
SECTION

	 ;login:  AUGUST 2012     1

Once a year, the local Mac users group asks me to talk to them about Mac OS X
security. And every year, I search for something exciting and recent, something
that I can use to motivate Mac users into being concerned about their security. In
April of 2012, I had lots of fodder for a good talk.

Mac users tend to be complacent about their security. They know that Windows
users are the predominant target of malware. During the LEET workshop, Tudor
Dumitraş of Symantec Research Labs shared information from their Worldwide
Intelligence Network Environment, a large dataset collected from millions of Win-
dows hosts. Tudor had little to say about Macs; the amount of malware collected
was small, as were the number of Mac users with antivirus and intrusion protec-
tion installed.

But does this mean that Macs are inherently more secure? Or is it simply a case
of there being many fewer targets, and thus the much greater focus on Windows
systems?

The Numbers

Four years ago, Adam O’Donnell wrote an article for IEEE Security and Privacy [1]
in which he outlined a game theory approach for why Macs have not been targeted
by malware writers. Game theory uses simple mathematical equations to calculate
the best strategies for players, in this case, malware writers and Mac users, and
the associated payoffs. In 2008, O’Donnell calculated that the Macs would have to
make up 16.6% of the total number of client systems before they would become an
attractive target for malware writers. With Mac adoption at about 11%, Mac users
should have been safe for a while longer [2].

The arrival of the Flashback trojan, which infected around 700,000 Macs over a
short period of time in April 2012, was certainly a rude awakening [3]. Flashback
(which Kaspersky calls Flashfake) used a vulnerability in Apple’s version of Java
(other versions of Java had been patched in January 2012) to install a trojan down-
loader. The attack used social engineering to get people to run the Java applet, by
posing as a method for updating Adobe Flash player—itself a notorious source of
infection in 2011. If the user starts the applet, which could be part of a Web page or
an email, the applet installs the trojan, executes it, and the trojan contacts its C&C
(command and control) server—in other words, exactly like a Windows bot.

Apple responded quickly (for Apple) with a patch to its Java implementation,
Within a week, Apple produced two more patches, actually disabling the execution

Rik is the editor of ;login:.
rik@usenix.org

OPINIONMusings
R I K F A R R O W

	2    ;login:  VOL. 37, NO. 4 	 ;login:  AUGUST 2012   Musings    2

of Java besides updating their JVM. Their first patch would also remove Flash-
back, which I thought was a nice touch.

But what happened to Apple’s “more secure than Windows” veil? Newer Windows
versions (since Vista) have included security features designed to prevent exploits
from succeeding (NX, DEP, and ASLR). If you read my summary of Tudor’s LEET
presentation (in this issue) or watch his presentation online, you will learn that
these defensive measures have done little to stem the flood of malware. Just as
O’Donnell implies, the platforms with the greatest numbers also attract the most
viruses and attacks.

A Closer Look

So why was Flashback so successful? I too had hopes that UNIX-based operating
systems, such as Mac OS X and Linux, would be less vulnerable to attacks like this.
But this turned out to be the usual self-deception, where one has faith in something
without there being anything but an illusion of security.

Flashback relies on the Java bug to escape the JVM’s sandbox. It then downloads
and installs the executable and arranges for it to execute every time the user logs
in. As the user can write to his own directories, adding a file to ~/Library/Startup
Items, or to ~/Library/LaunchAgents/ [4] is something malware can easily do once
a user has begun executing the malware’s code. Flashback and SabPub [5], another
Mac trojan, one used for spying rather than acting in a botnet, both add entries in the
StartupItems directory. Launchctl can easily work like cron, and arrange for execution
of a program on user login, routinely (every n seconds) after the user has logged in, or
at set times. Neither approach requires administrator privilege.

As for locking these methods down, I don’t think you can prevent them. ~/Library/
StartupItems/ is a directory (folder if you like) owned by the user, and changing the
owner of that directory to root won’t stop an attacker working as the owner of the
parent directory. I didn’t see a way to configure launchd [6] that prevents ordinary
users from taking advantage of this useful (and yet dangerous) tool. At least in
Linux, you can control which users get to use crontab -e with /etc/cron.allow or /
etc/cron.deny. But Linux users will soon be getting something like launchd in the
form of upstart [7], a replacement for the init daemon, which will not only facilitate
faster booting but also eventually replace cron. We will have to see if upstart can
be locked down so only root or sudoers can use it.

Mac and *nix users still have one advantage over Windows users when it comes to
client security. If Windows users opt to include Administrator privileges with their
user account, this privilege can be used by exploits as well. For example, a Win-
dows user with Administrator privilege can starting sniffing network interfaces
without being required to authenticate.

Mac and Linux users, on the other hand, get prompted to enter their password, or
the root password in Linux, when updating or installing software, before they can
perform privileged tasks. Sniffing the network, for example, running tcpdump
requires that the user work as root. While requiring that the user provide a pass-
word, a form of authentication, is nice, I am sure that many users do this without
considering or understanding, the implications of doing so.

As a proof of concept, consider the dialog box shown in Figure 1. I began my Mac
security talk in 2011 with this illustration, which I left on the screen for 15 min-
utes, while I waited to begin. I then asked members of the audience if they noticed

	 ;login:  AUGUST 2012   Article Title    3

anything unusual about the dialog box. I asked the people who I knew did Mac con-
sulting if it alarmed them. Eventually they noticed the poor English, but not that
“Cancel,” customarily found in such dialog boxes, had been replaced with “Abort.”
This example was taken from actual Mac malware.

Figure 1: A dialog box found on Mac OS X systems that is requesting an administrator’s pass-
word

The SabPub [5] Mac malware I mentioned earlier is a backdoor that is being used
in directed attacks. That is, Mac users are singled out, targeted with email that
uses social engineering to get them to execute and install the malware, often just
by clicking on a link or opening a Microsoft Office Word or Excel file [8].

While I was working on my Mac user group presentation [9], I asked many security
friends what they thought about Mac security, knowing that most of them used
Macs (laptops, desktops, and/or iPhones). Two people told me that they knew that
there is an active, but underground, market in Mac-specific malware, but neither
would go on the record. I know these people are not just pulling my leg. So if you
are using a Mac, secure in the knowledge that you are safe from targeted attacks, I
suggest you adjust your belief system.

Defense

I also wondered what this group of security geeks thought about using antivirus
for Macs. Most do not use AV on their Macs. One salient reason is that the market
for Mac AV is so small that there is little focus on it by AV vendors. Another person,
in a position to know, said that an AV product developed for Linux had sold only
six copies before it was discontinued. I am not saying this to suggest that Linux or
Macs are immune to malware, just that current AV is not going to be much help.

Currently, iOS has stronger security than Mac OS X. Apple has published a
20-page document [10] describing iOS security features that sound very good to
me. They are not perfect, but actually enforcing the use of ASLR on built-in and
purchased apps, the use of a sandbox, the use of signed “entitlements” for access to
resources, all appear to be evidence of good security design.

Some versions of Linux include SELinux. I’ve been using SELinux for years and
have taught classes about it for the past three years. I recently had to check if my
new CentOS 6.2 install had it enabled, as I have had no problems with SELinux at
all. SELinux helps sandbox services as well as applications that run with privi-
leges, like set-user-ID programs. With the sandbox command, you can run Web
browsers in isolated environments that disappear when you exit. What you cannot

	4    ;login:  VOL. 37, NO. 4 	 ;login:  AUGUST 2012   Musings    4

easily do is write policy that you can trust to be complete for your own applications.
Writing policy is just too complex.

Speaking of Web browsers, it is important to keep in mind that any extension you
install in your browser becomes part of the browser, its “chrome.” While exten-
sions have some limitations, the software you have added has access to everything
you download, just as the default install of the browser does. It’s this feature that
makes it possible for NoScript to block JavaScript, and Ghostery to tell you about
Web bugs, ad networks, and other “invisible” stuff added to Web pages and used
to track you. It also makes it possible for malware that gets installed as an exten-
sion to modify what you see and to collect the information you enter when using
your browser. The article by Franzi Roesner in this issue explains how their extension,
which controls third-party tracking, takes advantage of rewriting the pages you view.

Your Web browser, and the ability of your mailtool to parse the same set of proto-
cols, is what has made client systems so vulnerable to attacks. If we were still using
plain old text, the Mac attacks, and most Windows attacks, would not be possible.
Not that I expect anyone to give up the advances we’ve seen in pretty displays over
the past 17 years, but it has made us vulnerable. Go back to text-only days, and the
most comparable attack would be the inclusion of vi or emacs macros at the begin-
ning of a text file. Today, it is common for image protocol parsers, such as JPEG
and PNG, to include exploitable vulnerabilities. I suggest reading the summary of
Ulfar Erlingsson’s LEET talk, or the associated paper [11], if you want to learn how
Google is working at reducing the risk associated with the many protocols we use
today.

The Lineup

Franzi Roesner and her co-authors start us off with research into just what your
browser can do for (or to) you. Roesner has researched the various ways your
browsing habits can be tracked, using an assortment of cute technology, such as
single-pixel iFrames. While many browsers have an option to block third-party
trackers, these measures are ineffective against tracking by social media sites.
Ever wondered how Facebook “Like” or Google “+1” buttons know who you are?
Roesner et al. don’t just explain how these trackers work, they also present an
extension that fits into Firefox and Chrome that neuters these buttons—until you
want to use them. Roesner’s paper was presented at NSDI ’12, and a summary of
her presentation appears in this issue as well.

Keith Winstein and Hari Balakrishnan write about Mosh, a mobile shell applica-
tion that is actually designed for mobility. SSH uses TCP, and your connections die
if your source IP address changes. Also, TCP handles bufferbloat and high latency
connections poorly. Mosh leverages SSH for its ability to set up and authenticate a
connection, and then takes over, using AES encryption for your data and UDP for
transmission. Mosh maintains virtual screens at both the client and the server,
and provides local echo to clients using a conservative approach, but one that
makes high latency connections much more pleasant to use. Keith presented this
paper at USENIX Annual Tech in Boston, and that summary will appear in the
October 2012 issue of ;login:.

Mohammed Mannan and Paul van Oorschot examine the use of password tools for
mobile devices. They evaluate their own tool, ObPwd, and show how it can provide
strong passwords while simplifying the entering of passwords for mobile users.

	 ;login:  AUGUST 2012   Article Title    5

ObPwd also works for desktop users, allowing users to share the same mechanism
and secret token (an image or file) on both types of systems.

Rick Forno takes us in a different direction. Rick has been a long-time security
professional, a Washington D.C. observer, and is now the director of the cyberse-
curity program at the University of Maryland, Baltimore Campus. Rick presents
the history of failed security policies that have led us to this moment in US history
and demonstrates how these proposals have remained essentially the same since
1996. He then makes three suggestions of his own for improving the stance of US
security policy.

Dan Geer heads in yet another direction, with a different look at policy. Dan lets me
read the text of speeches he makes, and when I read one of his latest, I contacted
him immediately and asked him to write for this issue. What caught my attention
this time was Dan’s concept of the role of the Internet rejectionist, and how impor-
tant this is for creating an infrastructure that is robust enough to withstand and
quickly recover from failures or large-scale attacks using the Internet.

Matei Zaharia and co-authors, winners of the NSDI ’12 Best Paper award, present
Spark, an interface for distributed data modeling. Spark borrows some concepts
from DryadLINQ, but is open source, and already in use outside the lab where it
was developed. Spark presents a rich language for interaction with large datasets
via Hadoop and HDFS, but also introduces the concept of resilient distributed
datasets (RDDs). While using Spark, you can persist the result of filtering or
manipulating large datasets in memory and speed up applications on Hadoop by as
much as 40 times. RDDs are stored in memory and not replicated—if they are lost,
a graph of transformations is used to recover the data. You can find out more about
Spark on its Web site, http://www.spark-project.org, and by reading the paper pre-
sented at NSDI ’12 and the summary in this issue.

Doug Hughes presents the second part of the story he began in the June 2012 issue.
In that issue, Doug hinted at a near disaster involving two racks of drives storing
640 TB that started failing. Doug explains how the combinations of failures man-
aged to overcome a level of redundancy they had felt was surely sufficient. Imagine
having the loss of vast amounts of data hanging over you, not for days, but for lon-
ger than a week. Doug also provides lessons learned, not just in debugging but also
in the design of redundant storage.

David Blank-Edelman almost departs from teaching us about Perl to explain
XPath. XPath provides a common syntax for addressing portions of XML docu-
ments. XML documents can be viewed as trees, with a single root and many
children, and XPath allows you to efficiently specify and extract elements of those
trees. In the end, David shows us how to use XPath with Perl libraries.

Dave Josephsen continues his series on tools, written by Mathias Kettner, that
work with Nagios. In this column, Dave waxes enthusiastic over Livestatus,
a tool that presents Nagio’s structures via a UNIX socket, using a simple API.
Dave explains how Livestatus is superior to the other commonly used methods of
extracting status information from Nagios, as well as demonstrating the use of
Livestatus.

Dave Beazley explains how the import statement works in Python. A lot is happen-
ing behind the scenes when you import library modules and third-party exten-
sions, and Dave explains how Python searches for these libraries. He also explains
how you can vary the searchpath, how the searchpath varies for different versions
of Python, and what different types of files may be found using import.

	6    ;login:  VOL. 37, NO. 4 	 ;login:  AUGUST 2012   Musings    6

Robert Ferrell is excited about yet-to-be written, but oh so necessary, apps. You
might think that with hundreds of thousands of apps already written, there could
only be tiny niches left, but Robert’s imagination takes us to places few dare to go.

We have a nice batch of book reviews in this issue. Elizabeth Zwicky starts with a
book on analyzing big data, covers two books on Agile programming, then a book
on building free software communities. She finishes up this set of five reviews
with a book on domain modeling. Peter Gutmann tackles a legal tome that covers
electronic signatures. The author has left few stones unturned: while not exactly
beginning with the Stone Age, he does go back to the Magna Carta. Sam Stover
writes an enthusiastic review of Metasploit, a book on the penetration testing
framework. Metasploit itself is vast, but Sam tells us that this book carefully
relates both how Metasploit fits into pen testing and also how Metasploit is used.
Finally, Mark Lamourine reviews three books by Allen Downey, designed to teach
students (and the self-taught) how to think like scientists. Downey uses examples
in Python to teach problem solving, use of statistics, and computation modeling.

Finally, we have two reports, for NSDI ’12 and LEET ’12. There were many inter-
esting papers at NSDI this year, and LEET combined academic and commercial
research for a very interesting workshop, one that has been one of my personal
favorites.

In 2006, I decided that I needed to go out into the world and point out just how
badly the various security mechanisms that had been created, starting with MUL-
TICS, were working. The point of my “Security Is Broken” talk [12] was not to beat
a dead horse, but to encourage researchers and developers to try some different
approaches. I ended my talk by suggesting that capabilities seemed like a fruitful
direction, even though it had been explored in the past.

Today, we have capability-like features in iOS [10], as well as Robert Watson’s
Capsicum [13], now part of FreeBSD 9, and perhaps soon to appear in other OSes.
The difference between Capsicum and approaches like SELinux is that the secu-
rity policy of an application appears within the source of the application, instead
of being stored and managed separately. Using Capsicum forces the developer to
consider first what resources are needed, then to arrange for those capabilities to
be available to an application running with reduced privileges, the set of allowed
capabilities.

This still doesn’t deal with the basic problem we have today in many of our applica-
tions. Web browsers operate with our own user privileges these days, and that
allows reading and writing anything that we can. Even a browser or email tool that
is effectively sandboxed can still be used to pass a Word document to an exploitable
version of Office, and to silently do other things we don’t want. We are not used
to working in the type of compartmentalized systems that will work best with a
capabilities-based system. Similar compartmentalized workstations were tried in
the late ’80s and were never easy to use.

Consider the LAMP model: Apache, MySQL, and PHP all running over Linux.
That’s an enormous software stack, all based on having a flexible Web server that
can be remotely changed. Wordpress, as an awful example, recommends that you
allow Apache write permission to all of its files, for purposes of administration
(installing modules and updates). You can download PHP shell from SourceForge,
something I imagine gets installed in lots of writeable Web server directories.

	 ;login:  AUGUST 2012   Article Title    7

As I prepared for my Mac users group talk, I could tell from my email exchanges
with the organizers just how disturbed they were. Someone had written software
that had silently infected 700,000 of Macs—perhaps their very own Macs. The
security paradigm we have inherited from MULTICS, that users need to be iso-
lated from one another, does not fit the security problems we face today. Today, via
our Web browsers, we execute code and interpret complex files that are provided to
us by third parties that are usually unknown to us, in our own user context. So it is
no surprise to me that malware still gets installed, when the very systems we use
does that by design.

References

[1] Adam O’Donnell, “When Malware Attacks (Anything but Windows),” IEEE
Security and Privacy, 2008: http://www.securitymetrics.org/content/attach/
Metricon3.0/j3attAO.pdf.

[2] Andy Greenberg, “Cybercrime Game Theory: Why Apple’s Malware Grace
Period Ended Early,” Forbes, April 20, 2012: http://www.forbes.com/sites/
andygreenberg/2012/04/20/cybercrime-game-theory-why-apples-malware
-grace-period-ended-early/.

[3] Igor Soumenkov, “Flashfake Mac OS X Botnet Confirmed,” Kaspersky Lab,
April 6, 2012: http://www.securelist.com/en/blog/208193441/Flashfake_Mac
_OS_X_botnet_confirmed.

[4] David Lanier, “Cron and launchctl on Mac OS X 10.5 Leopard”: http://www
.davidlanier.com/story/cron-and-launchctl-on-mac-os-x-105-leopard.

[5] Costin Raiu, “SabPub Mac OS X Backdoor: Java Exploits, Targeted Attacks
and Possible APT Link”: http://www.securelist.com/en/blog/208193467/
SabPub_Mac_OS_X_Backdoor_Java_Exploits_Targeted_Attacks_and
_Possible_APT_link.

[6] Mac OS X Developer Library, launchd.plist(5): http://developer.apple.com/
library/mac/#documentation/Darwin/Reference/ManPages/man5/launchd
.plist.5.html#//apple_ref/doc/man/5/launchd.plist.

[7] “What Is Upstart?” Linux, Jan. 6, 2011: http://www.linux-magazine.com/
Online/News/What-is-Upstart; http://upstart.ubuntu.com/.

[8] Dennis Fisher, “MacControl Trojan Being Used in Targeted Attacks Against
OS X Users,” ThreatPost, March 28, 2012: http://threatpost.com/en_us/blogs/
maccontrol-trojan-being-used-targeted-attacks-against-os-x-users-032812.

[9] Rik Farrow, “Malware: No One Is Safe (Mac malware presentation for Mac
users): http://www.rikfarrow.com/malware2012.pdf.

[10] iOS Security, May 2012: http://images.apple.com/ipad/business/docs/
iOS_Security_May12.pdf.

[11] Mike Samuel and Ulfar Erlingsson, “Parse to Prevent Pwnage”: https://www
.usenix.org/system/files/conference/leet12/samuel.pdf.

[12] Rik Farrow, “Security Is Broken”: http://video.google.com/videoplay
?docid=1762847950860111011.

[13] Robert Watson et al., “Capsicum, Practical Capabilities for UNIX”: http://
www.usenix.org/event/sec10/tech/full_papers/Watson.pdf.

