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SECURITYBuild It, Break It, Fix It Contests
Motivated Developers Still Make Security Mistakes

D A N I E L  V O T I P K A ,  K E L S E Y  R .  F U L T O N ,  J A M E S  P A R K E R ,  M A T T H E W  H O U , 
M I C H E L L E  L .  M A Z U R E K ,  A N D  M I C H A E L  H I C K S

Secure software development is a challenging task requiring consid-
eration of many possible threats and mitigations. We reviewed code 
submitted by 94 teams in a secure-programming contest designed to 

mimic real-world constraints—correctness, performance, and security. We 
found that the competitors, many of whom were experienced programmers 
and had just completed a 24-week cybersecurity course sequence with spe-
cific instruction on secure coding and cryptography, still introduced several 
vulnerabilities (182 across all teams), mostly due to misunderstandings of 
security concepts. We explain our methodology, discuss trends in the types 
of vulnerabilities introduced, and offer suggestions for avoiding the kinds of 
problems we encountered.

Developing secure software remains challenging, as evidenced by the numerous vulnerabili-
ties still regularly discovered in production code [6]. There are many approaches that could 
be—and often have been—taken to improve this situation: building and deploying more auto-
mated tools for vulnerability discovery, expanding security education, or improving secure 
development processes.

But which of these interventions should we prioritize? While all are potentially helpful, we 
must carefully consider which provide the best return on investment, maximizing security 
while minimizing time, effort, and other resources, all of which are in short supply as devel-
opers are pressured to produce more new services and features.

A key part of this consideration is to understand the kinds and frequency of vulnerabilities 
that occur, and why developers introduce them, so that the root causes can be addressed. To 
this end, we performed a systematic, in-depth examination using best practices developed for 
qualitative assessments of vulnerabilities present in 94 project submissions by teams made 
up mostly of experienced programmers—many of whom had just completed a four-course 
program on secure development—to the Build It, Break It, Fix It (BIBIFI) secure-coding 
competition series [8, 10]. Our six-month examination considered each project’s code and 
866 total exploit submissions, corresponding to 182 unique security vulnerabilities associ-
ated with those projects.

Our findings suggest rethinking strategies to prevent and detect vulnerabilities, with more 
emphasis on conceptual difficulties rather than mistakes. This article provides an overview 
of our work. A more in-depth discussion of the methods followed, survey of related literature, 
and description of results can be found in our recent USENIX Security paper [10].

Build It, Break It, Fix It: A Happy Medium to Study
Our work to examine vulnerabilities introduced by software developers complements many 
prior efforts. Some researchers have performed large-scale analyses of open-source code 
and CVE reports, categorizing vulnerabilities found in production code [2, 3]; others have 
explored specific possible sources of error using controlled experiments with small, security-
focused tasks [1, 7]. These field measures and lab studies represent two ends of a method-
ological spectrum. Field measures provide strong ecological validity, reflecting real-world 
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contexts, but provide no control over conditions like developer motivation and functionality 
being implemented that can affect results. In contrast, lab studies provide high levels of con-
trol but only limited ecological validity.

We attempt to balance ecological validity and experimental control by studying vulnerabilities 
in the context of BIBIFI competition projects. A BIBIFI competition has three phases. In the 
build it phase, teams are given just under two weeks to build a project that (securely) meets 
a given specification. Team scores depend on the project’s correctness and efficiency, based 
on provided test cases. Submitted projects may be written in any programming language and 
can use any open-source libraries, as long as they can be built on a standard Ubuntu Linux 
VM. In the break it phase, teams receive access to their competitors’ source code in order to 
search for vulnerabilities. Teams can submit test cases, known as breaks, to demonstrate 
exploitation. Successful breaks add to the exploiting team’s break-it score, while reducing the 
victim’s build-it score. The final fix-it phase allows teams to fix identified vulnerabilities in 
order to gain back a portion of their lost build-it points.

BIBIFI data therefore strikes a unique balance between ecological validity and control. Many 
implementations of the same functionality, created under similar circumstances, provide 
more confidence than field data does to help us understand what happened and why. On the 
other hand, teams had weeks (rather than hours) to develop their projects, could use their 
choice of languages and libraries, and were incentivized to consider constraints like perfor-
mance and functionality as well as security, creating more ecological validity than many lab 
studies. While we know BIBIFI does not provide a perfect view into the development process 
(see our original paper [10] for a detailed discussion of limitations), it provides a new and 
valuable vantage point for examining the vulnerability landscape and informing future work.

The Competition’s Projects
We analyzed projects from four BIBIFI competitions, covering three different programming 
problems: secure log, secure communication, and multiuser database. Each problem specifica-
tion required the teams to consider different security challenges and attacker models.

Secure log (SL). This problem requires teams to implement two programs: one to securely 
append records to a log, and one to query the log’s contents. Teams must protect against a 
malicious adversary with access to the log and the ability to modify it. The adversary does 
not have access to the keys used to create the log. Teams are expected (but not told explicitly) 
to utilize cryptographic functions to encrypt the log and protect its integrity.

Secure communication (SC). This problem requires teams to create client/server programs 
representing a bank and an ATM. The ATM initiates transactions, including account creation, 
deposits, and withdrawals.

Teams must protect bank data integrity and confidentiality against an adversary acting 
as a man-in-the-middle (MITM), with the ability to read and manipulate communications 
between the client and server. Once again, build teams were expected to use cryptographic 
functions and to consider challenges such as replay attacks and side-channels.

Multiuser database (MD). This problem requires teams to create a server that maintains a 
secure key-value store. Clients submit scripts written in a domain-specific language. A script 
authenticates with the server and then submits a series of commands to read and write data 
stored there. Data is protected by role-based access control policies customizable by the data 
owner, who may (transitively) delegate access control decisions to other principals.

The problem assumes that an attacker can submit commands to the server but not snoop on 
communications.
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Vulnerabilities: Type and Prevalence
We manually analyzed 94 (out of 142) BIBIFI projects and 866 
exploit submissions against them, ultimately identifying 182 
unique vulnerabilities (some of which had not been identified 
during the contests). We grouped these vulnerabilities according 
to three main types: no implementation, misunderstanding, and 
mistake. Table 1 shows how many vulnerabilities, from how many 
projects, we identified for each type. This section describes each 
type, with examples.

No Implementation
The first step in building a secure system is to attempt to imple-
ment necessary security mechanisms. Unfortunately, half of 
all teams introduced a no implementation vulnerability, failing 
in this first step for at least one required security mechanism. 
This is presumably because they did not realize the security 
mechanism was needed. We further divided no implementation 
vulnerabilities based on how obvious the need was, depending on 
whether it was directly mentioned in the problem specification or 
just implied. For example, in the secure log problem, where teams 
were asked to ensure an attacker with read/write file access 
could not read or make changes to a confidential log, we consid-
ered it obvious that encryption was needed to provide confidenti-
ality, but unintuitive that a Message Authentication Code (MAC) 
should be used as an integrity check.

Unintuitive security requirements are commonly skipped. 
Of the no implementation vulnerabilities, we found that teams 
were much more likely to skip unintuitive security requirements 
(45% of projects) than their intuitive counterparts (16% of proj-
ects). This indicates that developers do attempt to provide secu-
rity—at least when incentivized to do so—but struggle to consider 
all the unintuitive ways an adversary could attack a system. 
Therefore, they regularly leave out some necessary controls.

Misunderstandings
After realizing a security mechanism should be implemented, 
teams then needed to make sure they implemented it correctly. 
We found that most teams failed at this point in the secure devel-
opment process, most commonly due to a conceptual misunder
standing (56% of projects). We sub-typed these as either bad 
choice or conceptual error. 

A bad choice occurs when a team decides to use a known-insecure 
algorithm or library—likely because they did not realize its inher-
ent flaw (12% of vulnerabilities). In another secure log problem 
example, one team realized they needed to encrypt their log, but 
chose to simply XOR key-length chunks of the log with the user-
provided key to generate the final encrypted version of the log. 
This method of encryption is inherently insecure, as the attacker 
can simply extract two key-length chunks of the ciphertext, XOR 
them together, and produce the key, allowing them to decrypt the 
entire log easily.

Assuming a team did choose a secure algorithm or library, next 
they had to know how to use it properly. We observed several 
cases where teams introduced vulnerabilities by not using the 
algorithm or library as intended, owing to a conceptual mis-
understanding (27% of vulnerabilities). We classified these as 
conceptual error vulnerabilities. For example, one team made the 
reasonable choice to use AES encryption but used a fixed value 
for its initialization vector (IV); see code in Listing 1. A fixed IV, 
rather than a random one, allows an attacker to break the encryp-
tion and read the secret log.

1  def fillercrypter (sharedkey, text):
2      ...
3      encryption_suite = AES.new (sharedkey,
4       AES.MODE_CBC, ’This is an IV456’)
5.     ...

Listing 1: One team generated a conceptual error vulnerability by using a 
hardcoded IV.

Type Sub-Type Projects (94) Vulnerabilities (182)

No implementation Intuitive 
Unintuitive

15 (16%) 
42 (45%)

23 (13%) 
49 (27%)

Total 47 (50%) 72 (40%)

Misunderstanding Bad choice 
Conceptual error

20 (21%) 
41 (44%)

22 (12%) 
49 (27%)

Total 53 (56%) 71 (39%)

Mistake — 20 (21%) 39 (21%)

Table 1: Number of vulnerabilities for each type and the number of projects each vulnerability was introduced in. Note, because projects can have multiple 
vulnerabilities, the total number of projects introducing a vulnerability for each type may not be the sum of sub-type project counts.
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1  self.db = self.sql.connect(filename, timeout=30)
2  self.db.execute('pragma key="' + token + '";')
3  self.db.execute('PRAGMA kdf_iter='
4    + str(Utils.KDF_ITER) + ';')
5  self.db.execute('PRAGMA cipher_use_MAC=OFF;')
6 ...

Listing 2: Another team disabled the automatic MAC in SQLCipher library.

In another interesting example, one team simply disabled pro-
tections provided transparently by their chosen library. They 
initially made a secure choice by using the SQLCipher library, 
which provides encryption and integrity checks in the back-
ground without developer effort, but then explicitly disabled the 
library’s MAC protection; see line 5 in Listing 2.

Teams often used the right security primitives but did not 
know how to use them correctly. Among the misunderstanding 
vulnerabilities, we found that conceptual error vulnerabilities 
(44% of projects) were significantly more likely to occur than 
bad choice vulnerabilities (21% of projects). This indicates that if 
developers know what security controls to implement, they are 
often able to identify (or are guided to) the correct primitives to 
use. However, they do not always conform to the assumptions of 
“normal use” made by library developers.

Mistakes
Finally, some teams chose the correct algorithm or library, and 
appeared to understand how to correctly use it, but made a simple 
mistake that led to a vulnerability (21% of vulnerabilities). For 
example, some teams did not properly handle errors, leaving the 
program in an observably bad state. Other mistakes led to logi-
cally incorrect execution behaviors. Such mistakes were often 
related to control flow logic or missed steps in an algorithm. For 
example, if a team correctly encrypted their log, but accidentally 
wrote the plaintext log to file instead of the ciphertext, this would 
be a mistake.

Complexity breeds mistakes. We found that the frequency of 
mistakes was affected by complexity, within both the problem 
itself and also the approach taken by the team. First, we found 
that teams were 6.68× more likely to introduce mistakes in the 
multiuser database than in the secure communication problem. 
This likely reflects the fact that the multiuser database problem 
was the most complex, requiring teams to write a command 
parser, handle network communication, and implement nine 
different access control checks. Similarly, teams were only 0.06× 
as likely to make a mistake in the comparatively simple secure log 
problem compared to the secure communication problem.

Additionally, choosing not to reimplement security-relevant 
code multiple times was associated with only 0.36× as many 
mistakes, suggesting that violating the “Economy of Mechanism” 
principle [9] by adding unnecessary complexity leads to mistakes. 

As an example of this effect, one team implemented their access 
control checks four times throughout the project. Unfortunately, 
when they realized the implementation was incorrect, they only 
updated it in one place.

Exploit Difficulty
In addition to examining vulnerability types and their frequency, 
we also assessed how difficult it would be for an attacker to find 
and exploit the vulnerability. Even if a vulnerability was quite 
common, if it was very difficult to identify, requiring esoteric 
knowledge or practically impossible to exploit, its resolution 
might be lower priority than a less common but more exploitable 
vulnerability.

We considered three metrics of difficulty: our qualitative assess-
ment of the difficulty of finding the vulnerability (discovery 
difficulty); our qualitative assessment of the difficulty of exploit-
ing the vulnerability (exploit difficulty); and whether a competi-
tor team actually found and exploited the vulnerability (actual 
exploitation). For convenience of analysis, we binned discovery 
difficulty into easy (execution) and hard (source, deep insight). 
We similarly binned exploit difficulty into easy (single-step, few 
steps) and hard (many steps, deterministic or probabilistic). Fig-
ure 1 shows the number of vulnerabilities for each type with each 
bar divided by exploit difficulty and bars grouped by discovery 
difficulty.

Misunderstandings are rated as hard to find, while no 
implementations are rated as easy to find. Identifying 
misunderstanding vulnerabilities often required the attacker to 
determine the developer’s exact approach and have a good under-
standing of the algorithms, data structures, or libraries they 
used. As such, we rated misunderstanding vulnerabilities as hard 
to find significantly more often than other vulnerability types.

Unsurprisingly, a majority of no implementation vulnerabili-
ties were considered easy to find. For example, in the secure 
log problem, an auditor could simply check whether encryption 
and an integrity check were used. If not, then the project can be 
exploited.

Easy to find doesn’t mean easy to exploit. Interestingly, we 
did not observe a significant difference in actual exploitation 
between misunderstandings and no implementations. Some 
misunderstandings were rated as difficult to find, while others 
were rated as difficult to exploit. In one team’s use of homemade 
encryption, the vulnerability took some time to find, because 
the implementation code was difficult to read. However, once an 
attacker realized the team had essentially reimplemented the 
Wired Equivalent Protocol (WEP), a simple check of Wikipedia 
revealed the exploit. Conversely, seeing that a non-random IV 
was used for encryption is easy, but successful exploitation of 
this flaw can require significant time and effort.
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As a no implementation example, one secure log team did not use 
a MAC to detect modifications to their encrypted files. This mis-
take is very simple to identify, but it was not exploited by any of 
the BIBIFI teams. This is likely because the team stored log data 
in a JSON blob before encrypting, meaning that any modifica-
tions to the encrypted text must maintain the JSON structure 
after decryption to succeed. This attack could require a large 
number of tests to find a suitable modification.

Mistakes are rated as easy to find and exploit. We rated all 
mistakes as easy to exploit. This is significantly different from 
both no implementation and misunderstanding vulnerabilities, 
which were rated as easy to exploit less frequently. Similarly, 
mistakes were actually exploited during the Break It phase 
significantly more often than other vulnerability types. In fact, 
only one mistake was not actually exploited by any team. These 
results suggest that although mistakes were least common, any 
that do find their way into production code are likely to be found 
and exploited. Fortunately, our results also suggest that code 
review may be sufficient to find many of these vulnerabilities. 
We note that this assumes that the source is available, which may 
not be the case when a developer relies on third-party software.

Discussion and Recommendations
So what do these results mean for improving secure development? 
We believe they add weight to existing recommendations and 
suggest prioritizations of possible solutions.

Get the help of a security expert. In some large organizations, 
developers working with cryptography and other security-
specific features might be required to use security-expert-
determined tools and patterns or have a security expert perform 
a review. Our results reaffirm this practice, when possible, as 
participants were most likely to struggle with security concepts 
avoidable through expert review.

Security education. Better education should help developers 
better help themselves. However, across all vulnerability types, 
we observed no difference in vulnerabilities introduced related 
to prior security training or years of prior development experi-
ence. It therefore seems that increased development experience 
and (traditional) security training have, at most, a small impact.

Further, many of the BIBIFI teams had previously completed 
a four-course cybersecurity training during which all needed 
security controls were discussed, but a majority of these teams 
nevertheless botched unintuitive requirements. Were the top-
ics not driven home sufficiently? An environment like BIBIFI, 
where developers practice implementing security concepts and 
receive feedback regarding mistakes, could help. Future work 
should consider how well competitors from one contest do in 
follow-on contests.

API design. Our results support the basic idea that security con
trols are best applied transparently, e.g., using simple APIs [4]. 
However, while many teams used APIs that provide security 
(e.g., encryption) transparently, they were still frequently 
misused (e.g., failing to initialize using a unique IV or failing to 
employ stream-based operation to avoid replay attacks). It may be 
beneficial to organize solutions around general use cases, so that 
developers only need to know the use case and not the security 
requirements.

API documentation. API usage problems could be a matter of 
documentation, as suggested by prior work [1, 7]. For example, 
two teams used TLS socket libraries but did not enable client-
side authentication, necessary for the problem. This failure 
appears to have occurred because client-side authentication is 
disabled by default, but this fact is not mentioned in the docu-
mentation [11, 12]. Defaults within an API should be safe and 
without ambiguity [4]. Returning to the example from List-
ing 2, the team disabled the automatic integrity checks of the 
SQLCipher library. Their commit message stated, “Improve 
performance by disabling per-page MAC protection.” We know 
this change was made to improve performance, but it is possible 
they assumed they were only disabling the “per-page” integrity 
check while a full database check remained. The documenta-
tion is unclear about this (https://www.zetetic.net/sqlcipher​
/sqlcipher-api/#cipher_use_MAC).

Vulnerability analysis tools. There is significant interest 
in automating security vulnerability discovery (or preventing 
vulnerability introduction) through the use of code analysis 
tools. Such tools may have found some of the vulnerabilities we 
examined in our study. For example, static analyses, symbolic 
executors, fuzzers, and dynamic analyses could have uncovered 
vulnerabilities relating to memory corruption, improper param-
eter use (like a fixed IV), and missing error checks. However, 

Figure 1: Number of vulnerabilities introduced for each type divided by 
discovery difficulty and exploit difficulty

https://www.zetetic.net/sqlcipher/sqlcipher-api/#cipher_use_MAC
https://www.zetetic.net/sqlcipher/sqlcipher-api/#cipher_use_MAC
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they would not have applied to the majority of vulnerabilities we 
saw, which were often design-level, conceptual issues.

How could automation be used to address security requirements 
at design time? More research is needed, but one possible direc-
tion forward is to consider analysis development in tandem with 
improvements to API design. One example is Google’s efforts to 
restrict the ways developers can potentially introduce certain 
vulnerabilities (e.g., XSS, SQL-injection) through API design, 
limiting the required complexity of vulnerability discovery 
analysis [5].

Conclusion
Secure software development is challenging, with many pro-
posed remediations and improvements. To know which interven-
tions are likely to have the most impact requires understanding 
which security errors programmers tend to make and why. In 
our review of 94 submissions to a secure-programming contest, 
each implementing one of three non-trivial, security-relevant 
programming problems, we found implementation mistakes 
were comparatively less common than failures in security under-
standing. Our results have implications for improving secure-
programming APIs, API documentation, vulnerability-finding 
tools, and security education.
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