
	28    ;login:  VOL. 37, NO. 4

Mohammad Mannan is
an Assistant Professor at
the Concordia Institute
for Information Systems

Engineering, Concordia University, Montreal.
He has a PhD in Computer Science from
Carleton University (2009) in the area of
Internet authentication and usable security. He
was a postdoctoral fellow in the Department
of Electrical and Computer Engineering at
the University of Toronto from 2009 to 2011
(funded by an NSERC PDF, and ISSNet). His
research interests lie in the area of Internet
and systems security, with a focus on solving
high-impact security and privacy problems of
today’s Internet.
mmannan@ciise.concordia.ca

Paul C. van Oorschot is
a Professor of computer
science at Carleton University
in Ottawa, where he is a

Canada Research Chair in authentication and
computer security. He was program chair of
USENIX Security ’08, program co-chair of
NDSS 2001 and 2002, and co-author of the
Handbook of Applied Cryptography (1996). He
is on the editorial board of IEEE TIFS and IEEE
TDSC. His current research interests include
authentication and identity management,
security and usability, software security, and
computer security. He is a member of the IEEE.
paulv@scs.carleton.ca

Many users now access password-protected accounts and Web sites alternately
from desktop machines and mobile devices (e.g., smartphones, tablets). The
input mechanisms of the mobile devices are often miniature physical or virtual
on-screen keyboards, posing challenges for users trying to type passwords with
mixed-case and special characters expected by Web sites and more easily entered
on desktop keyboards. We begin with a review of these challenges and existing
proposals addressing cross-device password entry, including some password man-
agers. We then bring the issues into focus with detailed discussion of the interop-
erational challenges and implementation and interface details of the object-based
password (ObPwd) mechanism, as implemented for the Android platform, plus
compatible browser-based and stand-alone implementations for desktop envi-
ronments. ObPwd generates a password from a user-selected digital object (e.g.,
image), does not require changes to server-side software, and avoids the text-input
challenges of mobile devices. We also briefly evaluate ObPwd using a recently pro-
posed evaluation framework for password authentication schemes. A major goal is
to increase attention to the cross-device password authentication problem.

We all wish passwords would go away. Their faults are many and are well-doc-
umented elsewhere. However, for the present time, the Internet world continues
to have a deep investment in them. Millions of Web sites continue to demand
passwords.

Almost all users with a few years of experience are familiar with the task of typing
passwords on full-size Qwerty keyboards. For many accounts and Web sites, users
are encouraged or required to choose passwords with mixed-case letters, digits,
and special characters. How such policies affect the overall security and usability
requires an entirely separate discussion. In recent years, the flood of new devices
in the marketplace has included smartphones, tablet PCs, Internet-enabled TVs,
and game consoles. Many of these offer only a limited on-screen keyboard, e.g.,
touch/stylus-based, remote control, or miniature physical keyboards. When these
devices are used for Web browsing, passwords must be input to access password-
protected sites. Many applications (“mobile apps”) also require password input,
some of which are also accessible on desktops as independent or Web applications.

The authentication task is now more complicated than when using a full-size key-
board: text password input is more error-prone and frustrating in terms of locating
the keys and entering the characters, especially if entering special characters
requires multiple keys to reach alternate (shifted) keyboards. Such text-unfriendly
input interfaces may also influence user-chosen passwords to be even weaker

Passwords for Both Mobile and Desktop
Computers
ObPwd for Firefox and Android

M O H A M M A D M A N N A N A N D P . C . V A N O O R S C H O T

	 ;login:  AUGUST 2012   Passwords for Both Mobile and Desktop Computers    29

than otherwise. Indeed, Jakobsson et al. [9] reported from a survey of 50 smart-
phone users that 88% of device passwords are digit-only. Arguably, user-choice
is influenced by available screen-lock options and the default option presented
to users. They also reported that 46% of users enter a password once or more per
day on mobile devices, and that 56% mistype a password at least one in 10 times.
Users even stated that mobile-device password entry is more annoying than lack
of coverage and poor voice quality. On the other hand, a new smartphone dynamic
is underway largely due to the input problem: mobile apps often require users to
enter an app-password only once (e.g., upon installation or first run), which is then
saved by the app, and thereafter the stored password is used to authenticate the
user. This is analogous to a desktop browser permanently remembering passwords
for Web sites. However, the general password input problem remains, especially for
browser-accessed services in mobile devices.

Others also have recognized the problem of text-password input in mobile devices.
Several graphical and image-based schemes have been proposed: e.g., Windows 8
picture password, mobile Blue Moon authentication (http://mobile-blue-moon
-authentication.com). Another idea, as discussed later, is a password scheme
involving multiple real words [7, 8] and leveraging widely available auto-correct
and auto-suggest features on mobile devices. However, using these same pass-
words becomes challenging in the desktop world if similar auto-correction func-
tionality is unavailable. (For further reading on a similar topic, i.e., discussion of
need for scheme that allows users to alternate between mobile phone and desktop
keyboard, see Bicakci and van Oorschot [2].)

More generally, user-friendly remote authentication mechanisms custom-
designed for mobile devices may not find wide acceptance, as the same online
services will often be accessed from multiple devices with different input mecha-
nisms. A major design criterion that must not be overlooked, and which is more
challenging than initially apparent, is that such authentication mechanisms must
also be suitable back on a desktop computer with a standard keyboard, since users
alternate access devices. Consequently, the design of a user-friendly authenti-
cation system must suit a wide variety of devices, including those with input-
constrained and conventional keyboards. We consider this challenge herein. As a
specific example, we revisit a password mechanism called object-based password
(ObPwd) originally designed in the context of the desktop world, and its implemen-
tation adopted to the mobile world.

The ObPwd mechanism constructs text-compatible passwords from digital
objects such as pictures, generating strong passwords without requiring that
users type mixed-case or special characters (see Fig. 1). A previous publication [3]
outlines the basic idea and detailed results of a user study and security analysis.
Our main focus here is an illustrative example, with concrete implementation
details and design choices, of one solution to this challenge of designing a pass-
word scheme supporting password entry modes across devices with a variety of
input mechanisms to stimulate further innovation and better solutions. In what
follows, we describe the implementation of ObPwd adapted to the mobile space (on
the Android platform), as well as in the desktop PC environment. Beside the basic
design, we also emphasize the domain-salted variant of ObPwd that generates
unique passwords from the same object (e.g., a picture) for different Web sites. This
variant is particularly interesting in terms of addressing the widespread password
reuse behavior among users that enables passwords leaked from low-security Web
sites to be used in more sensitive sites.

	30    ;login:  VOL. 37, NO. 4

Password Entry Challenges from Nonstandard Keyboards

Numerous usability issues arise when conventional text passwords must be
entered on mobile devices that do not have standard physical keyboards. We review
a few of these here.

Multitude of Devices with Different Keypad Layouts

No standard keyboard layout is followed across mobile devices. Common text entry
methods include (1) multi-tap: multiple letters are mapped to the same physical
key; (2) T9: text on 9 keys, a predictive text entry method allowing words to be
entered by a single keypress; (3) full Qwerty keyboard; and (4) on-screen alternate
keypads. Even different versions of devices from the same manufacturer may vary
significantly in keypad layout (e.g., Nokia E7 vs. Nokia E63). Layout across devices
from different classes of the same vendor (e.g., Nokia E vs. N series) and across
devices from distinct vendors differ sufficiently to cause vendor lock-in for some
users.

Keyboard forms. Various form factors are available, with no clear winner. Exam-
ples include physical keypad, touch-based, stylus, or pointer-based on-screen
keypad (e.g., on the Wii game console). Forms other than physical keypads typi-
cally lack tactile feedback during input. Some on-screen keypads offer feedback
via audio and visual channels, and vibrating the device. Interestingly, such
user-friendly feedback may also leak information to nearby attackers when these
devices are used in public places (e.g., through shoulder-surfing or video recording
[11]).

Multiple Steps for Keyboard Shifting

In the default layout, small keypads (whether physical or touchscreen) offer a
limited number of characters. Accessing additional characters requires tapping
or pressing special keys (e.g., using shift to switch between keypad modes). Thus
inputting a strong password with mixed-case letters and digits requires more key-
strokes than characters in a password.

Cold Weather Issues and Fat Fingers

Most modern touchscreens use a capacitive sensing panel which operates by com-
pleting an electric circuit with the human body through the fingers. This hinders
providing input to these devices with gloved fingers, as common gloves are made
of electrically insulating materials. Fat fingers (“working men’s fingers”) may
also hinder input precision in mobile keypads, due to small keypad size and visual
interference.

Existing Proposals Supporting Cross-Device Password Entry

Here we mention a few of the existing proposals providing password authentica-
tion compatible across devices with varying text-input mechanisms. Security and
usability problems with passwords are well known, and many techniques have
been proposed to replace passwords altogether, e.g., biometrics, graphical pass-
words, and security tokens. The online-only appendix covers some other examples
of mobile password systems.

	 ;login:  AUGUST 2012   Passwords for Both Mobile and Desktop Computers    31

Stand-alone Password Managers

Password managers are becoming more popular, for reasons including convenient
access to passwords, need to maintain numerous accounts, browser integration,
and online access. Several of the existing password managers (both stand-alone
applications and Web services) that support multiple devices may alleviate the
password input problem to some extent. Below we discuss two example password
managers.

K E E PA S S

KeePass (http://keepass.info) is an open source password manager for multiple
desktop platforms. It saves several Web site/application-specific items such as the
site URL, user ID, and password in an encrypted database file on a user’s local PC;
the encryption key is derived from a user-chosen master password and, optionally,
a user-selected or randomly generated file. The database files can additionally be
locked with the user’s Windows user account. The saved passwords can be copied
onto the clipboard and then pasted into the intended application or Web site. A
saved URL can be launched through the default system browser directly from the
KeePass application; the KeeFox extension for Firefox can automate password
entry to the Web site. KeePassSync is a KeePass plugin that offers synchronization
of password databases between devices using online storage providers (e.g., Ama-
zon S3). The database files can also be manually transferred. Third-party devel-
oped apps (e.g., iKeePass, KeePassDroid, and KeePassMobile, for iOS, Android, and
J2ME devices, respectively) enable users to access KeePass databases from mobile
devices.

L A S T PA S S

LastPass (http://lastpass.com) is a free online password manager available in
most major desktop and mobile platforms. Passwords and other user data (e.g.,
notes, form data) are encrypted locally using a user-chosen master password;
the encrypted result is saved on the LastPass server. LastPass and similar online
password managers offer two distinct features to alleviate password problems in
general: (1) portability—all user passwords are accessible from anywhere with a
browser and Internet connection; and (2) backups—passwords are backed up with-
out involving the user. However, these highly appreciated features come with side-
effects. For example, the encrypted password list may be vulnerable to dictionary
attacks. This vulnerability depends on the strength of the user-chosen master
password; historical experience of user-choice issues makes this worrisome.

Some password managers facilitate generating random passwords as site pass-
words, but the master password itself remains user-chosen. Solutions such as
Kamouflage [4] which store decoy passwords along with user passwords can also
be adopted to frustrate dictionary attacks on stolen encrypted password storage.
These online password managers offer an attractive target to attackers: compro-
mising such a server allows access to a large number of user accounts. Indeed, in
May 2011, LastPass was possibly compromised in such an attack [13]. When users
were forced to reset their master password after the attack, some users were stuck,
as the reset process required logging into their pre-registered email address, the
password of which was also saved with LastPass. Such account lock-out appears to
be an intrinsic problem with online password managers that use email for account
recovery.

	32    ;login:  VOL. 37, NO. 4

A general drawback of password manager services is the tangible privacy concern:
despite assurances that user data is stored in encrypted form, the service providers
may be compelled to make user data “available” to government agencies (e.g., see
the recent changes in DropBox privacy policy [6]).

Karole et al. [10] conducted a usability study comparing three widely used pass-
word managers: LastPass (online), KeePassMobile (phone-based), and Robofor-
m2Go (USB-based). Overall, LastPass was least preferred, and specifically the
non-technical users in the study favored the phone-based manager. The authors
attributed this finding to the fact that users prefer control over their passwords,
rather than trusting a third party. However, they also reported that the usability
of phone-based managers is not on par with user expectations. Another study [1]
on the security of smartphone-based password manager apps reported several
implementation weaknesses, including easy verification of master password and
hard-coded encryption keys.

Browser-Based Password Synchronization

Synchronization functionality is built into Firefox 4 (older versions can use the
Sync add-on), and Firefox Mobile (available on Android OS and Maemo/Nokia
N900). For example, Firefox Sync saves user bookmarks, passwords, open tabs,
form data, and browsing history for access from PCs and mobile devices. Saved
content is also accessible from iOS (iPhone, iPad, iPod) via the Firefox Home appli-
cation. User data is encrypted locally, and then stored and shared via a Mozilla
hosted server; users can set up their own server to be used with Sync (e.g., if they do
not trust Mozilla with their data).

Tapsure is a Firefox Mobile add-on (https://addons.mozilla.org/en-us/mobile/
addon/tapsure/) that enables users to input saved text passwords by tapping a
rhythm/pattern on the phone’s touchscreen. Users can save a password entered
on a Web site (through usual input methods), by tapping a personal pattern on the
screen; the same password can be accessed from any sites that use it via Tapsure.
Tapsure uses Firefox’s built-in password manager for storing passwords. The tap-
ping pattern serves as an easy-to-use unlock password that enables access to the
saved text password. Tapsure differs from browser password managers in a subtle
but important way. A Tapsure-saved password can be accessed from any site when
the specific tapping pattern is entered, thus facilitating easier input of reused pass-
words. In contrast, browser password managers save pairs of user ID-password for
individual sites which are made available only at the specific sites (from the saved
password list, which is optionally encrypted under a user-chosen master pass-
word).

Cross-platform/Cross-device ObPwd Implementations

We outline here the basic ObPwd scheme and several implementations in different
platforms. The implementation details may help you understand the challenges
such as design and user interface issues in cross-platform/cross-device implemen-
tations. The ObPwd FAQ and implementations are publicly available from http://
www.ccsl.carleton.ca/~mmannan/obpwd/ as an OS-agnostic Firefox browser
extension, and as stand-alone applications in Android, Microsoft Windows, Mac
OS X, and Linux. An initial Firefox extension and prototypes on other major plat-
forms have been well received, and public feedback has resulted in modifications
and upgrades. To our knowledge, the technology is free of patents.

	 ;login:  AUGUST 2012   Passwords for Both Mobile and Desktop Computers    33

While we explain specific implementation choices made in order to convey a con-
crete sense of the functionality and interfaces available, different design choices
could be made for reasons of preference, usability, and security, matching different
intended contexts and use environments.

The Basic ObPwd Mechanism

The core functionality in all ObPwd tools is to output a text password from user-
selected content; see Figure 1. The current implementations use SHA-1 to hash
password objects. The hash output is mapped to a base-64 character set, then
converted to an alphanumeric password (default 12 characters) by known tech-
niques [12]; for example, assuming a local file is used as the password object, pwd
= Hash2Text(Hash(fileContent)). Up to the first n = 100,000 bytes are used from
an object; 160 bytes are required. Variants of the basic mechanism are discussed
elsewhere [3]. One of these variants, discussed later, is the domain-salted vari-
ant, which involves using a local file and the Web site domain as a salt (i.e., pwd =
Hash2Text(Hash(URLdomain ||fileContent))). This domain-salted variant is pro-
vided by both the Firefox add-on and the Android app implementations mentioned
above, starting with versions 1.0.1 and 1.0.

Figure 1: ObPwd basic mechanism

ObPwd Firefox Extension (Desktop)

This extension can be activated from the browser context menu (i.e., right-/sec-
ondary-click menu). Under the “Object-based Password (ObPwd)” menu, several
sub-menus appear (depending on the right-click context): (1) “Get ObPwd from
Local File” brings up a file dialog box for selecting a local file as a password object;
(2) “Get Unique ObPwd: Local File + Domain” offers choosing a local file, and then
the domain name of the current page is used with the file content to generate a
site-specific password; (3) “Get ObPwd from Selected Text” generates a password
using the selected text block on the Web page (if there is any selected text string);
(4) “Get ObPwd from Image” generates a password from the selected image (i.e.,
the one right-clicked on, if any); (5) “Get ObPwd from Link” generates a password
from the content as pointed by the URL right-clicked on, if any. Certain types of
relatively stable HTTP and HTTPS links are supported by default (e.g., pdf, mp3,
avi, txt, jpg, zip, wav), but not several common URL extensions (e.g., html, php, asp)
which commonly host dynamic content—e.g., news page content may change as
user comments are added, precluding regeneration of the original password.

Configuration preferences support changing the default resulting password length
(6 to 20 characters, default 12) and including special characters. If a password is
generated with certain preferences, the same preferences must be selected to re-
create that password (irrespective of where the password is used).

When a password object (an image, highlighted text, URL, or local file) is selected,
the extension generates a password from the underlying content and displays

	34    ;login:  VOL. 37, NO. 4

the password in a dialog box in plaintext to enable users to record it for backup
in a secure way. If the OK button is clicked, the password is copied to the system
clipboard, allowing pasting anywhere by the user. Note that by default, for security
and privacy reasons, Firefox clipboard data is not accessible to JavaScript embed-
ded on a site. The password is inserted directly into a password input box on a login
page, if the extension is activated from such a box (i.e., the context menu is brought
up by right-clicking on the password box). This auto-filling both automates the
password copy-paste step and protects the password from shoulder-surfing.

ObPwd Android App (Mobile Devices)

Installing the ObPwd app adds a menu item (labeled “ObPwd”) to the “Share”
menu of Gallery, the default media app for Android devices. Users can browse their
media files stored on the device and from Picasa Web albums (if the user’s Google
account is linked to Picasa). When the user selects an image or video and chooses
the ObPwd app from Gallery’s Share menu, the user is asked if the domain of the
last visited Web site should be used in the password generation (i.e., whether to use
the domain-salted variant). Then the corresponding text password is displayed.
The password display dialog offers two choices: “Copy to clipboard” and “Quit.”
If copied, the password can be pasted to any password field (e.g., in Web sites and
other apps) without requiring typing the password.

Usability, Limitations, and Evaluation

Discussion on Usability and Features of the Basic ObPwd

A hybrid in-lab/at-home user study using the ObPwd desktop extension was con-
ducted involving 32 participants (see [3] for full details). Participants were asked
to use 11 new passwords (eight test Web sites and three real-world sites) in a span
of 7–10 days. The study reported encouraging results in terms of several usabil-
ity factors. The login success rate was more than 90% (on the first attempt) in a
return-to-lab session. The average login time was about 20 seconds, which despite
being longer than text password logins in the desktop environment, was reflected
in a positive affect by participants: they reported that they enjoyed browsing their
password objects both when creating passwords and logging in. This result is
atypically positive compared to other new password proposals. Whether similar
positive results occur for other ObPwd platforms and/or implementations requires
further user studies; we presently have only anecdotal praise from users of the
Android app, but these are self-selected, technically savvy users not representative
of the general population.

The user interfaces of ObPwd tools described above differ depending on the
device/environment, reflecting hardware and software interfaces which vary sig-
nificantly across these devices. Instead of implementing a separate image/video-
browsing interface on Android, the implementations described rely on the default
Gallery app for object selection. This provides a familiar interface to users, but on
the down side, the implementation shortcut overloaded the “Share” menu to initi-
ate the ObPwd app. “Share” is an unfortunate name for this function menu, since
security is defeated if users openly share their password objects (as facilitated by
several other applications in the Share menu). Indeed, ObPwd security relies heav-
ily on the assumption that users’ password objects remain private, as opposed to,
for example, publicly posted photos.

	 ;login:  AUGUST 2012   Passwords for Both Mobile and Desktop Computers    35

Some features of the ObPwd scheme may favor its adoption. Personal digital content
is now easily available on both desktop and mobile platforms. As ObPwd requires no
server-side changes, users can immediately benefit upon installing freely available
implementations. ObPwd passwords are typically as strong as system-generated
passwords, with respect to guessing attacks (see [3] for further discussion), yet the
password objects are user-chosen. On the other hand, many visible and invisible
barriers exist to installing any new authentication mechanism intended to replace
passwords; widespread adoption of ObPwd, or any other alternative, is likely to
occur only if adopted by a major platform vendor or browser provider.

ObPwd is a hybrid mechanism both in terms of authentication method (part what-
you-know, part what-you-have-access-to), and input type (involving media such as
image/video/music-based). It is not a password manager in a traditional sense (i.e.,
does not store passwords), but empowers users to better manage several strong
passwords (as apparent from our user testing) by taking advantage of the positive
attachment users already have to their personal content.

The ObPwd Domain-Salted Variant

For generating ObPwd passwords, we assume the domain-salted variant in the
evaluation. This variant is arguably the safest, and, from a user interface view-
point, indistinguishable from that used in the user study [3]; we note, however,
that this variant itself and the ObPwd Android app have not been formally user-
tested. We also assume that a single local file is used as the password object for
all Web sites: i.e., the password object is used as a master password from which
unique, site-specific passwords are generated (cf. PwdHash [12]). This assump-
tion is rooted in the current practice of reusing the same or few text passwords
across many accounts. We argue that access to site-specific passwords does
not allow an attacker or a malicious site operator to (easily) create passwords
for other sites, since this will require guessing the file-content of the password
object (recall that pwd = Hash2Text(Hash(URLdomain|| fileContent))). In effect,
the best attack remains the exhaustive search; note that, for an attacker not in
possession of the password object, exhaustive search requires on the order of 270
guesses in default settings (see [3] for details). In contrast, a compromised site-
specific password generated from a user-chosen master password (e.g., pwd =
Hash2Text(Hash(URLdomain || masterPassword))) may reveal the master pass-
word under offline dictionary attacks. Thus, from a security viewpoint, ObPwd is
analogous to using a random string stored on the user’s machine. However, from a
usability viewpoint, in contrast to ObPwd’s use of a user-chosen object, a random
string is neither user-friendly nor recognizable to users, and provides no positive
feedback.

Comparison and Usability-Deployability-Security Evaluation

We compare and evaluate ObPwd against basic text passwords, using the UDS
(usability, deployability, security) framework of 25 baseline properties for user
authentication schemes [5]. For context, we show the UDS rating for (Web pass-
words, desktop) as the first row of Table 1 herein. The appendix (online only)
explains how the authors came up with the ratings that appear in Table 1. We use
separate table rows for implementations of each mechanism for desktop (assuming
a full-size keyboard) and mobile platforms (e.g., mobile phones with small hard-
ware or touch-based keypads, and tablets), as the usability ratings in particular
differ.

	36    ;login:  VOL. 37, NO. 4

Concluding Remarks

The ubiquity of traditional keyboards in desktop systems has played an important
role in the proliferation of text passwords as the primary mode of user authentica-
tion on the Internet. For user authentication from mobile devices, the opportunity
exists to exploit device-specific features such as multi-touch, GPS, accelerometer,
and camera to improve both security and usability (e.g., see [9]). However, a critical
requirement is that the authentication of users who alternate between desktop
and mobile systems must be accommodated. Greater customization of authentica-
tion schemes, such as allowing user selection of per-login authentication modes,
may be the path to better support the emerging multi-device/multi-platform usage
scenarios. The system side could automatically detect the type of device the user is
on, and offer a different login interface or variation based on that. The interaction
between user authentication and evolving password managers (and their support
across platforms and devices, including cross-device password synchronization)
is likely to become an increasingly important part of the user authentication equa-
tion. Another important but unexplored aspect of cross-device authentication is
whether current user behavior is affected by input difficulties and, if so, to what
extent; for example, do users significantly change which sites they visit depending
on which access device they use specifically to avoid accessing sites that require
password input?

The implementations discussed herein are an illustrative example intended to
motivate further discussion and innovation addressing the problem of user-
friendly password authentication from alternating computing devices support-
ing divergent user input capabilities. No doubt better mechanisms will appear
over time. Their chances of deployment success in practice will be much higher if
designed from the start keeping in mind cross-device requirements as discussed
herein. We hope this article motivates and expedites further progress.

	 ;login:  AUGUST 2012   Passwords for Both Mobile and Desktop Computers    37

References

[1] A. Belenko and D. Sklyarov, “‘Secure Password Managers’ and ‘Military-Grade
Encryption’ on Smartphones: Oh, Really?” Blackhat Europe 2012: http://www
.elcomsoft.com/WP/BH-EU-2012-WP.pdf.

[2] K. Bicakci and P. van Oorschot. “A Multi-Word Password Proposal (gridWord)
and Exploring Questions about Science in Security Research and Usable Security
Evaluation,” New Security Paradigms Workshop (NSPW’11), Marin County, CA,
USA, Sept. 2011.

[3] R. Biddle, M. Mannan, P. van Oorschot, and T. Whalen, “User Study, Analysis,
and Usable Security of Passwords Based on Digital Objects,” IEEE Transactions on
Information Forensics and Security (TIFS) 6(3):970-979, Sept. 2011.

[4] H. Bojinov, E. Bursztein, X. Boyen, and D. Boneh, “Kamouflage: Loss-Resistant
Password Management,” European Symposium on Research in Computer Security
(ESORICS’10), Athens, Greece, Sept. 2010.

[5] J. Bonneau, C. Herley, P.C. van Oorschot, and F. Stajano, “The Quest to Replace
Passwords: A Framework for Comparative Evaluation of Web Authentication
Schemes,” IEEE Symposium on Security and Privacy, Oakland, CA, USA, May
2012.

[6] BusinessInsider.com, “DropBox: We’ll Turn Your Files Over to the Government
If They Ask Us To,” Business Week, Apr. 18, 2011: http://www.businessinsider
.com/dropbox-updates-security-terms-of-service-to-say-it-can-decrpyt-files
-if-the-government-asks-it-to-2011-4.

[7] W. Cheswick, “Rethinking Passwords,” invited talk at USENIX LISA ’10: http://
www.usenix.org/event/lisa10/tech/slides/cheswick.pdf. See summary in ;login:
36(2):68-69, Apr. 2011.

[8] M. Jakobsson and R. Akavipat, “Rethinking Passwords to Adapt to Constrained
Keyboards (Short Paper),” Mobile Security Technologies (MoST) Workshop, Oak-
land, CA, USA, May 2012.

[9] M. Jakobsson, E. Shi, P. Golle, and R. Chow, “Implicit Authentication for Mobile
Devices,” USENIX Workshop on Hot Topics in Security (HotSec’09), Montreal,
Canada, Aug. 2009.

[10] A. Karole, N. Saxena, and N. Christin, “A Comparative Usability Evaluation of
Traditional Password Managers,” International Conference on Information Secu-
rity and Cryptology (ICISC’10), Seoul, Korea, Dec. 2010.

[11] R. Raguram, A. White, D. Goswami, F. Monrose, and J.-M. Frahm, “iSpy:
Automatic Reconstruction of Typed Input from Compromising Reflections,” ACM
Computer and Communications Security (CCS’11), Chicago, IL, USA, Oct. 2011.

[12] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J.C. Mitchell, “Stronger Pass-
word Authentication Using Browser Extensions,” USENIX Security Symposium,
Baltimore, MD, USA, 2005.

[13] “LastPass Potentially Hacked, Users Urged to Change Master Passwords,”
TheNextWeb.com., May 5, 2011: http://thenextWeb.com/apps/2011/05/05/
lastpass-potentially-hacked-users-urged-to-change-master-passwords/.

