumably because they did not realize the security
mechanism was needed. We further divided no implementation
vulnerabilities based on how obvious the need was, depending on
whether it was directly mentioned in the problem specification or
just implied. For example, in the secure log problem, where teams
were asked to ensure an attacker with read/write file access
could not read or make changes to a confidential log, we consid-
ered it obvious that encryption was needed to provide confidenti-
ality, but unintuitive that a Message Authentication Code (MAC)
should be used as an integrity check.

Unintuitive security requirements are commonly skipped.
Of the no implementation vulnerabilities, we found that teams
were much more likely to skip unintuitive security requirements
(45% of projects) than their intuitive counterparts (16% of proj-
ects). This indicates that developers do attempt to provide secu-
rity—at least when incentivized to do so—but struggle to consider
all the unintuitive ways an adversary could attack a system.
Therefore, they regularly leave out some necessary controls.

Misunderstandings
After realizing a security mechanism should be implemented,
teams then needed to make sure they implemented it correctly.
We found that most teams failed at this point in the secure devel-
opment process, most commonly due to a conceptual misunder
standing (56% of projects). We sub-typed these as either bad
choice or conceptual error.

A bad choice occurs when a team decides to use a known-insecure
algorithm or library—likely because they did not realize its inher-
ent flaw (12% of vulnerabilities). In another secure log problem
example, one team realized they needed to encrypt their log, but
chose to simply XOR key-length chunks of the log with the user-
provided key to generate the final encrypted version of the log.
This method of encryption is inherently insecure, as the attacker
can simply extract two key-length chunks of the ciphertext, XOR
them together, and produce the key, allowing them to decrypt the
entire log easily.

Assuming a team did choose a secure algorithm or library, next
they had to know how to use it properly. We observed several
cases where teams introduced vulnerabilities by not using the
algorithm or library as intended, owing to a conceptual mis-
understanding (27% of vulnerabilities). We classified these as
conceptual error vulnerabilities. For example, one team made the
reasonable choice to use AES encryption but used a fixed value
for its initialization vector (IV); see code in Listing 1. A fixed IV,
rather than a random one, allows an attacker to break the encryp-
tion and read the secret log.

1 def fillercrypter (sharedkey, text):
2 ...
3 encryption_suite = AES.new (sharedkey,
4 AES.MODE_CBC, ’This is an IV456’)
5. ...

Listing 1: One team generated a conceptual error vulnerability by using a
hardcoded IV.

Type Sub-Type Projects (94) Vulnerabilities (182)

No implementation Intuitive
Unintuitive

15 (16%)
42 (45%)

23 (13%)
49 (27%)

Total 47 (50%) 72 (40%)

Misunderstanding Bad choice
Conceptual error

20 (21%)
41 (44%)

22 (12%)
49 (27%)

Total 53 (56%) 71 (39%)

Mistake — 20 (21%) 39 (21%)

Table 1: Number of vulnerabilities for each type and the number of projects each vulnerability was introduced in. Note, because projects can have multiple
vulnerabilities, the total number of projects introducing a vulnerability for each type may not be the sum of sub-type project counts.

12    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

SECURITY
Build It, Break It, Fix It Contests: Motivated Developers Still Make Security Mistakes

1 self.db = self.sql.connect(filename, timeout=30)
2 self.db.execute('pragma key="' + token + '";')
3 self.db.execute('PRAGMA kdf_iter='
4 + str(Utils.KDF_ITER) + ';')
5 self.db.execute('PRAGMA cipher_use_MAC=OFF;')
6 ...

Listing 2: Another team disabled the automatic MAC in SQLCipher library.

In another interesting example, one team simply disabled pro-
tections provided transparently by their chosen library. They
initially made a secure choice by using the SQLCipher library,
which provides encryption and integrity checks in the back-
ground without developer effort, but then explicitly disabled the
library’s MAC protection; see line 5 in Listing 2.

Teams often used the right security primitives but did not
know how to use them correctly. Among the misunderstanding
vulnerabilities, we found that conceptual error vulnerabilities
(44% of projects) were significantly more likely to occur than
bad choice vulnerabilities (21% of projects). This indicates that if
developers know what security controls to implement, they are
often able to identify (or are guided to) the correct primitives to
use. However, they do not always conform to the assumptions of
“normal use” made by library developers.

Mistakes
Finally, some teams chose the correct algorithm or library, and
appeared to understand how to correctly use it, but made a simple
mistake that led to a vulnerability (21% of vulnerabilities). For
example, some teams did not properly handle errors, leaving the
program in an observably bad state. Other mistakes led to logi-
cally incorrect execution behaviors. Such mistakes were often
related to control flow logic or missed steps in an algorithm. For
example, if a team correctly encrypted their log, but accidentally
wrote the plaintext log to file instead of the ciphertext, this would
be a mistake.

Complexity breeds mistakes. We found that the frequency of
mistakes was affected by complexity, within both the problem
itself and also the approach taken by the team. First, we found
that teams were 6.68× more likely to introduce mistakes in the
multiuser database than in the secure communication problem.
This likely reflects the fact that the multiuser database problem
was the most complex, requiring teams to write a command
parser, handle network communication, and implement nine
different access control checks. Similarly, teams were only 0.06×
as likely to make a mistake in the comparatively simple secure log
problem compared to the secure communication problem.

Additionally, choosing not to reimplement security-relevant
code multiple times was associated with only 0.36× as many
mistakes, suggesting that violating the “Economy of Mechanism”
principle [9] by adding unnecessary complexity leads to mistakes.

As an example of this effect, one team implemented their access
control checks four times throughout the project. Unfortunately,
when they realized the implementation was incorrect, they only
updated it in one place.

Exploit Difficulty
In addition to examining vulnerability types and their frequency,
we also assessed how difficult it would be for an attacker to find
and exploit the vulnerability. Even if a vulnerability was quite
common, if it was very difficult to identify, requiring esoteric
knowledge or practically impossible to exploit, its resolution
might be lower priority than a less common but more exploitable
vulnerability.

We considered three metrics of difficulty: our qualitative assess-
ment of the difficulty of finding the vulnerability (discovery
difficulty); our qualitative assessment of the difficulty of exploit-
ing the vulnerability (exploit difficulty); and whether a competi-
tor team actually found and exploited the vulnerability (actual
exploitation). For convenience of analysis, we binned discovery
difficulty into easy (execution) and hard (source, deep insight).
We similarly binned exploit difficulty into easy (single-step, few
steps) and hard (many steps, deterministic or probabilistic). Fig-
ure 1 shows the number of vulnerabilities for each type with each
bar divided by exploit difficulty and bars grouped by discovery
difficulty.

Misunderstandings are rated as hard to find, while no
implementations are rated as easy to find. Identifying
misunderstanding vulnerabilities often required the attacker to
determine the developer’s exact approach and have a good under-
standing of the algorithms, data structures, or libraries they
used. As such, we rated misunderstanding vulnerabilities as hard
to find significantly more often than other vulnerability types.

Unsurprisingly, a majority of no implementation vulnerabili-
ties were considered easy to find. For example, in the secure
log problem, an auditor could simply check whether encryption
and an integrity check were used. If not, then the project can be
exploited.

Easy to find doesn’t mean easy to exploit. Interestingly, we
did not observe a significant difference in actual exploitation
between misunderstandings and no implementations. Some
misunderstandings were rated as difficult to find, while others
were rated as difficult to exploit. In one team’s use of homemade
encryption, the vulnerability took some time to find, because
the implementation code was difficult to read. However, once an
attacker realized the team had essentially reimplemented the
Wired Equivalent Protocol (WEP), a simple check of Wikipedia
revealed the exploit. Conversely, seeing that a non-random IV
was used for encryption is easy, but successful exploitation of
this flaw can require significant time and effort.

www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 13

SECURITY
Build It, Break It, Fix It Contests: Motivated Developers Still Make Security Mistakes

As a no implementation example, one secure log team did not use
a MAC to detect modifications to their encrypted files. This mis-
take is very simple to identify, but it was not exploited by any of
the BIBIFI teams. This is likely because the team stored log data
in a JSON blob before encrypting, meaning that any modifica-
tions to the encrypted text must maintain the JSON structure
after decryption to succeed. This attack could require a large
number of tests to find a suitable modification.

Mistakes are rated as easy to find and exploit. We rated all
mistakes as easy to exploit. This is significantly different from
both no implementation and misunderstanding vulnerabilities,
which were rated as easy to exploit less frequently. Similarly,
mistakes were actually exploited during the Break It phase
significantly more often than other vulnerability types. In fact,
only one mistake was not actually exploited by any team. These
results suggest that although mistakes were least common, any
that do find their way into production code are likely to be found
and exploited. Fortunately, our results also suggest that code
review may be sufficient to find many of these vulnerabilities.
We note that this assumes that the source is available, which may
not be the case when a developer relies on third-party software.

Discussion and Recommendations
So what do these results mean for improving secure development?
We believe they add weight to existing recommendations and
suggest prioritizations of possible solutions.

Get the help of a security expert. In some large organizations,
developers working with cryptography and other security-
specific features might be required to use security-expert-
determined tools and patterns or have a security expert perform
a review. Our results reaffirm this practice, when possible, as
participants were most likely to struggle with security concepts
avoidable through expert review.

Security education. Better education should help developers
better help themselves. However, across all vulnerability types,
we observed no difference in vulnerabilities introduced related
to prior security training or years of prior development experi-
ence. It therefore seems that increased development experience
and (traditional) security training have, at most, a small impact.

Further, many of the BIBIFI teams had previously completed
a four-course cybersecurity training during which all needed
security controls were discussed, but a majority of these teams
nevertheless botched unintuitive requirements. Were the top-
ics not driven home sufficiently? An environment like BIBIFI,
where developers practice implementing security concepts and
receive feedback regarding mistakes, could help. Future work
should consider how well competitors from one contest do in
follow-on contests.

API design. Our results support the basic idea that security con
trols are best applied transparently, e.g., using simple APIs [4].
However, while many teams used APIs that provide security
(e.g., encryption) transparently, they were still frequently
misused (e.g., failing to initialize using a unique IV or failing to
employ stream-based operation to avoid replay attacks). It may be
beneficial to organize solutions around general use cases, so that
developers only need to know the use case and not the security
requirements.

API documentation. API usage problems could be a matter of
documentation, as suggested by prior work [1, 7]. For example,
two teams used TLS socket libraries but did not enable client-
side authentication, necessary for the problem. This failure
appears to have occurred because client-side authentication is
disabled by default, but this fact is not mentioned in the docu-
mentation [11, 12]. Defaults within an API should be safe and
without ambiguity [4]. Returning to the example from List-
ing 2, the team disabled the automatic integrity checks of the
SQLCipher library. Their commit message stated, “Improve
performance by disabling per-page MAC protection.” We know
this change was made to improve performance, but it is possible
they assumed they were only disabling the “per-page” integrity
check while a full database check remained. The documenta-
tion is unclear about this (https://www.zetetic.net/sqlcipher​
/sqlcipher-api/#cipher_use_MAC).

Vulnerability analysis tools. There is significant interest
in automating security vulnerability discovery (or preventing
vulnerability introduction) through the use of code analysis
tools. Such tools may have found some of the vulnerabilities we
examined in our study. For example, static analyses, symbolic
executors, fuzzers, and dynamic analyses could have uncovered
vulnerabilities relating to memory corruption, improper param-
eter use (like a fixed IV), and missing error checks. However,

Figure 1: Number of vulnerabilities introduced for each type divided by
discovery difficulty and exploit difficulty

https://www.zetetic.net/sqlcipher/sqlcipher-api/#cipher_use_MAC
https://www.zetetic.net/sqlcipher/sqlcipher-api/#cipher_use_MAC

14    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

SECURITY
Build It, Break It, Fix It Contests: Motivated Developers Still Make Security Mistakes

they would not have applied to the majority of vulnerabilities we
saw, which were often design-level, conceptual issues.

How could automation be used to address security requirements
at design time? More research is needed, but one possible direc-
tion forward is to consider analysis development in tandem with
improvements to API design. One example is Google’s efforts to
restrict the ways developers can potentially introduce certain
vulnerabilities (e.g., XSS, SQL-injection) through API design,
limiting the required complexity of vulnerability discovery
analysis [5].

Conclusion
Secure software development is challenging, with many pro-
posed remediations and improvements. To know which interven-
tions are likely to have the most impact requires understanding
which security errors programmers tend to make and why. In
our review of 94 submissions to a secure-programming contest,
each implementing one of three non-trivial, security-relevant
programming problems, we found implementation mistakes
were comparatively less common than failures in security under-
standing. Our results have implications for improving secure-
programming APIs, API documentation, vulnerability-finding
tools, and security education.

References
[1] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L.
Mazurek, and C. Stransky, “Comparing the Usability of Cryp-
tographic APIs,” in Proceedings of the IEEE Symposium on
Security and Privacy (2017), pp. 154–171.

[2] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An
Empirical Study of Cryptographic Misuse in Android Applica-
tions,” in Proceedings of the ACM Conference on Computer and
Communications Security (2013), pp. 73–84.

[3] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V.
Shmatikov, “The Most Dangerous Code in the World: Validat-
ing SSL Certificates in Non-Browser Software,” in Proceed-
ings of the ACM Conference on Computer and Communications
Security (2012), pp. 38–49.

[4] M. Green and M. Smith, “Developers Are Not the Enemy!:
The Need for Usable Security APIs,” IEEE Security & Privacy,
vol. 14, no. 5 (Sept.–Oct. 2016), pp. 40–46.

[5] C. Kern, “Preventing Security Bugs through Software
Design,” 24th USENIX Security Symposium: https://www​
.usenix.org/conference/usenixsecurity15/symposium-program​
/presentation/kern.

[6] D. R. Kuhn, M. S. Raunak, and R. Kacker, “An Analysis of
Vulnerability Trends, 2008–2016,” in Proceedings of the 2017
IEEE International Conference on Software Quality, Reliability
and Security Companion, pp. 587–588.

[7] A. Naiakshina, A. Danilova, C. Tiefenau, M. Herzog, S.
Dechand, and M. Smith, “Why Do Developers Get Password
Storage Wrong?: A Qualitative Usability Study,” in Proceed-
ings of the ACM Conference on Computer and Communications
Security (2017), pp. 311–328.

[8] A. Ruef, M. Hicks, J. Parker, D. Levin, M. L. Mazurek, and P.
Mardziel, “Build It, Break It, Fix It: Contesting Secure Develop-
ment,” in Proceedings of the ACM Conference on Computer and
Communications Security (2016), pp. 690–703.

[9] J. H. Saltzer and M. D. Schroeder, “The Protection of Infor-
mation in Computer Systems,” in Proceedings of the Symposium
on Operating System Principles (ACM, 1975), pp. 1278–1308..

[10] D. Votipka, K. R. Fulton, J. Parker, M. Hou, M. L. Mazurek,
and M. Hicks, “Understanding Security Mistakes Developers
Make: Qualitative Analysis from Build It, Break It, Fix It,” in
Proceedings of the 29th USENIX Security Symposium (USENIX
Security ’20), pp. 109–126.

[11] TLS socket documentation: https://golang.org/pkg/crypto​
/tls/#Listen and https://www.openssl.org/docs/manmaster​
/man3/SSL_new.html.

[12] SQLCipher documentation: https://www.zetetic.net​
/sqlcipher/sqlcipher-api/#cipher_use_MAC.

https://www.usenix.org/conference/usenixsecurity15/symposium-program/presentation/kern
https://www.usenix.org/conference/usenixsecurity15/symposium-program/presentation/kern
https://www.usenix.org/conference/usenixsecurity15/symposium-program/presentation/kern
https://golang.org/pkg/crypto/tls/#Listen
https://golang.org/pkg/crypto/tls/#Listen
https://www.openssl.org/docs/manmaster/man3/SSL_new.html
https://www.openssl.org/docs/manmaster/man3/SSL_new.html
https://www.zetetic.net/sqlcipher/sqlcipher-api/#cipher_use_MAC
https://www.zetetic.net/sqlcipher/sqlcipher-api/#cipher_use_MAC

