
www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 57

SRE

The Case for CS Knowledge in SRE
A D A M M C K A I G

During my career as an SRE, I’ve become convinced that knowledge of
traditional computer science topics like data structures and algo-
rithms are, while not essential to hacking together something that

kind of works, an essential part of building reliable and scalable systems.
This wasn’t always my position on the matter; as a self-taught programmer,
I got a long way without a clue about the fundamentals, believing that my
own empirical approach was superior and that the world would catch up soon
enough. In this article, I’ll share a few of the more interesting problems that
changed my attitude, how they were diagnosed, and how they were solved
with better data structures and/or algorithms.

Most systems start life as an idea and are hacked together at first. The priority is to get
something into production as soon as possible and iterate on it without worrying about
what comes next. There’s nothing wrong with that, but it doesn’t work for long, and the next
phase—productionization, that is, scalability, reliability, and so on—necessitates an almost
totally different approach and skill set. It’s also the most interesting part.

The main difference between the pre- and post-productionization phase is that the imple-
mentation details don’t matter during the former, so long as it works. Linear, log-linear, even
quadratic algorithms are blazing fast on modern hardware while n is small, and RAM is as
good as unlimited. But however much one is willing to spend on cloud bills, once n starts get-
ting large in any dimension, consistent high performance can only be achieved by carefully
choosing and implementing the appropriate data structures and algorithms to avoid having to
compromise on features. Ideally, one would be able to predict the growth of every dimension
of n and design accordingly in advance, but in practice it’s usually done reactively, when some
subsystem is approaching its performance limits.

It’s highly instructive to implement every detail oneself, but rarely is it necessary in practice;
even the most esoteric data structures and algorithms are readily available as packages for
most languages. Much more important is to develop an intuition for their performance char-
acteristics and to be able to spot those same characteristics in production workloads.

Practical Examples
These are real examples of things going wrong at scale. I’ve redacted sensitive details and
condensed them for brevity, but these are issues encountered in production at large compa-
nies you’ve probably heard of.

Fixing an Assumption
My team was supporting an old C++ service, part of a messaging system, which was having
trouble sustaining its required write throughput. The service was consuming create/update/
delete events from a message bus, and providing an API to view the most recent messages
sent or received by a given user. It had worked fine for a long time, but it couldn’t keep up as
the rate of events increased, and users were complaining that the API was serving stale data

Adam McKaig is a staff Site
Reliability Engineer at Datadog
in New York, where he looks
after a metrics system.
Previously he has built things at

Google, the New York Times, Bloomberg, and
UNICEF. His favorite language is C++, which
probably says it all. adam.mckaig@gmail.com

58    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

SRE
The Case for CS Knowledge in SRE

during peak hours. This service was running on a single big
machine, so the most obvious solution was to shard the service
and run it on many machines. But that would take time, and we
wanted to improve the situation sooner.

We improved things a bit by providing a lot more CPU and looked
into the implementation. What we found was unremarkable: a big
std::map (an ordered tree) holding the latest messages, keyed by
the user ID and timestamp. Writes would either insert a record,
or fetch a record, patch it, and replace it. Reads would find all
messages with a matching user ID and return them, which was
efficient because they were adjacent and already sorted. Old
records were garbage collected in a background thread by peri-
odically walking the entire tree.

Ordered trees are a great default for mixed workloads, that is,
workloads which have a similar proportion of reads and writes.
But when we looked at the data from production, we saw that
the rate of reads was actually remarkably low compared to the
writes, which accounted for the vast majority of work. These
writes weren’t slow, but they weren’t fast enough to keep up
with the desired volume. We also saw that our read latency was
consistently far below the threshold at which we would be paged
about it. So we investigated how we might speed up writes, know-
ing that we were able and willing to sacrifice some read perfor-
mance to do so.

It was simple for us to swap out the map with an LSM (log-
structured merge) tree, a data structure which resembles an
ordered tree but offers far more scalable inserts at the cost of
slower and less predictable reads, using an existing open source
package. We dark-launched this change into production and
observed, as we’d hoped, a tremendous improvement in through-
put with only a modest regression in read latency. I don’t recall
anyone ever complaining about the latter.

This incident taught me that although most systems rightly
expect mixed workloads and so optimize for that, that isn’t
always the reality in production, and making concessions on one
side can yield big improvements on the other.

Consider Non-Requirements
Here’s a totally different example. Much later, at a different
company, I was supporting a distributed key-value datastore
(of sorts) written in Go. The overall workload was fairly mixed:
lots of writes and lots of reads. The system stored highly denor-
malized event data and was primarily used to answer arbitrary
questions like, “What are the most-viewed widgets by users who
looked at this widget this week?” in real-ish time.

One subsystem was causing trouble: the directory service, which
basically kept track of which data were on which storage node,
and how CPU-loaded each was, so that the query nodes could fan
out incoming reads to the right places. This subsystem was read-

heavy, and the load varied throughout the day as end users came
and went. The rate of writes was more consistent, since it was
simply proportional to the number of storage nodes, which peri-
odically announced the ranges of keys they had and their overall
CPU load. Both would change regularly as data was rebalanced
by a separate subsystem.

The problem we were seeing here was that many directory reads
were too slow during peak hours. Up to about the 90th percentile
was fine, but above that, performance varied wildly. We were able
to improve things by horizontally scaling (roughly doubling) the
number of directory nodes, thereby reducing the rate of reads
that each had to handle, but this caused two more problems: uti-
lization of these nodes was now low enough that well-intentioned
cost-saving alerts were going off, which needed silencing; and
this increased load on the storage nodes, because they needed to
send twice as many announcements! Clearly this was a tempo-
rary mitigation, so we looked into improving the read throughput.

The implementation was (roughly) an augmented interval tree,
storing ranges of keys mapped back to the storage node they
could be found on, and a map of nodes to their last-reported
CPU load. Writes would update both of these: key ranges would
be inserted into the tree, and the load would be updated. Reads
would read from both: the tree would be queried for nodes con-
taining matching keys or key ranges (of which there could be
many), and the load of each node looked up from the map.

The bottleneck here was of course the tree, because there wasn’t
much else to the system. Profiling indicated that reads were too
often being blocked by writes, which had to lock the tree while
they were mutating it.

Given the requirements, and without fundamentally changing
how the system worked, we couldn’t think of an obviously better
implementation. We started designing a sharded directory ser-
vice, making it a nested distributed system of sorts, but so many
tricky edge-cases came up that we shelved it until it was really
necessary—which in the end it never was. The solution presented
itself when we went back and reconsidered the requirements.

We needed to maintain an up-to-date map of keys to nodes,
which was small enough to fit on one node, fast to query, and fast
enough to write that it didn’t interfere with the reads. But it didn’t
need to be completely up-to-date: this was an OLAP system,
not OLTP, and the map was always a bit stale because storage
nodes only reported periodically. Could we put a cache in front
of the tree, to speed up some reads in exchange for making the
data slightly more stale? We couldn’t think of a cache key which
would actually be effective, since the keyspace was so large, but
someone suggested: how about we cache the whole tree? We have
plenty of spare RAM.

www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 59

SRE
The Case for CS Knowledge in SRE

The resulting implementation was simple and effective: rather
than one tree, we stored three. One was used to serve reads; one
was updated as writes arrived. To update the read tree, the write
tree was locked and copied to a third location, and only then were
incoming reads briefly blocked as a pointer was swapped to point
to the new read tree. This frequency was tunable, and in practice
even doing so once a second was enough to virtually eliminate
the variance in read throughput.

I think about this incident often when considering requirements
and am reminded to carefully consider non-requirements, too.
Here, freshness and low memory usage were non-requirements.
The older implementation was simple but much slower than
necessary because it fulfilled requirements which were
unnecessary.

Undoing Lock Contention
Here’s another example. More recently, I was supporting a disk-
based time-series database, written in C++. This system had a
mixed read/write workload, which is typical for time-series sys-
tems. The writes were small, usually containing a single point for
a lot of metrics, and there were a lot of them. The reads were far
fewer, but far larger, often fetching data for a single metric across
a wide range of time.

My team was being paged because the error budget of our query
availability was being depleted—slowly, but fast enough that we
would run out by the end of the month if we did nothing. We could
correlate the start of the problem with an organic increase in
traffic, so we assumed that the problem would remain until we
solved it—or until our customers got fed up and the traffic went
away. We mitigated the problem by throwing extra capacity at it,
but decided to investigate further.

We determined that a small fraction of the synthetic queries
issued by our probers were taking so long to complete that they
were timing out. They seemed to occur randomly (in both time
and space) but, curiously, appeared to be correlated with small
spikes in the fraction of all queries timing out. The problem was
rare enough that we didn’t have any relevant traces available, so
we increased the fraction of traces until we caught a few of them.
The same pattern presented in all of them: the query appeared to
be fanning out to a few storage nodes, as expected, and returning
quickly from all but one of them, which timed out.

We examined various metrics emitted by the node where the
timeout occurred, around the time it did. RPC server latency
was typical at the 90th percentile, but it spiked around the 98th
for less than a minute, then went back to normal. CPU load was
normal. Memory usage was up by a small amount. IOPS was as

expected. None of these things seemed to be the cause, so we
looked into the implementation. What causes random latency
spikes when not under any kind of load?

The nodes in question had two jobs: store incoming data and
make it available for querying. The implementation was roughly
as follows: each unique time series was stored as a buffer of
(timestamp, value) pairs. To quickly look up these series, a cen-
tral metadata object served as an index, holding nested maps of
field names and values, which in turn held pointers to the buffers.
This was a big object, and it was protected by one big lock.

Writes and queries were able to scan for matching series while
holding a reader lock, meaning that many such scans could occur
at once, and the object would not change under them. Upon find-
ing the pointers to the relevant series, points were appended or
fetched from the vectors, which were protected by another read/
write lock. But there was a special behavior for writes contain-
ing new series. Those were not present in the metadata object,
and the buffers didn’t exist. So before inserting the points, the
implementation took an exclusive (writer) lock, allocated the new
buffers for each new series, and inserted the relevant elements to
the metadata object.

Experts speculated that the cause of those read latency spikes
was likely to be lock contention on this metadata object. This was
confirmed with instrumentation and profiling.

Unlike in my previous example, these nodes were resource-
constrained, and these metadata objects already accounted for
a significant fraction of the total RAM usage. We couldn’t trade
space for speed. We needed to make the writers hold the locks for
less time.

We accomplished this by replacing the global metadata lock with
narrow locks on the individual nested objects within it. When a
write included previously unseen series, it would lock only the
relevant map while inserting. This went all three levels deep
(metric names, field names, and field values), resulting in many
small locks instead of one large one. Writes might need to acquire
multiple nested locks, but each was brief, and blocked only a frac-
tion of reads rather than all of them. The new implementation
was far more complex and idiosyncratic than the original, and
it was right that it was put off. But when the time came, it was
very satisfying to see it replaced with something so much more
performant.

This project taught me that as throughput increases, so too does
the importance of careful locking. Even very brief pauses can
have a large impact if they’re blocking many requests.

60    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

SRE
The Case for CS Knowledge in SRE

Conclusion
These experiences, and others, have changed my approach to
growing and maintaining software. I’m writing about them
because I wish that I’d become convinced sooner that this fun-
damental knowledge was important and worth studying, and
perhaps concrete examples would have helped.

Finally, some unsolicited advice: Next time you’re faced with a
persistent performance or reliability problem, by all means do
what is necessary to mitigate the problem first, but consider,
then, identifying the underlying bottleneck. Are the performance
characteristics of your data structures misaligned with the
shape of your actual workload? Has some value of n become too
large to ignore? These problems can be solved, and we must not
be afraid to do so.

Save the Dates!

www.usenix.org/osdi21

www.usenix.org/atc21

The 2021 USENIX Annual Technical Conference brings together
leading systems researchers for the presentation of cutting-edge
systems research and the opportunity to gain insight into a wealth
of must-know topics, including virtualization, system and network
management and troubleshooting, cloud and edge computing,
security, privacy, and trust, mobile and wireless, and more.

JULY 14–16, 2021
SANTA CLARA, CA, USA

JULY 14–16, 2021
SANTA CLARA, CA, USA

The 15th USENIX Symposium on Operating Systems Design and
Implementation brings together professionals from academic and
industrial backgrounds in what has become a premier forum for
discussing the design, implementation, and implications of systems
software. The symposium emphasizes innovative research as
well as quantified or insightful experiences in systems design and
implementation.

Co-located with USENIX ATC ’21

Paper submissions due:
Tuesday, January 12, 2021

Co-located with OSDI ’21

PROGRAM CO-CHAIRS

Irina Calciu
VMware Research

Geoff Kuenning
Harvey Mudd College

PROGRAM CO-CHAIRS

Angela Demke Brown
University of Toronto

Jay Lorch
Microsoft Research

