
76    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

COLUMNS

Programming Workbench
Compressed Sparse Row Format for Representing Graphs

T E R E N C E K E L L Y

Terence Kelly studied computer science at
Princeton and the University of Michigan,
followed by a long stint at Hewlett-Packard
Laboratories. Kelly now writes code and
documentation promoting persistent memory
programming and other programming
techniques. His past publications—some of
tragicomic interest only—are listed at
http://ai.eecs.umich.edu/~tpkelly/papers/.
tpkelly@eecs.umich.edu.

W elcome to the second installment of Programming Workbench.
Today’s topic is compressed sparse row (CSR) format, a compact
and efficient way to represent graphs in memory. As usual, all

example code is available in machine-readable form [6].

Graphs provide a generic abstraction that finds numerous applications for modeling connect-
edness and ordering in computing systems. Undirected graphs, for example, can represent
communications links among computers; directed graphs can encode dependencies or prece-
dence constraints in software compilation, software package installation, and job scheduling
problems. Top computer science textbooks emphasize two ways of representing graphs in
memory: adjacency matrices and adjacency lists [1, 8]. Today we’ll consider other options that
offer different tradeoffs and sometimes provide significant advantages. In particular we’ll
see that compressed sparse row (CSR) format—a compact and memory-hierarchy-friendly
graph representation—is sometimes the format of choice. Understanding CSR in detail
rounds out a programmer’s education and informs the buy-or-build decisions that routinely
confront practitioners.

We’ll begin in the next section by reviewing ways of representing graphs, including CSR.
Then we’ll walk through a working C11 program that converts an edge list representation of
a graph into CSR format. Finally we’ll conclude by suggesting extensions and exercises to
help better understand the tradeoffs surrounding CSR. For brevity, we’ll restrict attention to
unweighted directed graphs, but we thereby lose little generality: an undirected edge can be
represented by two directed edges in opposite directions, and adding edge weights to a CSR
representation is easy.

Graph Representations
Figure 1(a) shows a directed graph that we’ll use as a running example. We follow the conven-
tion that vertexIDs range from 1 to V inclusive, where V is the total number of vertices. The
example graph contains V=9 vertices and E=9 directed edges. For example, there’s a directed
edge from vertex 2 to vertex 1, shown as an arrow near the top of Figure 1(a). Vertices 5 and 9
have in-degree zero and out-degree zero, i.e., they have neither incoming nor outgoing edges.
Zero-degree vertices arise naturally in applications; for example, they may represent soft-
ware packages with no dependencies or compute jobs with no precedence constraints.

Rather than treating zero-degree vertices as special cases, removing them and/or handling
them “out of band,” we’ll take the simpler approach of representing them straightforwardly.
Self edges, i.e., edges that point from a vertex to itself, do not appear in our example, but they
pose no special difficulties for the graph representations discussed below. We omit self edges
for brevity; they arise relatively infrequently in applications of practical interest.

In many practical applications, a graph is given as a file that essentially contains an edge list
of “from”/“to” vertexID pairs, possibly mummified in a more elaborate format such as XML
or JSON. Figure 1(b) shows an edge list representation of our example graph. The first line
in the list, “2 1,” represents the directed edge from vertex 2 to vertex 1. Zero-degree vertices,
such as 5 and 9 in our example, don’t appear in an edge list, so metadata accompanying the

www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 77

COLUMNS
Programming Workbench: Compressed Sparse Row Format for Representing Graphs

edge list must ensure that zero-degree vertices don’t go missing:
Thanks to our vertexID convention, simply knowing V ensures
that we don’t overlook zero-degree vertices. For clarity, Figure 1(b)
shows a sorted edge list, but edge lists seldom arrive sorted in
practical applications.

Figure 1(c) depicts a standard textbook adjacency matrix rep-
resentation of our example graph. A directed edge from vertex
i to vertex j appears as a “1” at row i, column j of the adjacency
matrix; all other matrix entries are zero (not shown for clarity).
An adjacency matrix is efficient for some operations, such as
testing in constant time whether an edge connects a given pair of
vertices. The major downside of adjacency matrix representation
is that it requires O(V2) bits even for sparse graphs in which most
vertex pairs are not connected by an edge. Sparse graphs arise
frequently in practice, and for large sparse graphs an adjacency
matrix wastes too much memory on zero entries.

The representation that most textbooks recommend for sparse
graphs uses adjacency lists, shown in Figure 1(d). On the left is
an array of pointers indexed by “from” vertexID; each pointer is
the head of a singly linked list of “to” vertexIDs. Adjacency lists
are f lexible—it’s easy to add or delete vertices—and they are

indeed more compact than adjacency matrices for sparse graphs.
However they entail unfortunate time and space overheads of
their own: space overheads include the “next” pointer in every
list node; list nodes will also carry allocator overheads if a
general-purpose allocator like malloc() creates them. We suffer
time overheads when we traverse an adjacency list because we
must chase pointers across the address space, creating random
memory accesses that today’s computers penalize heavily
compared with sequential accesses. If we transform an unsorted
edge list representation into dynamically allocated adjacency
lists in the straightforward way, the list nodes for each adjacency
list will be scattered across the heap, exacerbating the pointer-
chasing problem.

Using C++ Standard Template Library <vector>s instead of
linked lists might seem like one way to reduce the overheads of
adjacency lists. Figure 1(e) shows the resulting adjacency vec-
tors representation. As with adjacency lists, an array indexed
by “from” vertexID contains entry points to <vector>s of “to”
vertexIDs. The dashed oval at the bottom of Figure 1(e) encloses
the <vector> of vertexIDs adjacent to vertex 8. A <vector> is
typically implemented as a two-part structure consisting of a

Figure 1: Textbook representations of running example, a directed graph with nine vertices and nine edges. The C++ STL <vector> depicted within the
dashed oval in Figure 1(e) is a two-part data structure: a partially filled data array, on the right, located via the header on the left, which contains the capacity
of the data array, the number of positions in the array occupied by user data (which may be less than the capacity, as shown here), and a pointer to the data
array itself. The header of the <vector> enclosed by the dashed oval indicates that the data array can hold two integers but is currently holding only one.
This <vector> represents the adjacencies of vertex 8, and the lone integer contained in the data array corresponds to the directed edge from vertex 8 to
vertex 4, i.e., the last line of the edge list in Figure 1(b).

78    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

COLUMNS
Programming Workbench: Compressed Sparse Row Format for Representing Graphs

header containing the number of allocated entries, the number of
occupied entries, and a pointer to an array of the entries them-
selves [10]. If we read a graph given as an edge list into adjacency
<vector>s in the straightforward way, each <vector> grows
as vertexIDs are added to it. Implementations typically double
allocated capacity each time a <vector> fills up as it grows. The
result is that up to roughly half of the allocated capacity of each
vector can be unused; this waste may erode the benefits of reduc-
ing pointer and allocator overheads compared with adjacency
lists. On the positive side, <vector>s reduce the time overhead
of chasing pointers because they store adjacent vertexIDs in
compact arrays.

The representations shown in Figure 1 don’t exhaust all of the
possibilities. For example, we sometimes need fast access to
the incoming as well as the outgoing edges of a vertex, which is
easy to arrange by associating a second adjacency list with each
vertex. And nothing prevents us from using both an adjacency
matrix and adjacency lists or <vector>s simultaneously, if we
have sufficient memory. Using both representations yields the
strengths of both: constant-time queries to test the existence of
an edge between a given pair of vertices, and efficient access to
the adjacent vertices of a given vertex.

Compressed Sparse Row Format
CSR originated in high-performance scientific computing as a
way to represent sparse matrices, whose rows contain mostly
zeros. The basic idea is to pack the column indices of non-zero
entries into a dense array. CSR is more compact and is laid out
more contiguously in memory than adjacency lists and adjacency
<vector>s, eliminating nearly all space overheads and reducing
random memory accesses compared with these other formats.
The price we pay for CSR’s advantages is reduced flexibility: add-
ing new edges to a graph in CSR format is inefficient, so CSR is
suitable for graphs whose structure is fixed and given all at once.
CSR also carries a cognitive overhead: it’s trickier than the other

formats we’ve reviewed, and it uses arrays in FORTRANesque
ways seldom seen in systems-y C/C++ code or in mainstream
Java code. We’ll walk through it slowly.

Figure 2 depicts the CSR representation of our example graph.
First we’ll consider the specifics of how CSR encodes a hand-
ful of the example graph’s structural features, and then we’ll
describe CSR in more general terms. Like the textbook sparse-
graph representations discussed earlier, CSR facilitates finding
the adjacencies of a given vertex, i.e., the vertices at the “to” ends
of edges emanating out of a given “from” vertex. CSR finds adja-
cencies using two layers of array indexing.

The CSR depicted in Figure 2 contains V, E, and two arrays of
integers, N and F. Notice that F presents horizontally the same
sequence of “to” vertexIDs that appear vertically in the right-
hand column of the sorted edge list of Figure 1(b). Given a “from”
vertexID, we find all corresponding “to” vertexIDs by indexing
into F via N. We’ll walk through the process of finding the adja-
cencies of the first three vertices in our example graph to gain
intuition for how CSR encodes graph structure.

The out-degree of vertex 1 is encoded as the difference between
N[1] and N[2]. Since N[1] equals N[2]—both are zero—the out-
degree of vertex 1 is zero, so there are no adjacent vertices to be
found. The out-degree of vertex 2 is N[2] subtracted from N[3],
which is 3. The IDs of the three vertices adjacent to vertex 2 are
in array F starting at position N[2], i.e., at F[0], as indicated by
the dotted arrow in Figure 2 from N[2] to F[0]. The out-degree of
vertex 3 is the difference between N[3] and N[4], which is three;
the IDs of the three vertices adjacent to vertex 3 begin at position
N[3] in F, i.e., at F[3], as shown by a second dotted arrow in Figure
2. The figure contains a dotted arrow for every vertex with out-
degree greater than zero; the arrowheads partition F into four
sub-arrays of adjacencies.

In general, the out-degree of any vertex a is N[a+1] minus N[a].
The IDs of the vertices adjacent to a are located in array F start-
ing at F[N[a]] and continuing through F[N[a+1]-1] inclusive.
In other words, the entries of N, indexed by “from” vertexID,
“point to” contiguous regions of F containing the adjacent “to”
vertexIDs. Array F contains E entries, one for each edge. Array
N contains V+2 entries: N[0] is unused and N[V+1] contains E.
The total amount of memory required for CSR format is almost
exactly equal to sizeof(int) multiplied by (V+E), so it’s easy to
determine if available memory is adequate based on a graph’s size
parameters.

If E exceeds INT_MAX, a larger integer type, e.g., int64_t, must be
used for the elements of N, because the entries of N refer to posi-
tions in E-long array F and the last entry of N contains E. Simi-
larly, F must use a sufficiently large type to represent vertexIDs
up to V. Moreover it’s actually best to choose a type for vertexIDs

Figure 2: Compressed sparse row (CSR) representation of example graph.
The vertices adjacent to vertex a are stored in positions N[a] through
N[a+1]-1 of array F. For example, consider vertex 2 from Figure 1(a):
directed edges extend from vertex 2 to vertices 1, 6, and 8. N[2] is zero,
so the adjacencies of vertex 2 start at F[0]; N[2+1]-1 is 2, so they extend
through F[2]. F[0] through F[2] contain the expected vertexIDs: 1, 6,
and 8.

www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 79

COLUMNS
Programming Workbench: Compressed Sparse Row Format for Representing Graphs

such that V is strictly less than the MAX of the type, because V+1 is
used as an index into N. Unsigned integer types may be used for
arrays N and F, though signed integer types might be preferable,
e.g., if we want to catch signed overflow errors at runtime with a
compiler flag like GCC’s -ftrapv.

CSR offers different tradeoffs than alternative formats. On the
positive side, it eliminates memory allocation overheads almost
completely. Furthermore, while array N contains the moral equiv-
alent of pointers, they can be smaller than conventional pointers
(32 vs. 64 bits), depending on the size of E and the relative sizes
of ints and ordinary C pointers. The IDs of vertices adjacent to a
given vertex are contiguous in F, so visiting all adjacent vertices
involves zooming through an array, which is much faster on
modern computers than chasing pointers down an adjacency list.
While adding a new edge to a CSR representation isn’t efficient—
it would require insertion into the middle of F, which would take
O(E) time on conventional memory [3]—deleting an edge is quick
and easy: to delete an edge, simply set its entry in F to zero, which
is not a valid vertexID, and ignore zero entries in F.

CSR isn’t magic. When applied to the kinds of graphs that arise
naturally in practical applications, many important graph algo
rithms, including traversal algorithms such as breadth-first
search and depth-first search, must inevitably perform random
memory accesses. CSR can’t eliminate random memory accesses
that are inherent to the computational task at hand; it can merely
avoid introducing additional random accesses that arise as side
effects of the format.

The Code
The C11 program listed in this section, “el2csr.c,” converts an
edge list representation of an unweighted directed graph to CSR
format; the source code is available at [6]. We’ll discuss every-
thing substantive, skipping boilerplate like #includes. The pur-
pose of the example code is to illustrate CSR format, so it avoids
niceties for brevity and clarity.

The macros below handle error checking. BAIL() prints an error
message prefixed by the file name and line number where it is
called then exit()s. CAL() calls calloc() and bails if allocation
fails.

#define ERRSTR strerror(errno)
#define S1(s) #s
#define S2(s) S1(s)
#define COORDS __FILE__ ":" S2(__LINE__) ": "
#define BAIL(...) \
 do { fprintf(stderr, COORDS __VA_ARGS__); \
 exit(EXIT_FAILURE); } while (0)
#define CAL(p, n, s) \
 do { if (NULL == ((p) = (int *)calloc((n), (s)))) \
 BAIL("calloc(%lu, %lu): %s\n", (n), (s), ERRSTR);\
 } while (0)

Readers may recall from the previous Programming Workbench
column a function-like macro called “DIE()” that differs from
BAIL() above but serves a similar purpose. The contrast between
the two stems from differences in how they are used and from
differences in the programs they inhabit. DIE() is used exclu-
sively to handle failed library calls, and thus it is adequate for
DIE() to report only the name of the failed call via perror(). By
contrast, BAIL() is sometimes used to check user input, so it
supports flexible printf()-like formatting of more informative
diagnostics, such as the input line number where a parse error
occurs. DIE() is used in multithreaded code where failed library
calls may arise from Heisenbugs, so it aborts with a core dump to
facilitate debugging. BAIL() serves a simple single-threaded pro-
gram and is used in situations where a core dump would not be
very helpful, so it merely calls exit(). DIE() expands to an expres-
sion because it is used in contexts that demand expressions, but
BAIL()’s simpler role allows it to expand into a statement block,
which is easier to understand.

The following struct will eventually contain a CSR representa-
tion of a graph. The roles of V, E, N, and F are as described in the
previous section.

static struct {
 int V, // max vertexID; valid vertexIDs are [1..V]
 E, // total number of edges
 *N, // indexed by "from" ID; outdeg(v) == N[1+v]-N[v]
 *F; // "to" vertexIDs accessed via N[]
} CSR;

For brevity we consider only unweighted graphs, but it’s easy
to handle edge weights: add to the struct CSR above an E-long
dynamically allocated array of weights—one weight for every
edge in array F. Note that such edge weights can be updated effi-
ciently; they need not be completely static.

One way to understand CSR format is to study the function
below, which prints a text representation of the graph in the
struct above. The outer for loop iterates over all vertexIDs
a. The inner for loop iterates over all vertexIDs b such that a
directed edge exists from a to b. Pointers begin and end delimit
the part of array F containing a’s adjacent vertexIDs.

static void print_adjacencies(void) {
 printf("per-vertex adjacencies:\n");
 for (int a = 1; a <= CSR.V; a++) {
 int *begin = CSR.F + CSR.N[a],
 *end = CSR.F + CSR.N[1+a];
 printf("%d:", a);
 for (int *b = begin; b < end; b++)
 printf(" %d", *b);
 printf("\n");
 }
}

80    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

COLUMNS
Programming Workbench: Compressed Sparse Row Format for Representing Graphs

Our struct CSR contains ordinary int variables, which are 32
bits long on many computers. In practice we may encounter
graphs with many billions of vertices and edges, so when the user
enters graph size parameters V and E on our program’s command
line, we verify that they both fit in an int—with room to spare,
because we index into array N using values up to V+1. Function
s2i() below performs string-to-int conversions carefully and
gripes if it encounters weirdness of any kind. The C11 static_
assert feature confirms at compile time our assumption that the
largest integer type is larger than an int.

static_assert(sizeof(intmax_t) > sizeof(int), "int sizes");
static int s2i(const char *s) {
 char *p; intmax_t r;
 errno = 0;
 r = strtoimax(s, &p, 10);
 if (0 != errno || '\0' != *p || 0 >= r || INT_MAX <= r)
 BAIL("s2i(\"%s\") -> %" PRIdMAX ", errno => %s\n",
 s, r, ERRSTR);
 return (int)r;
}

The main() function begins by declaring a few variables and
checking user-supplied command-line arguments, then open-
ing the file containing the edge list representation of the input
graph. Reading V from the command line, as opposed to inferring
it from the largest vertexID on the edge list, accommodates zero-
degree vertices with IDs greater than any on the edge list, like
vertex 9 in our example graph.

int main(int argc, char *argv[]) {
 int a, b, line = 0, t = 0;
 FILE *fp;

 if (4 != argc)
 BAIL("usage: %s V E edgelistfile\n", argv[0]);
 CSR.V = s2i(argv[1]);
 CSR.E = s2i(argv[2]);
 if (NULL == (fp = fopen(argv[3], "r")))
 BAIL("fopen(\"%s\"): %s\n", argv[3], ERRSTR);

Next, we allocate memory for the N and F arrays using the CAL()
macro, which calls calloc(). As explained above, array N is of size
V+2 because it is indexed with integers up to V+1.

 CAL(CSR.N, 2 + (size_t)CSR.V, sizeof *CSR.N);
 CAL(CSR.F, (size_t)CSR.E, sizeof *CSR.F);

We make two passes over the input file to construct CSR format.
The first pass, below, verifies the sanity of each vertexID pair
and stores the out-degree of each vertex in array N; later N will be
altered to play its role in CSR format as described in the previous
section. We check for flagrant parse errors and verify that the E
given on the command line matches the length of the input file.

 while (2 == fscanf(fp, "%d %d\n", &a, &b)) {
 line++;
 if (0 >= a || a > CSR.V || 0 >= b || b > CSR.V)
 BAIL("%d: bad vertexID: %d %d\n", line, a, b);

 if (a == b)
 fprintf(stderr, "%d: warning: self edge\n", line);
 CSR.N[a]++;
 }
 if (! feof(fp))
 BAIL("parse error after %d lines: %s\n", line, ERRSTR);
 if (line != CSR.E)
 BAIL("%d input lines != %d edges\n", line, CSR.E);

The standard fscanf() function used above silently performs
incorrect conversions if the input vertexIDs are too large. For
example, on my system fscanf() happily converts 4,294,967,299
to 3 without complaint. Performing conversions more carefully,
e.g., with the s2i() function that we saw earlier, would substan-
tially increase the overhead of parsing the input. Instead we
warn users that it’s their responsibility to ensure that vertexIDs
on the input edge list must not exceed the V argument supplied on
the command line, which is checked carefully by s2i().

This next bit of code updates the contents of array N to contain
cumulative out-degrees. After the code below executes, N[a] con-
tains the sum of the out-degrees of vertices 1 through a inclusive.
N[V+1] contains the sum over all vertices of their out-degrees, i.e.,
the number of edges E.

 for (a = 1; a <= CSR.V; a++) {
 t += CSR.N[a];
 CSR.N[a] = t;
 }
 CSR.N[a] = t;
 assert(CSR.N[1 + CSR.V] == CSR.E);

We’re still not done with array N, because at this point each entry
N[a] is too large by the out-degree of vertex a. Our second and
final pass over the input fixes the problem. The second pass adds
edges to F while walking the moral-equivalent-of-pointers in N
back to their final correct CSR values.

 rewind(fp);
 while (2 == fscanf(fp, "%d %d\n", &a, &b))
 CSR.F[--CSR.N[a]] = b; // add directed edge a -> b

 if (0 != fclose(fp))
 BAIL("fclose(): %s\n", ERRSTR);

Sorting the outgoing edges of each vertex isn’t strictly necessary,
but we’ll do it anyway because it makes it easy to detect duplicate
edges. Furthermore it allows us to perform a binary search on
each vertex’s adjacencies in O(log D) time, where D is the average
out-degree. Would it be easier to sort the input edge list rather
than sorting the adjacencies of each vertex? That might be con-
ceptually simpler and easier to implement, but it would be asymp-
totically less efficient: sorting the edge list with a general method
such as qsort() would would require O(E log E) time, whereas
sorting the adjacencies of each vertex requires O(V D log D) time;
the latter is typically smaller. The integer comparison function
below, icmp(), seems prone to overflow in the subtraction opera-
tion—consider INT_MAX minus negative one—but overflow can’t

www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 81

COLUMNS
Programming Workbench: Compressed Sparse Row Format for Representing Graphs

happen in our program because all of the integers being sorted
are non-negative.

static int icmp(const void *a, const void *b) {
 return *(const int *)a - *(const int *)b;
}
...
 for (a = 1; a <= CSR.V; a++)
 qsort(CSR.F + CSR.N[a],
 (size_t)(CSR.N[1+a] - CSR.N[a]),
 sizeof *CSR.F, icmp);

Now that we’ve constructed CSR format, we dump it for inspec-
tion and then print per-vertex adjacencies using the function we
defined earlier:

 printf("dump CSR format:\n"
 "V = %d E = %d\n"
 "N: ", CSR.V, CSR.E);
 for (a = 0; a <= 1 + CSR.V; a++)
 printf(" %d", CSR.N[a]);
 printf("\n"
 "F: ");
 for (a = 0; a < CSR.E; a++)
 printf(" %d", CSR.F[a]);
 printf("\n");

 print_adjacencies();

Our final chore before terminating is to deallocate arrays N and F:

 free(CSR.N);
 free(CSR.F);

 return 0;
}

Running el2csr on our example graph yields the expected results:

% ./el2csr 9 9 example_graph.txt
dump CSR format:
V = 9 E = 9
N: 0 0 0 3 6 6 6 6 8 9 9
F: 1 6 8 1 6 7 2 4 4
per-vertex adjacencies:
1:
2: 1 6 8
3: 1 6 7
4:
5:
6:
7: 2 4
8: 4
9:

The example code tarball contains a random graph generator and
a test script in addition to el2csr.c. The test script compiles the
random graph generator and compiles el2csr in a special test
mode that dumps an edge list representation of the input graph to
a file. The test script then feeds many random graphs to el2csr
and verifies that in each case the edge list regurgitated by el2csr
is byte-for-byte identical to the sorted input file.

Persistence
Converting an edge list to CSR format takes time—parsing
textual input can be orders of magnitude slower than running a
graph analysis algorithm—and it would be wasteful to perform
the conversion more often than necessary. It’s usually best to
store the binary CSR representation of the graph in a file for
future use. One way would be to write() variables V and E and
arrays N and F to a file. An easier and more elegant approach is to
employ “the persistent memory style of programming” [4, 5]: lay
out the data structures in a file-backed memory mapping using
msync() to persist the data after constructing a CSR representa-
tion and later using mmap() to load the file containing CSR back
into memory as needed. This is convenient and is often the most
efficient way to handle graphs in practical applications, because
after the initial conversion to CSR format no further parsing
or serializing is ever needed. The CSR file is in the compact
in-memory format used by subsequent analyses, which access
the data via LOAD instructions after mmap()-ing the file into
memory.

Other Implementations
The Boost Graph Library [9] offers C++ implementations of many
graph algorithms, and it supports several graph formats includ-
ing adjacency lists and CSR. BGL emphasizes generic program-
ming and is written in a different style from my example code;
comparing the two may lead the reader to additional insights.
Galois is a platform for parallel computation that includes
substantial support for graphs [2]. Distributed/scale-out graph
analysis platforms were blooming like mushrooms in the research
community several years ago; many were so grotesquely ineffi-
cient that they are of tragicomic interest only [7].

Going Further
Extending my example code can be an informative exercise.
You can avoid the time overhead of parsing the input edge list
on the second pass by converting it to a temporary binary edge
list on the first pass. Adding support for weighted edges is easy.
To appreciate the benefits of CSR format over adjacency lists or
adjacency <vector>s, compare their memory footprints on real or
randomly generated graphs. Similarly, compare the runtimes of
standard graph algorithms on the different formats.

Random graph generators are often used for testing and per-
formance benchmarking because they make it easy to sweep
key graph parameters such as size, average degree, and density.
Storing large random graphs in short-lived files can be slow,
awkward, and cluttery, but an easy trick avoids the need to cre-
ate files, even when their consumer must make multiple passes
over each: run multiple instances of the random graph generator
as background jobs that spit identical byte streams into named
pipes, one pipe for every pass needed by the consumer. For

82    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

COLUMNS
Programming Workbench: Compressed Sparse Row Format for Representing Graphs

References
[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 3rd edition (MIT Press, 2009).

[2] “Galois”: https://iss.oden.utexas.edu/?p=projects/galois.

[3] T. Kelly, H. Kuno, M. Pickett, H. Boehm, A. Davis, W.
Golab, G. Graefe, S. Harizopoulos, P. Joisha, A. Karp, N.
Muralimanohar, F. Perner, G. Medeiros-Ribeiro, G. Seroussi,
A. Simitsis, R. Tarjan, and S. Williams, “Sidestep: Co-
Designed Shiftable Memory and Software,” HP Labs Tech
Report HPL-2012-235, November 2012: https://www.labs​
.hpe.com/techreports/2012/HPL-2012-235.pdf.

[4] T. Kelly, “Persistent Memory Programming on Conven-
tional Hardware,” ACM Queue, vol. 17, no. 4 (July/August
2019): https://queue.acm.org/detail.cfm?id=3358957.

[5] T. Kelly, “Good Old-Fashioned Persistent Memory,”
;login:, vol. 44, no. 4 (Winter 2019): https://www.usenix.org​
/publications/login/winter2019/kelly.

[6] T. Kelly, Example code to accompany this article: https://​
www.usenix.org/sites/default/files/kelly_csr_code.tar.gz.

[7] F. McSherry, M. Isard, and D. G. Murray, “Scalability! But
at what COST?” 15th USENIX Workshop on Hot Topics in
Operating Systems (HotOS ’15): https://www.usenix.org​
/system/files/conference/hotos15/hotos15-paper-mcsherry​
.pdf.

[8] R. Sedgewick and K. Wayne, Algorithms, 4th edition
(Addison-Wesley, 2011).

[9] J. G. Siek, L. Q. Lee, and A. Lumsdaine, The Boost Graph
Library: User Guide and Reference Manual (Addison-Wesley,
2002).

[10] B. Stroustrup, The C++ Programming Language, 4th edi-
tion (Addison-Wesley, 2013). See p. 888 for the representation
of <vector>s.

example, if the el2csr program listed above is the consumer, it
would be modified to read two identical byte streams from two
named pipes supplied on the command line—an easy exercise.
This approach preserves a clean separation of responsibilities
between graph generator and graph consumer while avoiding the
fuss of large temporary files.

Conclusion
Compressed sparse row is typically the best format for sparse
graphs, provided that new edges aren’t added and relatively few
edges are deleted. CSR is compact, avoiding the memory waste of
adjacency lists and <vector>s, and its memory footprint can be
calculated directly from V and E. CSR is furthermore contiguous
in memory, eliminating the time overhead of pointer chasing. It’s
easy to persist CSR in memory-mapped files, and CSR is conve-
nient once you become accustomed to it. The two-pass construc-
tion approach implemented above is asymptotically faster than
sorting an edge list.

Graphs are essentially simple, and coding graph algorithms can
be positively pleasant. The next time you’re faced with a problem
involving graphs, consider solving it by writing your own code
instead of using someone else’s software; the result might well
be superior overall. Please share your experiences and feedback
with me!

https://iss.oden.utexas.edu/?p=projects/galois
https://www.labs.hpe.com/techreports/2012/HPL-2012-235.pdf
https://www.labs.hpe.com/techreports/2012/HPL-2012-235.pdf
https://queue.acm.org/detail.cfm?id=3358957
https://www.usenix.org/publications/login/winter2019/kelly
https://www.usenix.org/publications/login/winter2019/kelly
https://www.usenix.org/sites/default/files/kelly_csr_code.tar.gz
https://www.usenix.org/sites/default/files/kelly_csr_code.tar.gz
https://www.usenix.org/system/files/conference/hotos15/hotos15-paper-mcsherry.pdf
https://www.usenix.org/system/files/conference/hotos15/hotos15-paper-mcsherry.pdf
https://www.usenix.org/system/files/conference/hotos15/hotos15-paper-mcsherry.pdf

