
www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 61

COLUMNSBook Review
Implementing Service Level Objectives
by Alex Hidalgo

L A U R A N O L A N

In the past two years, Service Level Objectives (SLOs) have become
almost synonymous with Site Reliability Engineering (SRE). SLOs are
a reliability target—a threshold of availability and correctness that the

users of a service should be satisfied with and that the service ought to be able
to meet under normal circumstances.

Site Reliability Engineering [1], published in 2016, set out SLOs as a foundational topic:
“It’s impossible to manage a service correctly, let alone well, without understanding which
behaviors really matter for that service and how to measure and evaluate those behaviors.”
The Site Reliability Workbook [2] upped the ante in 2018, saying, “[SREs’] day-to-day tasks
and projects are driven by SLOs: ensuring that SLOs are defended in the short term and that
they can be maintained in the medium to long term. One could even claim that without SLOs,
there is no need for SREs.”

SLOs appear to be simple—we just need to choose how many nines we want—and SLO adop-
tion has often been held up as the first step on any organization’s path towards adopting SRE
practices. There is a school of thought that sees SRE as a cookie-cutter approach that can be
generically applied to any service: just define your SLOs, configure your error-budget-based
alerting, build a release pipeline with canarying and rollback, automate away the bulk of your
repetitive work, adopt the Incident Management System, and do blameless postmortems and
voila—your service will be reliable. Now, these are all worthwhile practices for sure, but are
they enough? I believe not. They will get you part of the way there, and it’s a good roadmap for
productionizing a greenfield project. However, any sizable real-world system will have its
own challenges, rough edges, and sharp corners. You need depth and a lot of context to run
systems well, not just a cookie-cutter shallow SRE process. If you want to be an SRE for a
database tier, you will need to learn a lot about databases in general and your database in par-
ticular to do it well. If you are SRE for Java-based services, you need to understand the JVM
as well as your services’ design, and so on.

Because context is so important, I personally believe that setting up a structured weekly
production meeting with comprehensive notes and solid tracking of action items is actually a
better first starting point than SLOs with a team new to SRE—you use it immediately to build
shared context on services and identify burning fires and pain points that can be mitigated
quickly. This shared context becomes a useful foundation for defining SLOs. But deep service
expertise is not generic—it’s qualitative, not quantitative, and it takes time to build. It’s not as
easy to write an article or a book chapter about it. You can’t create a platform to sell Context-
as-a-Service, there are no clever-sounding acronyms, and there are no graphs for executives.
In short, it isn’t going to help you sell anything or get you promoted (not directly, anyway).

As SREs go, therefore, I’m something of an SLO skeptic. However, even I concede that though
SLOs may not be a silver bullet, they are nonetheless useful, and stable SRE teams ought to
ensure that their services have appropriate SLOs. SLOs do have a lot of benefits: they can pro-
vide an explicit “contract” of sorts between services provided by different teams, helping create
clarity about expected reliability and customer needs. SLOs can help you set alerting thresholds
and feed into decision making about priorities (without being the sole input to that process).

Laura Nolan’s background is
in Site Reliability Engineering,
software engineering, distrib-
uted systems, and computer
science, with a career split

roughly evenly between software engineering
and SRE-like roles. She has contributed to a
number of SRE books, including Site Reliability
Engineering, Seeking SRE, and 97 Things Every
SRE Should Know. Outside of work, Laura is a
part-time student of technology ethics at Dub-
lin City University and is an active campaigner
against autonomous weapons. Laura currently
serves on the board of USENIX. 
laura.nolan@gmail.com

62    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

COLUMNS
Book Review: Implementing Service Level Objectives

Nines Are Not Enough
It’s been encouraging to see the conversation around SLOs gain
nuance and depth in the past year, compared to the fairly basic
treatments in the original 2016 Site Reliability Engineering [1]
and the 2018 Site Reliability Workbook [2]. Mogul and Wilkes’
HotOS 2019 “Nines Are Not Enough” paper [3] is required read-
ing for anyone interested in the topic—it includes an analysis of
some of the real-world complexities and tradeoffs of providing
SLOs, including the role of customer behavior; no system can
defend an SLO when arbitrary behaviors are allowed. Narayan
Desai’s talk on SLOs, “The Map Is Not the Territory” [4], dis-
cusses a different set of difficulties, particularly around how the
aggregation process can mask significant customer pain, espe-
cially for low-QPS services or unevenly distributed errors that
affect some customers much more than others. Finally, August
2020 saw the release of an entire book [5] dedicated to SLOs:
Alex Hidalgo’s Implementing Service Level Objectives.

Hidalgo introduces the core concepts—SLOs, service level
indicators (SLIs), and error budgets—in a similar way to the
SRE book [1] and SRE workbook [2] but spends time considering
SLOs for significantly more “shapes” of services: not only simple
RPC or HTTP services, but also datastores, compute platforms,
pipelines, and batch jobs. Data reliability gets an entire chapter,
written by Polina Giralt and Blake Bisset, which proposes 13 prop-
erties of data, such as freshness, accuracy, and completeness,
along with discussions on how to measure these. This chapter is
particularly welcome: many of us are running either datastores
or pipelines or both. The properties of data-intensive systems
are both more complicated than those of the simple request-
processing systems normally used to illustrate SLOs, as well as
usually more difficult to measure.

Chapter 4, “Choosing Good SLOs,” is the foundation for the whole
book. Again, it covers a lot of the same ground as the SRE book
and SRE Workbook, but with some valuable additions. There is
a particularly good discussion of the organization and opera-
tional problem that arises from having too many SLOs—resist
the temptation to think that every important metric should have
an SLO associated with it. The discussion on SLO composition,
meaning how to think about your services’ reliability in rela-
tion to that of the services you depend on, is valuable and doesn’t
shy away from detail. Toby Burress and Jaime Woo’s chapter
on probability and statistics develops this further, alternat-
ing between theory of probability and statistics and concrete
applications to difficult SLI calculations (such as infrequent
batch jobs, requests that can be retried), and latency in queueing
systems.

Burress and Woo’s chapter and the “Architecting for Reliability”
chapter by Salim Virji are very useful treatments of the math
involved in building (or modifying) services to meet a desired SLO.

Hidalgo places a lot of emphasis on getting SLIs right, which
is very worthwhile because this is often much more difficult
in practice than the introductory examples from the SRE book
suggests. There is significant material on the details of comput-
ing SLIs, including fairly well-known best practices such as
use of percentiles rather than means and how to deal with time
windows, as well as less well-known practical problems such as
infrequent events and noisy or low-quality data. This is built on
later by Ben Sigelman’s chapter on measuring SLIs and SLOs,
which discusses the tradeoffs involved in computing SLIs from
time-series databases and structured event databases (or logs)
and distributed traces. Sigelman’s chapter usefully points out
a number of traps for the unwary, such as relying on metrics
reported by potentially malfunctioning services as opposed to
other systems’ view of those services.

Niall Murphy’s chapter on SLO-based alerting rounds out the
section of the book that is focused on the technical details of
implementing SLOs. I particularly like that this section pres-
ents a progressive set of steps for improving your alerting in a
brownfield situation. There is a valuable discussion of how to set
up separate long-duration and short-duration alert thresholds
to detect both major short term-problems and significant but
slower-burning issues that are consuming your error budget at a
higher than anticipated rate. This valuable alerting pattern is not
used widely enough, but it is an excellent mechanism for catching
serious but not immediately catastrophic problems without caus-
ing excessive pager noise.

The “Worked Example” chapter puts together a set of SLOs for
several user-facing and internal systems with a variety of archi-
tectures and requirements. The author does a consistently good
job of putting the end-user experience front and center here and
relating it to the SLOs and SLIs proposed. However, most of the
systems and SLOs proposed are fairly simple, and this chapter
could do more to reinforce Giralt and Bisset’s chapter on data
systems, or Murphy’s chapter on alerting.

The book closes with a series of less technical chapters on the
theme of building an SLO culture, discussing topics like setting
up SLOs in organizations new to the concept, how your SLOs
may evolve as your service changes over time, how to make your
SLOs discoverable to other teams, and how to advocate for SLOs.
The final chapter (on SLO reporting) contains a fairly lengthy
polemic on why SLO reporting is superior to reporting based on
Mean Time To Recovery (and similar metrics)—Hidalgo is right
to say that these kinds of measurements are subjective and not
generally meaningful because incidents are so different from
each other.

www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 63

COLUMNS
Book Review: Implementing Service Level Objectives

Any engineer who works day-to-day with reliability, metrics,
monitoring, and alerting ought to have a copy of this book. Even
those who don’t necessarily want to see how deep the SLO cul-
ture-change rabbit hole goes will gain much from the technical
chapters, which can inform your monitoring and alerting strate-
gies and even the tradeoffs made in your system architecture.

References
[1] “Service Level Objectives,” Chapter 4 in B. Beyer, J. Petoff,
N. R. Murphy, and C. Jones, eds., Site Reliability Engineering:
How Google Runs Production Systems (O’Reilly Media, 2016).

[2] “Implementing SLOs,” Chapter 2 in B. Beyer, N. R. Mur-
phy, D. K. Rensin, K. Kawahara, and S. Thorne, eds., Site Reli-
ability Workbook: Practical Ways to Implement SRE (O’Reilly
Media, 2018).

[3] J. C. Mogul and J. Wilkes, “Nines Are Not Enough: Mean-
ingful Metrics for Clouds,” in Proceedings of the Workshop
on Hot Topics in Operating Systems (HotOS ’19), pp. 136–141:
https://dl.acm.org/doi/pdf/10.1145/3317550.3321432.

[4] N. Desai, “The Map Is Not the Territory,” at SRE-
con19 EMEA 2019: https://www.usenix.org/conference​
/srecon19emea/presentation/desai.

[5] A. Hidalgo, Implementing Service Level Objectives (O’Reilly
Media, 2020).

https://dl.acm.org/doi/pdf/10.1145/3317550.3321432
https://www.usenix.org/conference/srecon19emea/presentation/desai
https://www.usenix.org/conference/srecon19emea/presentation/desai

