
64 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

COLUMNS

Systems Notebook
What’s in That Container?

C O R Y L U E N I N G H O E N E R

Have you ever opened your refrigerator to get a tasty snack and caught
sight of that one container in the back, the one that is unmarked but
you know has been there since sometime last June? And as you close

the door, you kind of wonder if it just moved a little? Have you ever felt the
same way about Linux containers running on your servers? What exactly is
in there? And how did they get there in the first place?

Containers on Linux have been the new hotness for some time now, which I suppose makes
them pretty hot indeed. But despite the ubiquity of containers today, a lot of us still only inter-
act with them by running docker run. Not one to take a whale for its word, I think it’s worth
looking more deeply at what’s really going on. While there’s only room to scratch the surface,
over the next several pages I’m going to take a look at what Linux containers are made of, how
to create a super-simple container using a few command line tools, and how to use those same
tools to understand what Docker is doing under the covers.

But first, some caveats. Mentioning “Linux containers” can cause strong reactions among
some people, so I want to state upfront this isn’t going to be a column about the security
implications of containers, how various operating systems provided the same functionality
earlier (or better), what the exact definition of a “container” is, or anything else like that. This
is just a quick look at (spoiler!) how Linux namespaces are used to provide container func-
tionality. There are some simplifications in here for the sake of brevity and clarity, so forgive
me if I leave out your favorite details about Linux containers. If you want a real deep dive into
everything here, take a look at the references at the end of this column.

It’s All Part of the Process
Back in the age of dinosaurs, when operating systems textbooks were written, you may recall
learning that a process is the embodiment of a program running on a UNIX-like system. It
contains the program code itself, as well as its active memory, a pointer to what instruction
is currently running, and various other bookkeeping data structures. A booted system starts
out with a single process running, process ID (PID) 1, and all other processes on the system
can trace their lineage through a series of fork() and exec() system calls back to that initial
process. All running processes are given a unique PID number, and, by default, all processes
exist in a global shared namespace that lets them see information about all other processes
currently running on the system. On a UNIX-like system, much of the information about
running processes is presented to users in the /proc file system. There, the information is
organized by directories named after processes’ numeric IDs.

What if, instead of process information existing in a global namespace, processes could
have their own independent views of what /proc looked like? In this scenario, after a process
forks, the parent process would be told that its child got an incrementally higher PID, while the
child process would be told that it is PID 1: the first process on a fresh system. Everything
else would be shared between these processes—the kernel, file systems, users—but the new
process would be in a new process namespace and have a new, empty view of what other pro-
cesses exist on the system.

Cory Lueninghoener makes
big scientific computers do big
scientific things, mainly looking
at automation, scalability, and
large-scale system design. If

you don’t see him hanging out with the LISA
and SREcon crowd, he’s probably out exploring
the mountains of northern New Mexico.
cluening@gmail.com

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 65

COLUMNS
Systems Notebook: What’s in That Container?

[root@localhost ~]ls -l /proc/$$/ns
total 0
lrwxrwxrwx. 1 root root 0 Aug 24 03:40 cgroup ->
 'cgroup:[4026531835]'
lrwxrwxrwx. 1 root root 0 Aug 24 03:40 ipc ->
 'ipc:[4026531839]'
lrwxrwxrwx. 1 root root 0 Aug 24 03:40 mnt ->
 'mnt:[4026531840]'
lrwxrwxrwx. 1 root root 0 Aug 24 03:40 net ->
 'net:[4026531992]'
lrwxrwxrwx. 1 root root 0 Aug 24 03:40 pid ->
 'pid:[4026531836]'
lrwxrwxrwx. 1 root root 0 Aug 24 03:40 pid_for_children ->
 'pid:[4026531836]'
lrwxrwxrwx. 1 root root 0 Aug 24 03:40 user ->
 'user:[4026531837]'
lrwxrwxrwx. 1 root root 0 Aug 24 03:40 uts ->
 'uts:[4026531838]'

The numbers that the links point to are unique identifiers for
each of the namespaces on the system, and any processes that
share those numbers also share that particular namespace.

A program can use the clone() system call function with appro-
priate flags to create a copy of itself in a new namespace, ready to
be replaced with a call to exec(). Meanwhile, an existing process
can use the unshare() call to create and join private, non-shared
namespaces or setns() to join existing namespaces. Each of these
functions accepts a set of f lags that specify what new name-
spaces to create.

Alternatively, the unshare and nsenter command line tools, pro-
vided by the util-linux package, can be used to create processes
that are in new namespaces or members of existing namespaces
from the command line. These tools provide command-line options
to control which namespaces are created or joined.

Let’s Get Our Hands Dirty
Let’s take a look at namespaces on a real system. Using the
unshare command line tool, it is easy to create a new process
with one or more namespaces that are unique from its parent.
We’ll start by creating a new shell that’s in a new PID namespace,
but shares its other namespaces with its parent. With that new
shell created, we can look at what processes are visible both
inside and outside this miniature “container” and how to add
more processes to it.

You can follow along on your own system: all of these examples
were run on a CentOS 8 virtual machine booted up using Vagrant
and VirtualBox, and for clarity each line of the shell session has
been prefixed with [o], for outside of the new namespace, or [i],
for inside the new namespace.

First, we’ll use unshare to create a new shell in a new PID
namespace.

Can You Guess My Namespace?
This world exists, and it has existed since 2007 when kernel
version 2.6.24 introduced PID namespaces. Similar to how
variable namespacing in a programming language can keep
variables in one function hidden from variables in another
function, namespaces in the Linux kernel can create private
views of kernel data for different processes. When a process
creates and joins a new PID namespace, the kernel tells it that it
is PID 1 and the only process running on the system. All descen-
dants of this new PID 1 will be put in the same PID namespace,
and their view of the running system will be limited to the
contents of their namespace.

There are two important things to note about this functionality:
one is that PID namespaces are created in a hierarchy, much like
the way that processes are created. This means that processes
higher up in the namespace hierarchy can see all of the processes
in PID namespaces that exist below them, while processes in leaf
namespaces can only see processes that are members of their
own PID namespace. The other is that multiple PID namespaces
can exist at the same time, meaning a system can have many
processes running on it that all believe they are PID 1.

But That’s Not All
PID namespaces aren’t the only namespaces that can be created,
and they weren’t even the first ones to be included in the Linux
kernel. That distinction belongs to mount namespaces, which
appeared in Linux 2.4.19 in 2002. Today there are eight name-
spaces available, and they all have the same goal: give processes
a private view of certain system resources. Along with the PID
namespace that we’ve already seen, this includes hostname
and network information (UTS and Network namespaces), file
systems (Mount namespace), system users (User namespace),
and time, resource, and IPC objects (Time, Cgroup, and IPC
namespaces).

In its simplest form, a Linux container is nothing more than pro-
cesses in one or more private namespaces. But looking at the list
of available namespaces, you can start to imagine how you could
use them to turn simple processes into something that looks like
an entirely new computer without relying on starting up a virtual
machine.

Where Does It Come From?
Like many kernel internals related to processes, the bookkeeping
that makes namespaces work is exposed to userspace in /proc.
Any process running on a modern Linux kernel has a /proc/
[PID]/ns directory associated with it, and the namespaces that
that process belongs to are presented as symbolic links within
that directory. For example, to look at the namespaces that your
current shell belong to, you can do the following:

66 WI N T ER 2020  VO L . 45 , N O. 4 www.usenix.org

COLUMNS
Systems Notebook: What’s in That Container?

[o] [root@localhost ~]unshare --fork --pid --mount-proc
 /bin/bash
[i] [root@localhost ~]#

At this point, the unshare command has started a new copy
of bash with a new PID namespace. Both the old shell and the
new shell have the same prompt, so it’s kind of anticlimactic.
But recall that in the previous section we saw that the list of
namespaces a process belongs to is exposed in /proc/<PID>/ns.
If you compare the new shell’s namespaces against the shell in
the previous section, you can see that the new shell is indeed in a
new PID namespace:

[i] [root@localhost ~]ls -l /proc/$$/ns
[i] total 0
[i] lrwxrwxrwx. 1 root root 0 Aug 24 03:42 cgroup ->
 'cgroup:[4026531835]'
[i] lrwxrwxrwx. 1 root root 0 Aug 24 03:42 ipc ->
 'ipc:[4026531839]'
[i] lrwxrwxrwx. 1 root root 0 Aug 24 03:42 mnt ->
 'mnt:[4026532155]'
[i] lrwxrwxrwx. 1 root root 0 Aug 24 03:42 net ->
 'net:[4026531992]'
[i] lrwxrwxrwx. 1 root root 0 Aug 24 03:42 pid ->
 'pid:[4026532156]'
[i] lrwxrwxrwx. 1 root root 0 Aug 24 03:42 pid_for_children
 -> 'pid:[4026532156]'
[i] lrwxrwxrwx. 1 root root 0 Aug 24 03:42 user ->
 'user:[4026531837]'
[i] lrwxrwxrwx. 1 root root 0 Aug 24 03:42 uts ->
 'uts:[4026531838]'

Looking closely, you’ll notice that the new shell is also a member
of a new Mount namespace. The unshare man page explains why
in its PID namespace section:

“It also implies creating a new mount namespace since the
/proc mount would otherwise mess up existing programs on
the system.”

So we gained two namespaces for the price of one.

Since this new shell is a member of a new PID namespace, the
only processes it knows about are itself, which it sees as PID 1,
and its descendants. We can see this by running the ps command:

[i] [root@localhost ~]ps -ef
[i] UID PID PPID C STIME TTY TIME
 CMD
[i] root 1 0 0 03:41 pts/0 00:00:00
 / bin/bash
[i] root 18 1 0 03:44 pts/0 00:00:00
 ps -ef

Meanwhile, this same process is visible from the system’s default
namespaces with a different PID number. It just takes some
sleuthing to find it. Starting up another login shell on the system,
we can find the namespaced process by looking for the original
unshare process and examining its only child. Here we find that

the parent namespace identifies our namespaced shell as PID
33783:

[o] [root@localhost ~]ps -ef
[o] UID PID PPID C STIME TTY TIME
 CMD
 ...
[o] root 33782 5283 0 03:41 pts/0 00:00:00
 unshare --fork --pid --mount
[o] root 33783 33782 0 03:41 pts/0 00:00:00
 /bin/bash
 ...

After one process creates a new namespace, other processes can
join it. Having found our new container process from outside of
its PID namespace, we can also start a new shell within its new
PID namespace. With the original namespaced bash process still
running via unshare, we can use the nsenter command to join it
by targeting its external process ID:

[o] [root@localhost ~]nsenter --all --target 33783 /bin/bash
[i] [root@localhost /]ps -ef
[i] UID PID PPID C STIME TTY TIME
 CMD
[i] root 1 0 0 03:41 pts/0 00:00:00
 /bin/bash
[i] root 19 0 0 03:47 pts/1 00:00:00
 /bin/bash
[i] root 34 19 0 03:47 pts/1 00:00:00
 ps -ef

Let’s review what all we just did: starting with a fresh virtual
machine, we created a new process in a new PID namespace,
confirmed that it appeared as PID 1, and started another new
process inside that same namespace. Now, let’s take it a step
further.

Let’s Build a Simple Container
Let’s get one step closer to a full Docker-style container by build-
ing a new operating system image and starting processes using
it. CentOS includes the debootstrap package, which can be used
to install a full Ubuntu system inside of a single directory tree
on a CentOS system. We can use that tool to create an Ubuntu
file-system image in /root/ubuntu-bionic, and then use unshare
along with chroot to create a shell with new Mount and PID
namespaces in use. Once that shell is running, it will look exactly
like it is running on an Ubuntu system. This can all be done from
within a clean CentOS 8 install in a virtual machine.

[o] [root@localhost ~]yum install epel-release
 <output trimmed>
[o] [root@localhost ~]yum install debootstrap
 <output trimmed>
[o] [root@localhost ~]mkdir ubuntu-bionic
[o] [root@localhost ~]debootstrap --arch=amd64 bionic
 /root/ubuntu-bionic/ http://mirrors.vcea.wsu.edu/ubuntu/
 <output trimmed>
[o] I: Base system installed successfully.

www.usenix.org WI N T ER 2020  VO L . 45 , N O. 4 67

COLUMNS
Systems Notebook: What’s in That Container?

[o] [root@localhost ~]unshare --fork --pid --mount-proc
 --mount chroot /root/ubuntu-bionic /bin/bash
[i] root@localhost:/mount -t proc proc /proc
[i] root@localhost:/mount -t sysfs sysfs /sys
[i] root@localhost:/ps -ef
[i] UID PID PPID C STIME TTY TIME
 CMD
[i] root 1 0 0 03:54 ? 00:00:00
 /bin/bash
[i] root 13 1 0 03:54 ? 00:00:00
 ps -ef
[i] root@localhost:/head -2 /etc/os-release
[i] NAME="Ubuntu"
[i] VERSION="18.04 LTS (Bionic Beaver)"

This still doesn’t fully replicate the full containerization pro-
vided by tools like Docker, but we’ve started to get close. In the
last several sections, we’ve essentially run docker build (using
debootstrap), docker run (using unshare), and docker exec
(using nsenter). As homework, you can expand this work by com-
bining this same set of commands with other namespaces, giving
you the ability to change the hostname, assign private network
interfaces, and more.

Now, let’s try the same tricks with a real Docker container.

What Was That about Docker?
Way back in the first paragraph of this column, I asserted that
many people’s main interface to containers is docker run. Since
then, we’ve learned that containers are just processes with
unique namespace configurations that give them the ability to
see different root file systems, different process trees, and the
like. When Docker starts a container, it uses the exact same
kernel mechanisms we just looked at to get the job done. That
means that you can use these same tools to interact with Docker
containers, but without the Docker commands. As an example,
let’s use nsenter to replicate the base functionality provided by
docker exec. As with the earlier examples, everything here was
done within a CentOS 8 virtual machine built using Vagrant and
VirtualBox.

To start, we’ll fire up a simple Docker container and start a sleep
inside it so that the process is easy to find:

[o] [root@localhost ~]docker run -it ubuntu bash
[i] root@94802998616b:/sleep 300

We can find this same process from outside of the container, just
like we did before:

[o] [root@localhost ~]ps -ef | grep sleep
[o] root 52039 51999 0 04:00 pts/0 00:00:00
 sleep 300

Using the nsenter command, we can start a new shell that joins
all of the same processes that the sleep command is a member of:

[o] [root@localhost ~]nsenter --all --target 52039 /bin/bash
[o] root@94802998616b:/ps -ef
[o] UID PID PPID C STIME TTY TIME
 CMD
[o] root 1 0 0 03:59 pts/0 00:00:00
 bash
[o] root 8 1 0 04:00 pts/0 00:00:00
 sleep 300
[o] root 9 0 0 04:01 ? 00:00:00
 /bin/bash
[o] root 12 9 0 04:01 ? 00:00:00
 ps -ef
[o] root@94802998616b:/

The new shell is now a member of the Docker container, complete
with the container’s hostname (94802998616b) and the only four
processes it knows about (two instances of bash, plus sleep and
ps processes). We’ve just replicated the base functionality of
docker exec with standard Linux utilities.

Conclusion
Building containers by hand is more of an interesting trick than
something that’s useful in production, but knowing what’s going
on underneath Docker, Buildah, Podman, and other container
tools gives you greater insight into how to tune, debug, and work
with those tools. By understanding the underlying technology
and how to access it with lower-level tools, you have a better
overall view of how your system works and how to keep it run-
ning optimally.

References
If you want to dig deeper into Linux namespaces, here are two
great places to start:

Namespaces(7) Linux manual page: https://man7.org/linux
/man-pages/man7/namespaces.7.html.

M. Kerrisk, “Namespaces in Operation” series, The Linux
Weekly News, January 4, 2013: https://lwn.net/Articles
/531114/.

https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://lwn.net/Articles/531114/
https://lwn.net/Articles/531114/

