
40 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SYSTEMS

Posh: A Data-Aware Shell
D E E P T I R A G H A V A N , S A D J A D F O U L A D I , P H I L I P L E V I S , A N D M A T E I Z A H A R I A

Running I/O-intensive shell pipelines over the network requires
transferring huge amounts of data but relatively little computation.
We present Posh, a shell framework that accelerates unmodified

shell workflows over networked storage by offloading computation to proxy
servers closer to the data. Posh provides speedups ranging from 1.6× to 15×
compared to bash over NFS for a wide range of applications.

The UNIX shell is a linchpin in computing systems and workflows. Developers use shell tools
not only for data processing with core utilities such as sort, head, cat, and grep, but also for
programs such as Git, ImageMagick, and FFmpeg. The UNIX shell was designed in a time
dominated by local and then LAN storage when file access was limited by disk access times,
so networked storage was an acceptable tradeoff. Today, solid-state disks have reduced
access times by orders of magnitudes, while networked attached storage remains popular.

Running I/O-intensive shell pipelines over networked storage incurs high overheads. Con-
sider generating a tar archive on NFS. The tar utility copies the source files and adds a small
amount of metadata: the server reads blocks and sends them over a network to a client, which
shifts their offsets and sends them back. NFS mitigates this problem by offering compound
operations and server-side support for primitive commands such as cp, but even something
as simple as tar requires large network transfers.

Deepti Raghavan is a PhD
candidate in computer science
at Stanford University, advised
by Phil Levis and Matei Zaharia.
She focuses on topics in

networking and distributed systems. She is
interested in optimizing data processing for
networked applications.
deeptir@cs.stanford.edu

Philip Alexander Levis is
an Associate Professor
of Computer Science and
Electrical Engineering at
Stanford University, where he

heads the Stanford Information Networks
Group (SING) and co-directs Lab64,
Stanford’s electrical engineering maker
space. He has a self-destructive aversion to
low-hanging fruit and a deep appreciation for
excellent engineering. pal@cs.stanford.edu

Sadjad Fouladi is a PhD
candidate in computer science
at Stanford University, working
with Keith Winstein on topics in
networking, video systems, and

distributed computing. His current projects
include general-purpose lambda computing
and massively parallel ray-tracing systems.
sadjad@cs.stanford.edu

Figure 1: Users can type in unmodified shell workflows to Posh’s shell prompt. Posh will transparently
schedule and execute individual commands on remote proxy servers closer to the remote data but ensure
the entire workflow retains local execution semantics.

mailto:deeptir@cs.stanford.edu
mailto:pal@cs.stanford.edu
mailto:sadjad@cs.stanford.edu

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 41

SYSTEMS
Posh: A Data-Aware Shell

The underlying performance problem of using the shell with remote data is locality: because
the shell executes locally, it must move large amounts of data to and from remote servers.
Data movement is usually the most expensive (time and energy) part of a computation, and
shell workloads are no exception. Near-data processing [1] is not a new paradigm: systems
such as Spark [2], Active-Disks [3], and stored procedures in databases all move computation
closer to the data. However, these systems require applications to use their APIs: they can
supplement but not replace shell pipelines.

To address the shell performance problem of data locality, this article presents Posh, the
“Process Off load Shell,” a system that off loads portions of unmodified shell workf lows to
proxy servers closer to the data. A proxy server can run on the actual remote file server
storing the data, or on a different node that is much closer to the data (e.g., within the same
datacenter) than the client. Posh identifies parts of shell pipelines that can be safely offloaded
to a proxy server and selects which candidates run on a proxy in order to minimize data move-
ment. It then distributes computation across an underlying runtime while maintaining the
exact output semantics expected by a local program. Figure 1 shows running a workflow via
Posh. The user enters the unmodified workflow at the shell prompt and the output appears at
the client’s shell as normal, but Posh offloads some of the commands.

Posh is available at https://github.com/deeptir18/posh. This article will cover examples of
shell workflows where Posh can be useful, a brief overview of the core ideas behind Posh, and
how to get started with the system. For a detailed discussion of the research ideas behind
Posh, we refer the reader to our USENIX ATC ’20 paper [4].

Examples of Posh
Posh is useful for shell workflows that are I/O bound, have smaller output than input size, are
metadata heavy (make many file-system stat() requests), or are parallelizable. In this sec-
tion, we will discuss examples of shell workflows that incur large overheads over networked
storage and show that Posh accelerates them to achieve near-local execution time. Figures
2–4 illustrate the execution time of running each of these applications with an NFS mount
configured with either sync and async, and with Posh, over two network settings: one where
the client is in the same GCP region as the storage server (“cloud”) and one where the client is
in a university network outside the datacenter (“university”). Posh can offload computation

Matei Zaharia is an Assistant
Professor of Computer
Science at Stanford and Chief
Technologist at Databricks.
He started the Apache Spark

project during his PhD at UC Berkeley and has
worked on other widely used data analytics
and AI software, including MLflow and Delta
Lake. At Stanford, he is co-PI of the DAWN
lab working on infrastructure for machine
learning. Matei’s research was recognized
through the 2014 ACM Doctoral Dissertation
Award, an NSF CAREER Award, and the US
PECASE award. matei@cs.stanford.edu

Figures 2 and 3: End-to-end latency of Posh on two applications, compared to NFS sync, NFS async, and
local execution time for two networks, one where the client is in a university network and one where the
client is in the same GCP region as the storage server. The Posh proxy runs directly on the NFS server. Posh
provides between 1.6–12.7× speedups in the university-to-cloud network compared to NFS.

https://github.com/deeptir18/posh
mailto:matei@cs.stanford.edu

42 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SYSTEMS
Posh: A Data-Aware Shell

to a proxy server directly running at the NFS servers. Figures
3 and 4 additionally include a baseline that demonstrates local
execution time, where the data is stored on a local SSD. Com-
pared to bash over NFS, Posh sees a 1.6–12.7× speedup in the
execution time of these applications.

For each of these applications, the shell workflow (the bash script)
itself is completely unmodified; the workload is just run within a
Posh shell environment. Posh can accelerate these workflows
because the shell knows metadata about the commonly used
shell commands within these workflows, which we will discuss
in the next section. We describe each workflow in turn.

Distributed Log Analysis (Figure 2)
This application is based on a workflow where system adminis-
trators run analysis on 80 GB of input logs split across five differ-
ent storage servers, to search for an IP address within these logs.
The workflow runs cat over all of the files and filters for a par-
ticular IP with grep and then writes the final results, only about
0.8 KB of data, back to a file stored locally at the client. Posh
splits the computation across the five machines and aggregates
the output in the correct order. By offloading and parallelizing,
Posh improves the runtime by 12.7× in the university-to-cloud
setting and by 2× in the cloud-to-cloud setting.

Ray-Tracing Log Analysis (Figure 3)
This workflow analyzes the logs of a massively distributed
research ray-tracing (computer graphics) system [5] to track a
ray (a simulated ray of light) through the workers it traversed.

The analysis first cleans and aggregates each worker’s log, 6 GB
in total, into one 4 GB file. It then runs sed to search for the path
of a single ray (e.g., a straggler) across all the workers and stores
the output on a file at the client:

cat logs/1.INFO | grep "\[RAY\]" | head -n1 | cut -c 7- > \
 logs/rays.csv
cat logs/*.INFO | grep "\[RAY\]" | grep -v pathID | \
 cut -c 7- >> logs/rays.csv
cat logs/rays.csv | sed -n '/^590432,/p' > local/output.log

The output of sed is much smaller than the 10 GB of data pro-
cessed. This application is a best-case workload for Posh: it is I/O
bound and can be parallelized, and the output is a tiny fraction
of the data it reads. Posh achieves an 8× improvement on the
university-to-cloud network and no improvement on the cloud-
to-cloud network: Posh offloads all the computation and only
needs to stream the output of sed back to the client. However,
the data movement overhead only matters in the university-to-
cloud setting, where the network connection is slower.

Git Workflow (Figure 4)
This application imitates a developer’s git workflow over the
Chromium repository. After rolling back the repository by 20
commits and saving each commit’s patch, the workload suc-
cessively applies each patch and runs three git commands: git
status, git add and git commit -m. Figure 4 shows the latency
of each command for each of the 20 commits. These commands
are extremely metadata-heavy: commands like status and add
check the status of every file in the repository to see if it has been

Figure 4: Average latency of 20 git status, git add, and git commit commands run on Chromium repo, of Posh compared to NFS and local execution,
for a client in the same cloud datacenter as the storage server. Posh provides up to 10–15× speedups by preventing round trips for file system metadata calls.

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 43

SYSTEMS
Posh: A Data-Aware Shell

modified. When run over a networked file system, this incurs
many round trips. In the cloud-to-cloud setting, this causes Posh
to achieve 10–15× improvement over NFS. Running git status
took up to two hours in the university-to-cloud setting, so we
omitted this network for this application.

To enable Posh’s acceleration of a shell workload, the user must
provide metadata about the individual shell commands the work-
flow uses. This metadata, called annotations, allows Posh to
determine which files these commands access, so it can further
schedule the workflow across the underlying runtime. The next
section will discuss annotations in more detail.

Transparently Offloading Shell Computation:
Annotations
Annotations summarize information to Posh about individual
shell commands, such as tar, cat, or grep. Posh’s key insight is
that many shell workflows only read and write to files specified
in their command-line invocation, so Posh can deduce which
files a workflow accesses by understanding which arguments
correspond to files. Annotations contain a list of possible argu-
ments and whether they correspond to files, so Posh can under-
stand which files an arbitrary invocation of a command would
access. Additionally, annotations contain information relevant
to scheduling the workflow.

Consider a simple pipeline:

cat A B C D | grep "foo" | tee local_file.txt

Posh could try to offload any of the three commands: cat, grep,
or tee. Posh must understand which files (if any) each command
accesses and where these files live, so Posh must determine
which arguments to the three commands represent file paths.

However, outside of the program, all of these arguments are
seen as generic strings. For example, consider the following four
commands:

cat A B C D | grep "foo"
tar -cvf output.tar.gz input/
tar -xvf input.tar.gz
git status

The cat command takes in four input files, while the argument to
grep is a string. The second command, tar -cvf, takes an output
file argument preceded by -f, followed by an input file argument
not preceded by a short option. The third command, also tar,
takes an input file argument preceded by -f and implicitly takes
its output argument as the current directory. Finally, git also
implicitly relies on the current directory as a dependency.

Secondly, in order to produce an execution schedule that reduces
data movement, Posh must understand the relationship between
the inputs and outputs of a command. In the cat | grep example,
if the argument to cat is a remote file, to minimize data move-
ment, Posh can offload both cat and grep since grep filters its
input. Finally, for applications like the distributed log analysis
application discussed previously, where the input files for a
command live on different mounts, Posh needs to know how to
safely parallelize the command in order to be able to offload it
at all. However, parallelization is not safe for all commands: wc,
for example, “reduces” the input, as opposed to commands like
cat or grep, which merely map over the input. Posh’s annotations
summarize file dependencies, data movement semantics, and
parallelization semantics for commonly used commands.

Figure 5 shows examples of annotations, for cat, grep, and tar.
Most of the information in the annotations summarize the
semantics for the arguments for each command, or information

Figure 5: Example annotations for cat, grep, and tar. Most of the information in the annotations tells Posh information about the possible arguments for
each command and their syntax. They contain type assignments for each argument, which tell Posh how the argument will be used as well as other informa-
tion used for scheduling and automatic parallelization. tar requires more than one annotation because tar -x and tar -c invocations have conflicting
type semantics: -f is an input_file in one case and an output_file in the other.

http://output.tar.gz
http://input.tar.gz

44 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

SYSTEMS
Posh: A Data-Aware Shell

that is summarized in the documentation pages for these com-
mands. Moreover, they contain a type assignment for each
argument: input_file, output_file, or string. For cat, the
splittable keyword indicates to Posh that cat can be split in
a data parallel way across its arguments, as long as the outputs
are stitched together in the correct order. For grep, the split-
table_across_input keyword indicates that grep can be paral-
lelized across its standard input. As mentioned before, the -f
argument indicates an input_file for a tar -x invocation but an
output_file for a tar -c invocation. To resolve this, Posh allows
multiple annotations per command, per type of invocation, and
tries each until it finds an annotation that matches the current
command invocation.

We envision that developers can share annotations for popular
commands, so users do not necessarily need to write their own
annotations. These annotations are inspired by recent proposals
to annotate library function calls for automatic pipelining and
parallelization [6]. Please see our research paper [4] for a more
detailed overview of the Posh annotation interface.

Distributed Scheduling and Execution
This section briefly explains how Posh uses the annotations to
schedule and execute shell workflows, summarized in Figure 6.
The Posh parser turns each pipeline (each line of a shell work-
flow, potentially consisting of several commands combined by
pipes and redirects) into a directed acyclic graph (DAG). This
graph represents the input-output relationship between com-
mands, the standard I/O streams (stdin, stdout, and stderr), and
redirection targets. Posh then parses each individual command
and its arguments using the corresponding annotation and
completes the DAG by including additional input and output
dependencies of the pipeline. The parser finally runs a greedy
scheduling algorithm on the DAG and assigns an execution
location to each command in the pipeline. In order to do this, the
parser requires extra configuration information that specifies a
mapping between each mounted client directory and the address
for a machine running a proxy server for the corresponding
directory. Our research paper [4] contains more details on the
scheduling algorithm.

Getting Started with Posh
This section details the steps to running and using Posh.

0. Running the Posh servers
The administrator who controls the proxy server must run the
Posh server binary, which allows it to receive requests to offload
computation on behalf of a single remote file-system mount.
The proxy server just needs read and write access to this folder;
it need not run at the storage server itself. Invoking the server,
shown below, requires specifying the absolute path for the mount
being accessed and a temporary directory for writing the output
of intermediate computation.

admin@~$ $POSH_SRC/target/release/server --folder /mnt/logs \
 --tmpfile /tmp/posh

1. Posh client configuration
The client needs to provide a file that contains annotations for
any commands the client wants to accelerate. It must also have
a list of proxy servers associated with client file-system mounts.
The configuration file, shown below, maps IP addresses to the
corresponding mount, written as an absolute path.

mounts:
 "255.255.255.0": "/home/user/remote_mount1"
 "255.255.255.1": "/home/user/remote_mount2"

2. Running the client shell
Posh provides two client binaries: one that provides a shell prompt
and one that runs scripts by running each line in the script. To run
the binary that provides a shell prompt, the client can run:

deeptir@~$ $POSH_SRC/target/release/shell-client \
 --annotations_file <annotations_file> --mount_file \
 <config_file>
posh>>>$ <ENTER COMMANDS>

Figure 6: In Posh’s main workflow, a shell command is passed to the
parser, which uses the annotations to generate and schedule a DAG repre-
sentation of the command. The DAG includes which machine—A, B, or C
(client) here—to run each command on. The execution engine finally runs
the resulting DAG.

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 45

SYSTEMS
Posh: A Data-Aware Shell

3. Running applications
After running the shell, users can run unmodified shell work-
flows as normal. For example, the user could type in the fol-
lowing workflow from the distributed log analysis example
discussed previously:

posh>>> $ cat mount0/logs/*.csv mount1/logs/*.csv \
 mount2/logs/*.csv mount3/logs/*.csv mount4/logs/*.csv \
 | grep '128.151.150' > $LOCAL_FILE

Conclusion and Next Steps
We have described Posh, a framework that transparently distrib-
utes I/O-heavy shell computation that operates on remote data,
by pushing computation to run closer to the data. Posh uses
annotations, a model of shell programs, to automatically infer
what files an arbitrary command line will read and write to in
order to schedule computation across proxy servers. Posh and its
annotations provide a model of commands that enable rewir-
ing their dependencies to direct output over the network rather
than to a UNIX pipe while retaining local execution semantics.
While Posh currently uses this model to transparently schedule
and offload commands across proxy servers to push code closer
to the data, it could in the future provide more optimal schedul-
ing or even failure recovery. Consider programs that access files
from two different locations that cannot be parallelized, such as
comm. Instead of running them at the client, Posh could run them
on one of the servers but stream or transfer the necessary inputs
beforehand. To provide failure recovery semantics, Posh could
rewrite workflows to write to temporary locations and only write
to the final location when the entire operation is successful. For
more information on this project, including our research paper,
the code, and quick-start guides, please visit our GitHub page,
https://github.com/deeptir18/posh.

Acknowledgments
We thank our ATC shepherd, Mahadev Satyanarayanan, and the
anonymous ATC reviewers for their invaluable feedback. We are
grateful to Shoumik Palkar, Deepak Narayanan, Riad Wahby,
Keith Winstein, Liz Izhikevich, Akshay Narayan, and members
of the Stanford Future Data and SING Research groups for their
comments on various versions of this work. This research was
supported in part by affiliate members and other supporters of
the Stanford DAWN project—Ant Financial, Facebook, Google,
Infosys, NEC, and VMware, as well as the NSF under CAREER
grant CNS-1651570 and Graduate Research Fellowship grant
DGE-1656518. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science
Foundation.

References
[1] A. Barbalace, A. Iliopoulos, H. Rauchfuss, and G. Brasche,
“It’s Time to Think about an Operating System for Near Data
Processing Architectures” in Proceedings of the 16th Workshop
on Hot Topics in Operating Systems (HotOS ’17), pp. 56–61.

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M.
McCauley, M. J. Franklin, S. Shenker, and I. Stoica, “Resil-
ient Distributed Datasets: A Fault-Tolerant Abstraction
for In-Memory Cluster Computing,” in Proceedings of the
9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’12), pp. 15–28.

[3] A. Acharya, M. Uysal, and J. Saltz, “Active Disks: Pro-
gramming Model, Algorithms, and Evaluation,” in Proceed-
ings of the 8th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS ’98), pp. 81–91.

[4] D. Raghavan, S. Fouladi, P. Levis, and M. Zaharia, “POSH:
A Data-Aware Shell,” in Proceedings of the 2020 USENIX
Annual Technical Conference (USENIX ATC ’20), pp. 617–631.

[5] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee, C.
Kozyrakis, M. Zaharia, and K. Winstein, “Outsourcing
Everyday Jobs to Thousands of Cloud Functions with gg,”
;login:, vol. 44, no. 3 (Fall 2019), pp. 5–11.

[6] S. Palkar and M. Zaharia, “Optimizing Data-Intensive
Computations in Existing Libraries with Split Annotations,”
in Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP ’19), pp. 291–305.

https://github.com/deeptir18/posh

