
	38    ;login:  VOL. 37, NO. 2

Imagine that your new German customer sends you a ton of text files that you have
to add to your document database. You write a Perl script which neatly imports all
the data into your shiny new PostgreSQL database. As you tell this to your DBA,
she wonders what had happened to all the German ä, ö, ü umlauts and ß characters
in the process. You had not suspected that there might be a problem, but, as you
look, all is well—this, despite the database being UTF-8 encoded while the German
text files were seemingly normal text files. Another shining example of Perl doing
exactly what you want even when you don’t know what you are doing.

All seems well, that is, until someone from accounting notices that all the Euro
symbols (€) have been turned into e symbols. That’s when you start digging into
how this really works with Perl and character encodings and Unicode.

A Short Introduction to Unicode

Back in the ’60s, the American Standard Code for Information Interchange (aka
ASCII) had become the lingua franca for encoding English text for electronic pro-
cessing outside the IBM mainframe world.

As the use of computers spread to other languages, the whole encoding business
became a jumbled mess. The vendors, as well as some international standardiza-
tion bodies, fell over each other to come up with sensible ways of encoding all the
extra characters found in non-English languages. Each language or group of simi-
lar languages got one or several encodings. In Western Europe, the Latin1, or ISO-
8859-1, encoding became popular in the ’80s and ’90s. It sported all the characters
required to write in the Western European languages.

Working with a single language, this was fine, but as soon as multiple languages
were in play, it all became quite confusing; data had to be converted from one
encoding to another, often losing information as some symbols from encoding A
could not be represented in encoding B.

In the late ’80s, work had begun to create a single universal encoding, capable
of encoding text from all the world’s languages in a unified manner. In 1991 the
Unicode consortium was incorporated, and it published its first standard later
that year. The current version of the standard is Unicode 6.0, published in October
2010. It covers 109,000 symbols from 93 different scripts. Each symbol is listed
with a visual reference, as well as a name made up from ASCII letters, and is
tagged with properties giving additional information as to the character’s purpose.

How Perl Added Unicode Support
10 Years Ago Without You Noticing It
T O B I O E T I K E R

Tobi Oetiker is the author

of several wel-known open

source applications: MRTG,

RRDtool, and SmokePing. He

co-owns and works at Oetiker+Partner AG,

a consultancy and development company in

Olten, Switzerland. Tobi’s current pet open

source projects are extopus.org, a tool for

integrating results from multiple monitoring

systems into a cool JavaScript-based

Web frontend, and remOcular.org, a slick,

interactive command line-to-Web converter.

Read more from tobi on @oetiker, G+ or tobi.

oetiker.ch

tobi@oetiker.ch

	 ;login:  APRIL 2012   How Perl Added Unicode Support 10 Years Ago Without You Noticing It    39

With its huge number of characters, Unicode requires multiple bytes to store
each symbol. A pretty wasteful undertaking, when you recall that most languages
written in Latin script will require only about 70 different symbols to get by.
Therefore, a number of different Unicode “encoding” schemes were proposed over
time. These days the UTF-8 and UTF-16 schemes are the most popular. Both are
variable length encodings, where symbols will use a varying number of bytes to be
stored.

UTF-16 is the “native” encoding used by Microsoft operating systems since
Windows 2000. It requires at least 2 bytes per character. UTF-8 is the primary
encoding used in most Internet-based applications and also in the UNIX/Linux
world. Its main feature is that it encodes all of the original 7-bit ASCII characters
as themselves. This means that every US-ASCII encoded document is equivalent
to its UTF-8 counterpart. All other Unicode characters are encoded by several
bytes. The encoding is arranged such that most of the extra symbols required by
Western European languages end up as 2-byte sequences.

These days UTF-8 is widely used. XML documents, for example, are encoded in
UTF-8 by default. A lot of the Web content is encoded in UTF-8, and most Linux
distributions use UTF-8 as their default encoding.

Perl Unicode Basics

In July 2002, with the release of Perl 5.8, Unicode support was integrated into the
language. Since everything was done in a nicely backward-compatible manner, the
six lines under the “Better Unicode Support” heading in the release announcement
went largely unnoticed. The good news is that, in the meantime, most people are
actually using Perl 5.8 or a later version, so all the information in this article should
be readily applicable in your real-life Perl setup.

The fundamental idea behind Perl’s Unicode support is that every string is stored
in Unicode internally. If the string consists only of characters with code points
(numeric IDs) lower than 0x100, the string is stored with one byte per character.
Since the Unicode code points 0x0 to 0xff are equivalent to the Latin1 character
set, nothing much changed to the casual observer. If any characters with code
points 0x100 or higher are present, the string is UTF-8 encoded and flagged
appropriately.

On IBM mainframes, Perl uses the EBCDIC encoding, and thus a matching UTF-
EBCDIC was chosen to go with it. For the purposes of this article, if you are using
Perl on a mainframe just think "EBCDIC" when you read "Latin1."

Perl Unicode Internals

So the main new thing is that now strings can be stored either as sequences of
characters with one byte per character or as UTF-8 encoded character sequences
with a flag. The perlunifaq(1) suggests that you not even think about all these
things, pointing out that they will just work. This is largely true, but I found that
until I understood what was happening internally, I kept running into interesting
corner cases, driving me nuts. So here is your chance to get your mental picture
cleaned up as well.

But, as the perlunifaq suggests, the functions shown in the following examples are
not normally required in everyday tasks.

	40    ;login:  VOL. 37, NO. 2

uft8::is_utf8($string) tells whether the UTF-8 flag is set on a string or not:

#!/usr/bin/perl

my %s = (

	 latin1 	 => chr(228), # latin1 ä;

	 utf8 	 => chr(195).chr(164), # utf8 encoded ä char

	 smiley 	 => “\x{263A}”, # unicode smiley

);

for (keys %s){

	 print “$_: >”.utf8::is_utf8($s{$_}).”< $s{$_}\n”;

}

Terminals set to work in Latin1 encoding, will show:

latin1: >< ä

Wide character in print at p1.pl line 8.

smiley: >1< â☺ o

utf8: >< Ãe

Terminals running in UTF-8 mode will display:

latin1: ><

Wide character in print at p1.pl line 8.

smiley: >1< ☺

utf8: >< ä

The presentation of the characters is entirely up to the terminal, hence the
different rendering. Perl assumes that your output device is in Latin1 single-byte
mode and warns that it will have trouble displaying the smiley character, which
has no equivalent representation in Latin1.

The example also shows that Perl will keep strings in single-byte mode unless it is
forced into UTF-8 encoding by the content of the string. Also, the UTF-8 encoded
string is not automatically recognized as such.

A few more functions help to get things sorted. The utf8 namespace holds a bunch
of utility functions that allow you to move strings between encodings:

utf8::upgrade($string) in-place converts from single byte to UTF-8 encoding
while setting the UTF-8 flag. If the UTF-8 flag is already set, this is a no-op.

utf8::downgrade($string[, FAIL_OK]) in-place converts from UTF-8 to single
byte while removing the UTF-8 flag. If the logical character sequence cannot be
represented in single byte, this function will die unless FAIL_OK is set.

utf8::encode($string) in-place converts from internal encoding to a byte-
sequence UTF-8 encoding, and removes the UTF-8 flag in the process. Since
Unicode strings are internally represented as UTF-8 already, all this really does, is
remove the UTF-8 flag from a string.

utf8::decode($string) checks if a single-byte (non-encoded) string contains
a valid UTF-8 encoded character sequence and sets the UTF-8 flag if this is the
case.

#!/usr/bin/perl

my %s = (

	 latin1 	=> chr(228), # latin1 ä;

	 utf8 	 => chr(195).chr(164), # utf8 encoded ä char

	 ;login:  APRIL 2012   How Perl Added Unicode Support 10 Years Ago Without You Noticing It    41

	 smiley 	=> “\x{263A}”, # unicode smiley

);

utf8::upgrade($s{latin1}); # latin1 A internal utf8

utf8::decode($s{utf8}); # set the utf8 flag

for (keys %s){

	 print “$_: >”.utf8::is_utf8($s{$_}).”< $s{$_}\n”;

}

A UTF-8 terminal now shows:

latin1: >1<

Wide character in print at p1.pl line 12.

smiley: >1< ☺
utf8: >1<

All strings are in UTF-8 mode internally, so all should be well, but only the smiley
character gets printed; the ä character is lost. The Latin1 terminal, on the other
hand, shows:

latin1: >1< ä

Wide character in print at p1.pl line 12.

smiley: >1< â˜o

utf8: >1< ä

The reason for this effect is Perl assuming that our output device (STDOUT) is
working in single-byte mode. Perl is “doing what you want” by encoding all the out-
put strings into Latin1, and only if there is no Latin1 representation will it resort
to UTF-8 native encoding. This leads to the question of how to tell Perl about the
encoding in use on STDOUT. The binmode function helps:

#!/usr/bin/perl

binmode(STDOUT,’:utf8’);

my $smile = “\x{263A}”;

print “$smile\n”;

When running in an UTF-8 enabled terminal you now get properly encoded data
and Perl will also not complain about wide characters anymore:

☺

While this works fine if you are running on an UTF-8 terminal, it would not work
well for sites still running in Latin1 mode. Normally the LANG environment vari-
able gives an indication as to the encoding in use on the system. If you want Perl to
take this into account, you can use the open pragma and the :locale encoding:

#!/usr/bin/perl

use open ‘:locale’;

my $umlaut = chr(228);

utf8::upgrade($umlaut);

print “$umlaut\n”;

which will always output an “ä”, taking the default encoding into account when
reading and writing data on the system.

When interpolating a string containing material with the UTF-8 flag set (the
smiley gets an automatic UTF-8 promotion due to its content, which cannot be

	42    ;login:  VOL. 37, NO. 2

represented in a single-byte encoding), then the resulting string will be upgraded
to UTF-8 mode as well:

#!/usr/bin/perl

use open ‘:locale’;

my $umlaut = chr(228);

my $smile = “\x{263A}”;

print “$umlaut $smile\n”;

Running this on a Latin1 system gives:

“\x{263a}” does not map to iso-8859-1 at p3.pl line 5.

ä \x{263a}

If you want to write your Perl scripts in UTF-8 encoding, you can use the UTF-8
pragma to tell Perl about this.

use utf8; # assume utf8 program text

no utf8; # assume native program text

Note, though, that this only affects how Perl treats the text of the program, so it
will understand an UTF-8 encoded “ä” in the program text, but it will still store it
in native encoding internally. The UTF-8 flag will only be set on strings that do
contain Unicode characters with code points above 0xff.

When a string has the UTF-8 flag set, all string handling functions will continue
to work in an intuitive manner, meaning they will act on characters and not on
bytes. This might cause some interesting side effects, as the length command will,
for example, not tell you anymore how many bytes are in a string, but how many
characters. Using the bytes pragma, you can force Perl to still look at the bytes and
not at the characters:

#!/usr/bin/perl

my $umlaut = “ä”;

print ‘plain: ‘,length($umlaut),”\n”;

utf8::upgrade($umlaut);

print ‘utf8: ‘,length($umlaut),”\n”;

use bytes;

print ‘byte length:’, length($umlaut),”\n”;

As expected the UTF-8 version of the string uses 2 bytes of memory.

plain: 1

utf8: 1

byte length:2

PerlIO and the Encoding Module

The real fun begins when interacting with data from outside the program. The
PerlIO layer goes a long way toward making this process as simple as possible.
It allows you to do elaborate data processing steps as you are working with file
handles. Using the three-argument open syntax and an appropriate PerlIO layer
definition is all it takes:

#!/usr/bin/perl

open my $fs, ‘<:encoding(latin15)’,’euro-test.txt’;

my $data = <$fs>;

print ‘utf8 flag: ‘,utf8::is_utf8($data),”\n”;

	 ;login:  APRIL 2012   How Perl Added Unicode Support 10 Years Ago Without You Noticing It    43

With this setup, PerlIO takes care of decoding the Latin15 encoded input file and
stores the result in UTF-8 mode internally:

utf8 flag: 1

Latin15 is another name for the ISO-8859-15 encoding. It is the single-byte encod-
ing commonly used in Western Europe these days. Latin15 is very similar to the
classic Latin1 encoding, but a few characters have been replaced. Most impor-
tantly, Latin15 includes the € (Euro) symbol.

Using the binmode command, the encoding of an open file handle can be changed:

#!/usr/bin/perl

open my $fs, ‘<’,’euro-test.txt’;

binmode($fs,’:encoding(latin15)’);

my $data = <$fs>;

The open pragma allows you to define the default encoding for commands creating
file handles:

#!/usr/bin/perl

use open IN => ‘:encoding(latin15)’, OUT=>’:utf8’;

open my $fs, ‘<’,’euro-test.txt’;

my $data = <$fs>;

The encoding and decoding process can also be controlled directly by using the
Encode module:

#!/usr/bin/perl

use Encode;

$x = decode(‘iso-8859-1’, chr(228));

print ‘flag: ‘,utf8::is_utf8($x), 	

	 ‘ - ‘,encode(‘utf8’,$x),”\n”;

The decode step turns the “ä” character in Latin1 encoding into a Perl UTF-8
character sequence with the UTF-8 flag set. The encode step turns it into a UTF-8
multi-byte sequence without the UTF-8 flag set. A Latin1 terminal will show:

flag: 1 – Ãe

The Unicode Bug

The Unicode standard not only defines code points (numeric IDs) for its char-
acters, but it also provides properties such as Letter, Number, Uppercase_Letter,
Space_Separator . Perl has access to this information and can use it in regular
expressions and other commands. The example below demonstrates the behavior
of the “\w” (word characters) regular expression match:

#!/usr/bin/perl

my $a = ‘aäa’;

$a =~ /(\w+)/ and print “standard match: $1\n”;

utf8::upgrade($a);

$a =~ /(\w+)/ and print “utf8 match: $1\n”;

The result is a bit odd:

standard match: a

utf8 match: aäa

	44    ;login:  VOL. 37, NO. 2

While Perl uses Unicode for its internal strings, it seems to use the Unicode meta-
information only when the string is in UTF-8 encoding. The “\w” does not match
“ä”. This can be fixed by using the good old “locale” module, but that is from a time
when Perl did not assume all strings to be in Unicode.

This behavior has become known as the “Unicode Bug”; it has been present for
quite some time and therefore could not just be fixed without breaking existing
code. Perl 5.12 therefore introduced the unicode_strings feature, which “fixes”
the bug:

#!/usr/bin/perl-5.12.0

use feature ‘unicode_strings’;

my $a = ‘aäa’;

$a =~ /(\w+)/ and print “standard match: $1\n”;

utf8::upgrade($a);

$a =~ /(\w+)/ and print “utf8 match: $1\n”;

Now Perl uses the knowledge from the Unicode standard in all cases and the result
looks fine:

standard match: aäa

utf8 match: aäa

But also note that the bug does not affect you if you are using UTF-8 encoded and
flagged character strings, the format you would end up with when using the PerlIO
layer or the Encoding module functions.

CPAN and Unicode

When using CPAN modules, make sure to check their documentation for Unicode
support.

The DBD module for PostgreSQL (DBD::Pg), for example, will return all string
data with the UTF-8 flag set and properly decoded, unless the database encoding
is set to SQL_ASCII. You can use the pg_utf8_strings flag to override the
automated decision. The MySQL DBD module can deal with UTF-8 encoded
databases, but you have to tell it explicitly by setting the mysql_enable_utf8 flag
on the database handle.

XML::LibXML will also work with UTF-8 characters without further ado.

Mojolicious, Dancer, and other new kids on the CPAN block will, in general,
work graciously with Unicode. The only problem I ever ran into was that I was
incorrectly encoding data for output which had already been encoded by the
framework, ending up with doubly encoded data.

About That Missing Character...

And now, on to resolving the mystery from the beginning of this article. The
German text files were in Latin15 encoding, which is pretty similar to the Latin1
encoding Perl uses by default except for the Euro sign (and some other bits). Your
script read the text in as if it was Latin1 encoded. As the data went via DBI into
PostgreSQL, the DBD::Pg module took care of properly UTF-8 encoding the data,
which worked fine except for the Euro sign, which is not in the Latin1 character
set. The fix for the problem is simple, though: the text files have to be opened with
the :encoding(Latin15) PerlIO layer and it all works.

	 ;login:  APRIL 2012   How Perl Added Unicode Support 10 Years Ago Without You Noticing It    45

Recap

The road to Perl Unicode bliss:

u	 Be aware that Perl internally treats everything as Unicode (and make sure to
keep all text information encoded in UTF-8 with the UTF-8 flag set to avoid the
Unicode Bug).

u	 Whenever data enters the program from the outside, decode it from its outside
encoding.

u	 When data leaves the program, encode it according to the requirements of the
next step of processing.

u	 Consider that the modules you are using to access data might already be taking
care of all (or part) of the encoding and decoding business.

For further entertainment have a look at the Perl Unicode documentation on
http://perldoc.perl.org/.

Thanks to USENIX and LISA Corporate Supporters

USENIX Patrons
EMC

Facebook

Google

Microsoft Research

VMware

USENIX
Benefactors
Hewlett-Packard

Infosys

Linux Journal

Linux Pro Magazine

NetApp

USENIX & LISA
Partners
Cambridge Computer

Google

USENIX Partners
Xirrus

http://perldoc.perl.org/perlunicode.html

