
46    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

SYSTEMS

Interview with Margo Seltzer
R I K F A R R O W

I first noticed Margo Seltzer because she had brought her baby to a USENIX
conference in the late ’90s. That was unusual, as I had seen few parents
with their children at conferences. Later on, I got to know Margo better

when she was on the USENIX Board and I was routinely attending board
meetings.

What prompted me to ask someone as busy as Margo for an interview was her keynote
address at the 2020 USENIX Annual Technical Conference entitled “The Fine Line between
Bold and Fringe Lunatic” [1]. I recommend watching Margo’s talk, but the gist is simply this:
you are likely to have a more interesting career if you are willing to take risks. That’s not what
Margo actually says, just my own interpretation. She wants researchers to broaden the sub-
ject areas they keep abreast of as well as to consider researching at the frontier of knowledge.

Rik Farrow: You became a faculty member at Harvard, working in CS. Was that at all unusual?

Margo Seltzer: I think what was unusual was that I turned down a position at MIT (arguably
ranked #1) for Harvard (pretty much unranked except in theory where we had Turing award
winners).

RF: I don’t understand why ranking is important. Could you explain what the ranking means
to someone taking an academic position for those of us who won’t have that experience?

MS: Ranking’s importance varies by who you ask.

There has been a lot of data analysis about the network formed by studying the migration of
PhD students to faculty positions. New faculty typically have degrees from institutions from
rankings higher than the ranking of the school in which they are teaching. So if you want to
teach at a top N school; you’d better get a degree from a top (N-1) school. And if you want your
students to get jobs at a top N school, then you want to be teaching at a top-1 school (or at least
one of the “big 5”).

Unfortunately, rankings are a fuzzy metric—I advise undergrads going to grad school to place
far more emphasis on the person/group with whom they will work than the ranking of the
school, but students don’t always listen. And students from undergraduate institutions without
a lot of advising don’t have much to go on other than the rankings: they don’t know the faculty.

So the ranking of the university at which you take a faculty position is directly correlated with
the quality of students you get and the likelihood of placing them at other top institutions.

Thus—turning down MIT (arguably #1) for Harvard (top N > 20 and probably closer to 30–40
then) was shocking to most. I was definitely called an idiot by some.

Harvard, in particular, had a dismal reputation for granting tenure. There had been a famous
case in 1983 where a person widely regarded as a superstar in his community was denied
tenure by Harvard. So when I got there (1993), Harvard had not tenured anyone in computer
science since 1981. My colleague, Stuart Shieber, broke that curse by getting tenure in 1996.
Then Mike Smith and I both got tenure in 2000. Since then, Harvard has done very well by
hiring strong people and making sure they get tenure.

Margo Seltzer is Canada 150
Research Chair in Computer
Systems and the Cheriton
Family Chair in Computer
Science at the University

of British Columbia. Dr. Seltzer was also a
co-founder and CTO of Sleepycat Software,
the makers of Berkeley DB. Her research
interests are in systems, construed broadly:
provenance systems, file systems, databases,
transaction processing systems, storage
and analysis of graph-structured data,
synthesizing system software, discrete
optimization, and applying technology to
problems in healthcare. She serves on the
Computer Science and Telecommunications
Board (CSTB) of the (US) National Academies
and the Advisory Council for the Canadian
COVID-19 contact tracing app. She is a past
President of the USENIX Association and
served as the USENIX representative to the
Computing Research Association Board of
Directors. She is a member of the National
Academy of Engineering, a Sloan Foundation
Fellow in Computer Science, an ACM Fellow,
and a Bunting Fellow. She is recognized as
an outstanding teacher and mentor, having
received the Phi Beta Kappa teaching award in
1996, the Abramson Teaching Award in 1999,
the Capers and Marion McDonald Award
for Excellence in Mentoring and Advising in
2010, and the CRA-E Undergraduate Research
Mentoring Award in 2017. Professor Seltzer
received an AB degree in applied mathematics
from Harvard/Radcliffe College and a PhD
in computer science from the University of
California, Berkeley.

Rik is the editor of ;login:.
rik@usenix.org

www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 47

SYSTEMS
Interview with Margo Seltzer

RF: You begin your talk [1] by demonstrating how computer sci-
ence has been partitioned over the years, beginning with the split
between hardware and software, then software splitting into
operating systems and programming languages, and so on. You
encourage people to cross the many boundaries that exist today,
and I do sometimes see that happening, for example, with file
systems using key-value stores for metadata. Do you have other
examples?

MS: The crossover between file systems and databases has grown
a fair bit over the past 30 years, but it takes a lot of pushing:

Journaling (logging) was developed in the database commu-
nity to provide transaction support in the ’70s. It wasn’t fully
embraced by the file-system community until the ’90s or later.
At this point, it’s fairly standard.

Transactions are another concept with a history in databases—
we now see transactions in hardware (i.e., transactional mem-
ory) and every once in a while in file systems.

Program analysis (e.g., static analysis, symbolic execution) grew
out of the programming languages community, but it has been
and is being adopted in systems for bug finding.

The emergence of persistent memory (e.g., Intel Optane) brings
together work from systems (virtual memory and single level
store), databases (persistent objects), and file systems (persis-
tent files).

So these things happen, but a lot of the time the researchers
themselves don’t think to look at work of other communities and
will re-invent the wheel instead of borrowing it and making it
work better.

RF: I agree that not looking at what has been done in other com-
munities really slows down research and innovation in CS. But
isn’t there an issue with the amount of research, just in the small
niches that we have today, being too overwhelming for most
graduate students to cover?

MS: It is impossible to keep up with all the work being done in a
single field, so how can one hope to know what’s happening in
other fields? In machine learning alone, something like 100 new
papers show up on arXiv every day. So what is an overworked
graduate student to do?

It’s not necessary to read every paper published to know what’s
happening in a field. The key is really an openness to what’s
happening in other areas, a curiosity, and a willingness to do
the hard work of trying to understand work from a different
community when it’s appropriate. One of the first things I do
is encourage new graduate students to subscribe to The Morn-
ing Paper—https://blog.acolyer.org/. My understanding is that
Adrian Colyer, the author, is not really a computer scientist, but
every week he sits down and reads about three computer science

papers and writes up great blog posts about them. And he moves
from area to area, reading whatever is recent or what is particu-
larly interesting to him. I love his posts—I have a mailbox full of
ones I’ve not yet had time to read.

Just reading Adrian’s blog posts will give a student a broad intro-
duction to a lot of areas. But even that isn’t enough.

You have to be willing to talk to other people—not just the people
in your lab but people in other labs. Go to weekly grad student
social events and really try to understand what people are work-
ing on. Here is the secret: you are going to have to be willing to
ask naive questions. I call them stupid questions, but they aren’t
really stupid, they are mostly just the questions that someone
unfamiliar with an area will ask. And even more important (and
possibly scarier), you have to be willing to say, “Um, I didn’t really
understand that, can we go even more slowly?” I collaborate with
many folks who are way more mathematically sophisticated
than I am, and I tend to ask (a lot), “Could you explain that to
me in small words?” To be honest, it took me a long time to get
over the knee-jerk reaction of just nodding and pretending that I
understood what was going on when I was lost, but I learn a ton
more when I’m willing to take that risk. And who better to take
that risk with than your peers? And you never know, you might
find an area that intrigues you, a topic of mutual interest, or just
something new and interesting.

The key is not to be an expert in everything but to have a vague
sense of what people are working on in other fields, so that when
the opportunity arises, you can draw ideas from disparate areas
and know what the areas are and perhaps even with whom to con-
sult (that fellow student you were chatting with just the other day).

Super secret #2: being able to talk to people in other areas will
be your single greatest superpower on the interview trail, where
you’re expected to be able to have intelligent conversations with
people from different areas.

Fun story: In my interview that wasn’t really an interview (or
perhaps it was the non-interview that really was an interview)
at Harvard, I was taken to lunch by two theoreticians—one Tur-
ing Award winner and one future Turing Award winner. They
peppered me with questions to the point that I was still work-
ing on my salad when they got to dessert! But clearly something
worked—shortly after I arrived, one of them dropped by my office
to ask for my “expertise” on a topic…I was floored. What on earth
did I have to offer a world-renowned theoretician? Well, he had
some interesting ideas about applying his latest work to storage,
and well, he figured that perhaps there might be people who knew
more about storage than he did. It was a good lesson for me—no
one is above asking questions, and no one should limit them-
selves to a small box, even if they are the absolute best in that box!

48    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

SYSTEMS
Interview with Margo Seltzer

RF: Provenance is the first of the fringe lunatic ideas you cover in
your USENIX ATC ’20 keynote. The quest for provenance began
early in this century, largely as a way to be able to recreate data
based on its provenance: what had happened to that data since
it was created. I recall thinking at the time that this seemed like
a reasonable thing to do, but later wondered if having to maintain
orders of magnitude more data as provenance really made sense.
The story you told about provenance includes different groups
taking different approaches, along with attempts to unify some
elements. Were you surprised at where researchers had taken the
original idea after almost 15 years had passed?

MS: Yes and no.

Around 2014, I “gave up” on provenance—I felt that the com-
munity was focused so much on provenance collection that they
were not giving ample thought to motivating users to collect
provenance. I was frustrated and basically went in other direc-
tions—then, almost immediately, I got two provenance propos-
als funded with collaborators. In one, we focused on use from
the beginning—in the other, I forgot my own lesson for several
years and only rediscovered it a few years later, fortunately with
enough time to change course.

That said, all those are in the higher levels of the stack.

I am actually thrilled that the systems community has embraced
provenance and is thinking hard about how to use it: security,
information flow, reproducibility, etc. I always felt that system
level provenance was the glue that could hold lots of things
together, and these folks are making it work.

So am I surprised: 1) No—I don’t think any of the things people
are doing would have surprised me in 2006. 2) Yes—it seemed
like the field wasn’t going anywhere, but it still is!

RF: The other example in your keynote had to do with program
synthesis, although to me it sounded much more ambitious than
merely being able to generate a program. The DARPA BRASS
[Building Resource Adaptive Software Systems] program
was really about extracting intent from systems so that when
circumstances changed, the system could adapt to the change
and still succeed in accomplishing the intent of the system. You
were among the “fringe lunatics” (your words) who took that to
mean making the operating system adapt to new hardware by
synthesizing operating systems from machine descriptions. That
sounds like a ridiculously tall feat to accomplish, but a very good
example for your theme. Could you tell us how that worked out?

MS: We didn’t synthesize a complete system, but we’ve synthesized
several parts of the Barrelfish operating system [2] and nearly an
entire port of our OS/161 educational operating system [3]—and
we’ve done this for about four different processors!

References
[1] M. Seltzer, “The Fine Line between Bold and Fringe
Lunatic,” 2020 USENIX Annual Technical Conference
(USENIX ATC ’20): https://www.usenix.org/conference​
/atc20/presentation/keynote-seltzer.

[2] The Barrelfish Operating System: http://www.barrelfish​
.org/index.html.

[3] D. A. Holland, A. T. Lim, M. I. Seltzer, “A New Instructional
Operating System,” in Proceedings of the 2002 SIGCSE Con-
ference (February 2002), pp. 111–115: https://www.seltzer​
.com/assets/publications/A-New-Instructional-Operating​
-System.pdf.

https://www.usenix.org/conference/atc20/presentation/keynote-seltzer
https://www.usenix.org/conference/atc20/presentation/keynote-seltzer
http://www.barrelfish.org/index.html
http://www.barrelfish.org/index.html
https://www.seltzer

