
www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 35

SYSTEMSCharacterization and Optimization of the
Serverless Workload at a Large Cloud Provider
M O H A M M A D S H A H R A D , R O D R I G O F O N S E C A , Í Ñ I G O G O I R I ,
G O H A R C H A U D H R Y , A N D R I C A R D O B I A N C H I N I

Mohammad Shahrad is a
Computer Science Lecturer at
Princeton University and an
incoming Assistant Professor
of Electrical and Computer

Engineering at the University of British
Columbia. He received his PhD from Princeton
University and his BSc from Sharif University
of Technology. Dr. Shahrad’s research aims
to improve the efficiency of cloud computing
systems through better resource management
and enhanced system/architecture
integration. mshahrad@ece.ubc.ca

Rodrigo Fonseca is a Principal
Researcher at Microsoft
Research and an Associate
Professor at Brown University’s
CS Department. He is

broadly interested in distributed systems,
networking, and operating systems, and his
current research involves ways to make cloud
computing easier and more applicable for
users and more efficient for providers. He
holds a PhD from UC Berkeley, a MSc and BSc
from Federal University of Minas Gerais, and
is the recipient of an NSF CAREER award, an
NSDI Test of Time Award, and a 2015 SOSP
Best Paper Award. rfonseca@cs.brown.edu

Function as a Service (FaaS) has gained tremendous popularity as a
way to deploy computations to serverless back ends in the cloud. We
performed the first characterization of an entire production FaaS

environment (Azure Functions) [1]. Our characterization revealed many
unique aspects of serverless workloads compared to traditional cloud applica-
tions. Using this deep understanding, we designed a new dynamic resource
management policy to improve the performance and reduce the memory foot-
print of serverless workloads. This new policy is now deployed in production,
and our characterization data traces are publicly released for researchers.

Serverless characterization studies before our work can be classified into two main catego-
ries: those probing public serverless offerings externally and those looking at ways developers
use FaaS offerings by investigating public repositories. These two classes of studies provide
valuable information; external probing allows comparing the performance and availability
of various FaaS providers using a set of benchmarks, and looking at public FaaS repositories
allows finding popular programming trends. However, neither of them can offer insights
on the aggregate workload seen by a provider. Only when the entire workload is known can
one answer questions such as “How often do functions get invoked? ” “How long do functions
execute for? ” or “How much memory do serverless functions require? ” Answers to such basic
questions have major implications for designing various components of serverless systems—
from schedulers to virtualization environments to underlying hardware architectures.

We conducted the first detailed characterization of an entire production FaaS workload at a
large cloud provider. To do so, we collected data on all function invocations across Microsoft
Azure’s entire infrastructure between July 15 and July 28, 2019. We invite the reader to read
our recent USENIX ATC paper for methodology details and full characterization data [1].
The sanitized traces from a subset of our characterization data are also available publicly at
https://github.com/Azure/AzurePublicDataset. In what follows, we summarize some of our
characterization insights.

Composition of Applications
In Azure Functions, functions are grouped into applications. The application concept helps
organize the software, and the application is the unit of scheduling and resource allocation.
As shown in Figure 1, 54% of the applications have only one function, and 95% of the appli-
cations have at most 10 functions. The other two curves show the fraction of invocations
and functions corresponding to applications with up to a certain number of functions. For
example, we see that 50% of the invocations come from applications with at most three func-
tions, and 50% of the functions are part of applications with at most six functions.

Composition of Triggers
Functions can be invoked in response to several event types, called triggers. Figure 2 shows the
fraction of all functions and invocations per type of trigger. HTTP is the most popular in both
dimensions. Event triggers correspond to only 2.2% of the functions, but they correspond to
24.7% of the invocations due to their automated, and very high, invocation rates. Queue trig-
gers also have proportionally more invocations than functions (33.5% vs. 15.2%).

Íñigo Goiri is a Research
Software Developer at
Microsoft Research. His
current research focuses on
the efficiency of large scale

distributed systems. He holds a PhD from the
University Politecnica de Catalunya (UPC).
inigog@microsoft.com

36 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SYSTEMS
Characterization and Optimization of the Serverless Workload at a Large Cloud Provider

The opposite happens with timer triggers. There are many functions triggered by timers
(15.6%), but they correspond to only 2% of the invocations, due to their relatively low firing
rate: 95% of the timer-triggered functions in our data set were triggered at most once per
minute, on average.

Invocation Patterns
We observed that applications are invoked very differently. The number of invocations per
day varies by over eight orders of magnitude for different applications. Another observation
with strong implications for resource allocation is that the vast majority of applications and
functions are invoked, on average, very infrequently: on average, 45% of the applications are
invoked once per hour or less frequently, and 81% of the applications are invoked once per
minute or less. The other side of this skewness was revealed to us by finding that the top 18.6%
most popular applications represent 99.6% of all function invocations. Thus, keeping the appli-
cations that receive infrequent invocations resident in memory at all times is expensive.

Function Execution Times
An advantage of the serverless model is that users pay only for their execution time. Figure 3
shows the distribution of average, minimum, and maximum execution times of all function
executions on July 15, 2019, which is similar to other days. We observed that 50% of the
functions execute for less than 1 sec on average, and 96% of functions take less than 60 sec on
average. These short executions in FaaS are unlike virtual machines (VMs). For example, a
prior study reported that 63% of all VM allocations on Azure last longer than 15 minutes [2].

Gohar Irfan Chaudhry is a
Research Software Engineer
at Microsoft Research. He is
part of the Systems Research
Group and is currently working

on improving efficiency of serverless
infrastructure. Gohar.Irfan@microsoft.com

Ricardo Bianchini received his
PhD in computer science from
the University of Rochester.
He is currently a Distinguished
Engineer at Microsoft, where he

leads efforts to improve the efficiency of the
company’s online services and datacenters.
He also manages the Systems Research Group
at Microsoft Research in Redmond. His main
research interests include cloud computing,
datacenter efficiency, and leveraging machine
learning to improve systems. He is an
ACM Fellow and an IEEE Fellow. ricardob@
microsoft.com

Figure 1: Distribution of function counts per application

Figure 2: Functions and invocations per trigger type

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 37

SYSTEMS
Characterization and Optimization of the Serverless Workload at a Large Cloud Provider

FaaS applications experience cold starts. A cold start invocation
occurs when a function is triggered, but its application is not yet
loaded in memory. When this happens, the platform instantiates
a worker for the application, loads all the required runtime and
libraries, and calls the function. While Figure 3 does not include
cold starts, we observed that the execution times from our char-
acterization are the same order of magnitude as the cold start
times reported for major providers [3]. Therefore, optimizing cold
starts becomes extremely important for the overall performance
of a FaaS offering. This can be done either by reducing the cold
start latency [4, 5] or by eliminating cold starts. We took the
second approach in designing our policy, which we describe later
in the article.

Memory Usage
The memory demand of applications on the same day (July 15,
2019) is shown in Figure 4. Looking at the distribution of the
maximum allocated memory, 90% of the applications never con-
sume more than 400 MB, and 50% of the applications allocate at
most 170 MB. We found no strong correlation between invocation
frequency and memory allocation or between memory allocation
and function execution times.

Designing a New Adaptive Resource Management
Policy
One of our primary goals in understanding workload character-
istics was to design better resource management policies. This is
because the state-of-the-art in serverless resource management
was too simplistic, where each application was kept in memory
after function execution for a fixed amount of time. This keep-
alive window is 10 minutes for AWS Lambda and IBM Cloud
Functions, and was 20 minutes for Azure Functions. Such a
policy is too rigid for the wide range of serverless applications.
Developers usually circumvent this by creating regular artificial
invocations to make sure their applications remain warm in
memory. A smart dynamic policy can eliminate such a burden.
Additionally, adapting to applications’ invocation patterns would
mean resources are not kept unused just to keep function images
warm without executing them.

There are a few challenges in designing such a policy. As we
showed earlier in this article, invocation frequency and pattern
vary substantially across applications. A one-size-fits-all fixed
policy is certain to be a poor choice for many applications. Adapt-
ing the policy to each application means tracking each applica-
tion individually, and thus the cost to track the information for
each application should be small. Finally, since function execu-
tions can be very short (i.e., more than 50% of executions take
less than one second), running the policy and updating its state
need to be fast. This is especially critical considering providers
charge users only during their function execution times (e.g.,
based on CPU, memory). For instance, we cannot take 100 ms to
update a policy prediction model for each 10 ms-long execution.

We propose a hybrid histogram policy that addresses all the
above challenges. It identifies each application’s invocation pat-
tern, removes/unloads the application right after each function
execution ends, reloads/pre-warms the application right before
a potential next invocation, and keeps it alive for a period. The
policy does so by capturing the history and predicting next idle
times (ITs), defined as the time between the end of a function’s
execution and its next invocation. Three main components of the
hybrid histogram policy include: (1) a range-limited histogram
for capturing each application’s ITs; (2) a standard keep-alive
approach for when the histogram is not representative, i.e., there
are too few ITs or the IT behavior is changing (again, note that this
differs from a fixed keep-alive policy); and (3) a time-series fore-
cast component for when the histogram does not capture most ITs.

Compared to fixed keep-alive policies, hybrid histogram policies
are closer to optimal. As seen in Figure 5, hybrid policies deliver
a significant reduction of unused memory time, while consider-
ably improving the cold start percentage for applications. For
instance, a hybrid policy with a four-hour histogram can deliver
a 2.5× lower 3rd-quartile cold start percentage and 1.5× less
memory time wastage compared to a fixed 10-minute keep-alive
policy. Note that there is a tradeoff between cold starts and wasted
memory time for both policy families, but hybrid substantially
dominates all fixed policies.

Figure 3: Distribution of function execution times Figure 4: Distribution of allocated memory per application

38 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SYSTEMS
Characterization and Optimization of the Serverless Workload at a Large Cloud Provider

The range-limited histogram at the core of the hybrid histogram
policy is a lightweight data structure. We use it with a minute-
long resolution, which means capturing a four-hour histogram
requires an array of length 240. The other two components of
the hybrid histogram policy complement it to boost performance
while maintaining low overhead. Here, we describe some of our
design choices and their implications for the policy:

 3 Pre-warming to curtail keep-alive values while maintain-
ing low cold starts: One can eliminate cold starts by just set-
ting the right keep-alive values, but this approach is too costly.
Pre-warming allowed us to reduce memory wastage by about
34% compared to using just keep-alives, with a minor cold start
increase.
 3 Ignoring outlier ITs to deflate keep-alive values: To exclude
outliers of the IT distribution captured by the histogram, we use
the 5th- and 99th-percentiles as head and tail cutoffs, respec-
tively. This approach avoided the inflation of keep-alive values
and resulted in a ~15% reduction in memory time wastage with a
negligible impact of cold start performance of applications.
 3 Checking the histogram representativeness to not use it
prematurely: The histogram might not be representative of
an application’s behavior when it has not observed enough ITs
for the application or when the application is transitioning to a
different IT regime. We decide whether a histogram is repre-
sentative by computing the coefficient of variation (CV) of its
bin counts and comparing it to a threshold (CV=2). This simple
approach improved the 3rd-quartile application cold starts by
nearly 49% with only a 3% increase in memory time wastage.
 3 Using time-series forecast to eliminate cold starts of infre-
quent applications: Using time-series forecast for infrequent
applications reduced the percentage of applications that experi-

ence 100% cold starts by about 50%, i.e., from 10.5% to 5.2% of
all applications. A significant portion of these applications have
only one invocation during the entire week, and no predictive
model can help them. Excluding these applications, the same re-
duction becomes 75%, i.e., from 6.9% to 1.7% of all applications.

We implemented our policy in Apache OpenWhisk [6], which is
the open-source FaaS platform powering IBM’s Cloud Functions.
We refer the reader to our paper for implementation details [1].
We ran two experiments with 68 randomly selected mid-range
popularity applications from our workload on our 19-VM Open-
Whisk deployment: one experiment with the default 10-minute
fixed keep-alive policy of OpenWhisk and another with our
hybrid policy and a four-hour histogram range. Each experiment
ran for eight hours with a total of 12,383 function invocations.
We used FaaSProfiler [7] to automate trace replay and result
analysis.

Figure 6 compares the cold start distribution of keep-alive and
hybrid policies from the simulations (left) and the OpenWhisk
prototype (right). As seen, the significant cold start reductions
follow similar trends. On average and across the 18 invoker VMs,
the hybrid policy reduced memory consumption of worker con-
tainers by 15.6%, which was also consistent with our simulation
results. Moreover, hybrid policy reduced the average and 99-per-
centile function execution time 32.5% and 82.4%, respectively,
due to a secondary effect in OpenWhisk, where the language
runtime bootstrap time is eliminated for warm containers. The
price for all of these is an additional 835.7μs latency on average,
which is negligible compared to the existing latency of Open-
Whisk components: the (in-memory) language runtime initia-
tion takes O(10 ms) and the container initiation takes O(100 ms)
for cold containers [7].

After getting promising results from simulations as well as the
prototype implementation, we implemented our policy in Azure
Functions for HTTP-triggered applications. Its main elements
have rolled out to production. We used asynchronous updates
from the workers to the Azure Functions controller to populate
histograms. We keep the histogram in memory and do hourly
backups to the database. We start a new histogram per day in
the database so that we can track changes in an application’s
invocation pattern and remove histograms older than two weeks.
When an application changes state from executing to idle, we use
the aggregated histogram to compute its pre-warm interval and
schedule an event for that time (minus 90 seconds). Pre-warming
loads function dependencies and performs JIT where applicable.
Each worker maintains the keep-alive duration separately,
depending on how long it has been idle. We make all policy
decisions asynchronously, off the critical path, to minimize the
latency impact on the invocation.

Figure 5: Tradeoff between cold starts and wasted memory time for the
fixed keep-alive policy and our hybrid policy

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 39

SYSTEMS
Characterization and Optimization of the Serverless Workload at a Large Cloud Provider

Conclusion
We characterized the entire production FaaS workload of Azure
Functions, which unearthed several key observations for cold
start and resource management. Based on them, we proposed a
practical policy for reducing the number of cold starts at a low

resource cost. The main elements of this policy have rolled out
to production. We also released sanitized traces from a subset
of our characterization data that is first of its kind. These traces
will help researchers design future serverless systems based on
realistic workloads and enable new research angles.

References
[1] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum,
J. Cooke, E. Laureano, C. Tresness, M. Russinovich, and R.
Bianchini, “Serverless in the Wild: Characterizing and Opti-
mizing the Serverless Workload at a Large Cloud Provider,”
in Proceedings of the 2020 USENIX Annual Technical Confer-
ence (USENIX ATC ’20), pp. 205–218: https://www.usenix.org
/system/files/atc20-shahrad.pdf.

[2] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura,
and R. Bianchini, “Resource Central: Understanding and
Predicting Workloads for Improved Resource Management in
Large Cloud Platforms,” in Proceedings of the 26th Symposium on
Operating Systems Principles (SOSP ’17), pp. 153–167.

[3] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift,
“Peeking Behind the Curtains of Serverless Platforms,” in
Proceedings of the 2018 USENIX Annual Technical Confer-
ence (USENIX ATC ’18), pp. 133–145: https://www.usenix.org
/system/files/conference/atc18/atc18-wang-liang.pdf.

[4] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “SOCK: Rapid
Task Provisioning with Serverless-Optimized Containers,” in
Proceedings of the 2018 USENIX Annual Technical Conference
(USENIX ATC ’18), pp. 55–70: https://www.usenix.org/system
/files/conference/atc18/atc18-oakes.pdf.

[5] K. Wang, R. Ho, and P. Wu, “Replayable Execution Optimized
for Page Sharing for a Managed Runtime Environment,” in Pro-
ceedings of the 14th EuroSys Conference 2019, pp. 1–16.

[6] Apache OpenWhisk, Open Source Serverless Cloud Platform:
https://openwhisk.apache.org/.

[7] M. Shahrad, J. Balkind, and D. Wentzlaff, “Architectural
Implications of Function-as-a-Service Computing,” in Proceed-
ings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO ’19), pp. 1063–1075.

Figure 6: Cold start behavior of fixed keep-alive and hybrid policies in (a) simulation results and (b) experimental results from our OpenWhisk implementation

https://www.usenix.org/system/files/atc20-shahrad.pdf
https://www.usenix.org/system/files/atc20-shahrad.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-wang-liang.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-wang-liang.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-oakes.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-oakes.pdf
https://openwhisk.apache.org/

