
o c t o b e r 2 0 1 2   v o l . 3 7 , n o . 5
ELECTRON I C S U P P LE M ENT

 | OCTOBER 2012 | VOL. 37, NO. 5 | 4th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud ’12) 	P AGE 1

4th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud ’12)

Boston, MA
June 12-13, 2012

Opening Remarks
Summarized by Rik Farrow (rik@usenix.org)

Dave Maltz started the workshop by explaining the format
for presentations. Only questions specific to the presentation
should be asked at the end of a talk. When a session’s talks
are completed, all speakers return to the podium to answer
questions.

In these summaries, some scribes incorporated both specific
and discussion questions with the paper summaries, while
others included a specific discussion section.

Cloud Risks
Summarized by Rik Farrow (rik@usenix.org)

The Seven Deadly Sins of Cloud Computing Research
Malte Schwarzkopf, University of Cambridge Computer Laboratory;
Derek G. Murray, Microsoft Research Silicon Valley; Steven Hand,
University of Cambridge Computer Laboratory

Malte Schwarzkopf gave a lively presentation about current
failings in cloud research that come about largely due to
shortcuts and simplifications. Cloud computing is large-scale
parallel processing, what we used to call cluster comput-
ing and scalable Web app serving, and has become the rage.
Schwarzkopf said that their “seven deadly sins” are, for the
most part, easy to fix.

Schwarzkopf only presented the first three sins due to time
constraints. He described the first sin as unnecessary dis-
tributed parallelism. People use parallelism to solve perfor-
mance problems, but parallelism isn‘t free since it requires
coordination and has other overheads. In their survey of cur-
rent research, the authors found diminishing returns as scale
increases and because of the overheads required in distrib-
uted parallelism. In some cases, a single system can do better
than a distributed one, especially when the data set is small
enough to fit entirely in memory of one of today’s servers.

Schwarzkopf described the second sin as imagining that the
cloud is homogeneous. In reality, clusters used for testing
may have a changing background of batch jobs running con-
currently. If the test cluster is composed of EC2 instances,
there will be many influences under neither the control nor
the visibility of the researchers. For these reasons, each run
needs to be repeated five to ten times, and the results pre-
sented with error bars.

The third sin is comparing your research results against
Hadoop. Hadoop is general by design, and by designing
software to do one task well you will certainly do better.
Schwarzkopf used a comparison of CIEL (a Cambridge
project) against Hadoop as an example. CIEL does better
than Hadoop, and when using arrays instead of data streams,
CIEL array performs orders of magnitude better than
Hadoop. But MPI is faster still as well as scaling better than
CIEL array.

Terence Kelly (HP Labs) quoted Rob Pike as saying, “Sys-
tems research is irrelevant.” He pointed out that Schwarz-
kopf had focused on performance. Schwarzkopf replied that
you do get performance by investing more work, but this
tradeoff is poorly analyzed. We often assume that distributed
parallelism is the way to go, even while it is much easier than
MPI programming.

Icebergs in the Clouds: The Other Risks of Cloud
Computing
Bryan Ford, Yale University

Bryan Ford also rained on cloud computing in general, but
asked that listeners come away with a constructive interpre-
tation of this gloomy talk. Bryan pointed out that there are
some well-known risks of cloud computing: security of data,
integrity of data, privacy, malware defense, availability, and
reliability. But Bryan listed five more issues.

First, several researchers, including himself, had demon-
strated information leakage via side-channels. The second
issue is reactive stability, and Bryan provided an example.
Suppose someone’s cloud application relies on another cloud
provider for a load balancer, and the entire application runs
within an infrastructure provider. The infrastructure pro-
vider has its own secret sauce in the form of power optimiza-
tion, which is hidden from the application provider. These
optimizations are not stable and convergent and can create
positive feedback loops. At this point, Bryan displayed an
image of the Seattle Narrows Bridge, which was famously
unstable in moderate winds to the point of collapse.

Bryan described the third issue as cross-layer robustness
when people typically build in layers. Suppose the application
provider wants reliability to be five nines (99.999%), but uses
two cloud storage providers who guarantee only three nines.
What the application provider doesn’t know is that both cloud
storage providers rely on the same network provider, so one
network failure could cut out both storage providers. Bryan’s
fourth issue is that we are assuming that we will always be
connected. He compared the state of affairs to the hive mind

Conference Reports

PAGE 2	  | OCTOBER 2012 | VOL. 37, NO. 5 | 4th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud ’12)

E L E C T R O N I C S U P P L E M E N T

in Ender’s Game, where disabling the hive mind causes the
collapse of an empire.

Bryan ended by wondering if we ourselves are the bad guys.
Will distributed apps still exist in any form in 1000 years?
Book, music, and video produces have so far provided the
option of a copy that can be preserved. But cloud-based
artifacts destroy this archive property. And newer artifacts,
such as cloud-based games like World of Warcraft (WoW) or
search engines, have become part of our culture, but are not
archivable.

Dave Maltz (Microsoft), the session chair, started the discus-
sion, by asking the two presenters if they had more points
to make. Schwarzkopf responded to Bryan’s final issue that
the German government compels the owner of any blog that
reaches a level of importance to provide an archive of the
blog to the government. Bryan said that this sounded like the
right direction, but a blog is passive compared to WoW. John
Sopka (EMC) said tracking every artifact in WoW would
require massive storage, and didn’t think it has ever been
done or needed to be done. Bryan responded that it was a good
research opportunity, even if all that was preserved was a
single snapshot each year.

Byung-Gon Chun (Yahoo! Research) wondered if when
Schwarzkopf said Hadoop, he really meant the MapReduce
layer on Hadoop. As a community, we need to learn how to
provide relevant comparisons. Schwarzkopf replied that
he had conflated Hadoop and MapReduce in his talk, but
this combination is widely used in research. Schwarzkopf
said that Hadoop can be optimized big time, and that we are
obsessed with performance. Dave Maltz followed up by ask-
ing whether it is all about performance? That’s what lots of
people are optimizing for. Schwarzkopf replied that if there
was something else as easy to use as Hadoop and MapRe-
duce, people would be using it. He would prefer to be using a
different programming model himself.

Dave Maltz asked about the assumption of heterogeneity in
the cloud, and Bryan responded by pointing to a nice, small
body of research for dealing with persistent tail inequality.
What would be wonderful would be to come up with a general
scheme for dealing with heterogeneity issues. Schwarzkopf
emphasized Bryan’s point by mentioning a recent Google
published cluster trace that showed 12 different types of
machines in one cluster. If you are running a big cluster and
are doing rolling upgrades to replace machines, you will defi-
nitely have different types of machines in your cluster. John
Sopka said that heterogeneity has been a problem for years,
and the aware consumer should demand some level of quality
of service. Most issues Bryan raised assume that the provider
will be fair, but we need educated consumers. Schwarzkopf

responded that as a researcher, you have to ensure that your
experiments can be repeated with similar results.

Cloud Hardware
Summarized by Anshul Gandhi (anshulg@cs.cmu.edu)

Saving Cash by Using Less Cache
Timothy Zhu, Anshul Gandhi, and Mor Harchol-Balter, Carnegie Mellon
University; Michael A. Kozuch, Intel Labs

Timothy Zhu presented work which looks at the unconven-
tional idea of scaling down the caching tier for multi-tier
cloud applications, during periods of low loads. The main
motivation for this work is that DRAM is quite expensive, so
scaling down the caching tier can significantly reduce oper-
ating costs. In fact, Timmy mentioned that for a typical 4:1
ratio of peak load to low load, the authors were able to shrink
the caching tier by 50%.

Prior work has looked at scaling down the stateless applica-
tion tier during low loads, but there is no prior work looking
at scaling down the stateful caching tier, possibly because
of the seemingly small savings this would afford. Timmy’s
results show that the reduction in required hit-rate at the
caching tier during low loads is usually small (10%), but the
subsequent cache size reduction is significant (50%), because
of the skewed nature of the (Zipf) popularity distribution
of Web items. Of course, on the practical side, one needs a
mechanism to shrink the caches without losing the hot data
on those caches. Timmy suggests that one simple way of
shrinking the caches is to move the hot data off of the retiring
caches by treating them as a second-level cache temporarily,
before taking them offline.

Tim Wood from George Washington University asked how
long it takes to scale down the cache, given that data needs
to be moved off of the retiring cache. Timmy replied that the
answer depends on the system under consideration, and for
his small-scale system implementation, the caches could be
scaled down in a matter of minutes. Timmy also mentioned
that their HotCloud paper includes a theoretical model that
estimates the time required to move the data off of the retir-
ing cache. Tim Wood then asked whether the work assumed
turning off cache instances or simply resizing the existing
cache instances, and whether Amazon EC2 allows for resiz-
ing of instances. Timmy replied that their work assumed
turning off instances, and he believes that Amazon does not
allow resizing instances on the fly. Weisong Shi from Wayne
State University expressed his concern on the degradation
of performance when scaling down the caching tier. Timmy
clarified that the work takes performance into account by
looking at a mean response time target that the system has
to meet at all times. Since the caching tier, which is typically
provisioned for peak load, is scaled down when the load is
low, performance is not compromised. Ryan Mack from Face-

 | OCTOBER 2012 | VOL. 37, NO. 5 | 4th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud ’12) 	P AGE 3

E L E C T R O N I C S U P P L E M E N T

book asked whether they looked at consistency issues or not.
Timmy replied that they focused on a read-only workload,
and so consistency wasn’t a concern. However, Timmy men-
tioned that the authors are considering consistency as part of
future work, which will look at write workloads as well.

Exploiting Hardware Heterogeneity within the Same
Instance Type of Amazon EC2
Zhonghong Ou, Hao Zhuang, Jukka K. Nurminen, and Antti Ylä-Jääski,
Aalto University, Finland; Pan Hui, Deutsch Telekom Laboratories,
Germany

Zhonghong Ou presented this work which looks at hardware
heterogeneity in the Amazon EC2 platform. Zhonghong and
his co-authors performed a bunch of experiments across
various instance types (small, large, extra-large) on Amazon
EC2 over a period of a few months, and observed significant
hardware heterogeneity within the same instance type.
Further, hardware heterogeneity was also present across
availability zones, which are basically distinct and insu-
lated locations that protect applications from a single point
of failure. Results show that performance can vary by as
much as 60% because of hardware heterogeneity for CPU-
bound (UnixBench), memory-bound (Redis), and I/O-bound
(Dbench) workloads.

In order to exploit this heterogeneity, Zhonghong proposed
a simple (and controversial) trial-and-error idea that aims
to reduce EC2 rental costs. The idea is to try out an EC2
instance, and if it is not performing well, then drop that
instance and apply for a new one. Even if you only restart an
instance twice, this trial-and-error idea can reduce rental
costs by as much as 40%. Of course, the cost savings depend
on the running time of the job. Further details on this depen-
dence can be found in the paper.

The presentation attracted a lot of questions from the crowd,
and a few of the interesting ones follow. Bryan Ford from Yale
asked how much the performance variation differs from pro-
cessor to processor. Zhonghong answered that the variation
for the 5645 processor was much higher than that for 5507
and 5643. Bryan then asked about the impact of heterogene-
ity. Zhonghong replied that there is a lot of heterogeneity in
cloud instances, and, in fact, many Netflix users (Netflix
uses Amazon EC2) are annoyed by the variation in perfor-
mance they get. Dilma Da Silva from IBM Research added
that IBM faced a similar complaint from some of their users,
and so IBM added some notion of lower and upper bounds
on performance. Masoud Moshref Javadi from USC asked
about heterogeneity in network performance. Zhonghong
mentioned that they had looked into this but they found that
variation in network performance depends on a lot of fac-
tors, such as location and network topology, and thus is quite
tricky to analyze. Masoud commented that cloud service pro-

viders should also guarantee some lower bound on network
performance.

Rodrigo Fonseca from Brown University wondered what
would happen if all customers started using a trial-and-error
sort of idea for getting instances. This question obviously
drew a lot of laughter from the crowd. Zhonghong admit-
ted that they got this question from the reviewers as well.
He mentioned that they hadn’t looked into this yet, but this
would be a starting point for their future work. A follow-up
comment was that service providers must provide homoge-
neous performance to all customers in order to discourage
such tricks. Bryan Ford made a witty comment that service
providers could simply hide the CPU ID information from
customers so that they don’t find out about the heterogeneity
in the first place.

RAMCube: Exploiting Network Proximity for RAM-
Based Key-Value Store
Yiming Zhang, National University of Defense Technology; Chuanxiong
Guo, Microsoft Research Asia; Rui Chu, National University of Defense
Technology; Guohan Lu, Yongqiang Xiong, and Haitao Wu, Microsoft
Research Asia

Yiming Zhang presented this work which basically looks to
extend RAMCloud (John Ousterhout et al. from Stanford
University). RAMCloud is a RAM-based key-value store
which is designed to be persistent by using a combination
of backup nodes and recovery nodes. However, RAMCloud
was not tailored for datacenter networks. RAMCube looks to
enrich the RAMCloud approach by exploiting the design of
datacenter networks. The main goals of RAMCube are fast
failure recovery (1–2 seconds) and high performance.

The key idea leveraged by the authors is that datacenter net-
work topology is usually known, and need not be treated as
a black box. Thus, the recovery nodes assigned to a primary
node are 1-hop neighbors. Likewise, the backup nodes are
1-hop neighbors of the recovery nodes. The calculations of
the number of recovery nodes and backup nodes can be found
in the paper. For failure detection, RAMCube uses heart-
beat messages and for failure recovery of primary nodes,
the recovery nodes are used in conjunction with the backup
nodes. Because of the 1-hop proximity of nodes, RAMCube
can recover 64 GB of data in 1–2 seconds, assuming 10
Gbps network bandwidth and 100 MBps disk bandwidth. A
prototype of RAMCube was evaluated on a 16-server testbed
running Windows 2008. The experiments demonstrated
quick failure recovery, graceful performance degradation
and almost linear scaling of throughput with the number of
clients.

Raja Sambasivan from Carnegie Mellon University asked
how long it took for failure detection. Yiming answered
that failure detection required only a few milliseconds

PAGE 4	  | OCTOBER 2012 | VOL. 37, NO. 5 | 4th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud ’12)

E L E C T R O N I C S U P P L E M E N T

since RAMCube has a 1-hop proximity for its nodes, unlike
InfiniBand-based systems. Bryan Ford from Yale asked how
RAMCube deals with correlated failures. Yiming replied that
RAMCube has recovery nodes on different racks, so that pro-
vides some protection from correlated failures. Ryan Mack
from Facebook commented that sometimes an entire data-
center can go down as well. Someone asked how RAMCube is
different from DHT-based solutions. Yiming replied that the
main difference was the 1-hop proximity of the primary and
recovery nodes and the recovery and backup nodes.

Networking
Summarized by Theophilus Benson (tbenson@cs.wisc.edu)

Opening Up Black Box Networks with CloudTalk
Costin Raiciu, Mihail Ionescu, and Dragos Niculescu, University
Politehnica of Bucharest

Costin Raiciu showed how cloud customers can use active
probing tools, such as traceroute, to discover a cloud provid-
er’s network topology. Costin then described the discovered
Amazon EC2’s network topology as a VL2-style multi-rooted
tree with full-bisection bandwidth. Using this topology
information, he optimized the performance of several of his
applications. Based on his observations, Costin proposed
CloudTalk, a system that allows the cloud provider to share
topology information with the cloud costumer without the
need for active probing.

CloudTalk allows a tenant to represent an application as a
transfer or a set of flows with characteristics ranging from
bandwidth requirements to application end points. Given this
information, CloudTalk simulates the network and calculates
an approximate completion time for the transfer or flows.
Customers can use CloudTalk to improve their application’s
performance by querying the cloud provider for the comple-
tion time of the application given different placement deci-
sions and by choosing the placement decision with the lowest
completion time.

An audience member asked if CloudTalk can be constantly
run in the background with the results from a prior run used
to answer queries from low-latency applications such as Web
applications. Costin explained that he implemented a similar
idea during his Web-application experiments; CloudTalk was
used only for initial placement of the Web. Bryan Ford from
Yale wanted to know if Costin had explored other approaches
in the Internet mapping world, such as iPlane, and how
customers could collaborate to create such a mapping. Costin
explained that this would require a significant number of
customers to participate for such a mapping to provide rel-
evant value.

GRIN: Utilizing the Empty Half of Full Bisection
Networks
Alexandru Agache and Costin Raiciu, University Politehnica of Bucharest

Alexandru Agache described how full bisection networks are
perfect when most servers send data to each other; however,
in most real networks only a few servers are sending data.
Thus the network is extremely idle and yet, in spite of this
fact, many servers are unable to efficiently share network
resources. Alexandru proposed developing a scheme to
improve the network utilization by using only MPTCP and
additional server ports. He designed GRIN, an architecture
whereby each additional server port is used to connect the
server to other servers within the same rack. In GRIN, a
server is able to better utilize the network by sending traffic
through an intermediate server. The links used to directly
connect servers to each other are called GRIN links.

Alexandru simulated GRIN on a VL2 topology with 120
servers and compared GRIN with a multihomed topology.
The experiments showed that under a random permutation
matrix, GRIN’s performance degraded faster than the multi-
homed topology because each server is more likely to find its
GRIN links preoccupied as the number of servers utilizing
the network increases. However, with the multihomed topol-
ogy, each server is guaranteed exclusive access to additional
uplinks. With an incast traffic matrix, GRIN performance
degraded slower than the multihomed topology because the
GRIN links provided significantly more capacity than the
multihomed topology. Alexandru concluded by describing
how GRIN is a simple and cheap proposal for increasing utili-
zation of the network bandwidth.

An audience member wanted to know how bandwidth uti-
lization would be affected by creating GRIN links between
servers in different rack switches. Alexandru explained that
connecting servers in different rack switches would result in
cabling issues and would require complex routing algorithms.

EyeQ: Practical Network Performance Isolation for the
Multi-Tenant Cloud
Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, and Balaji
Prabhakar, Stanford University; Changhoon Kim, Windows Azure

Vimalkumar Jeyakumar described how the performance
issues within public clouds forced Netflix to re-architect its
applications once they adopted a public cloud. Despite prob-
lems like this, cloud providers do not admit to having perfor-
mance issues and, even worse, they don’t provide customers
with performance guarantees. Vimalkumar explained that
in the ideal scenario, a cloud provider would provide each VM
with a minimum bandwidth requirement. However, this is
currently not achievable since existing network QoS primi-
tives do not scale to cloud requirements, and it is hard to give
requirements at short time scales.

 | OCTOBER 2012 | VOL. 37, NO. 5 | 4th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud ’12) 	P AGE 5

E L E C T R O N I C S U P P L E M E N T

Using an experiment, Vimalkumar demonstrated how a
spiky UDP flow impacts a steady TCP flow. The problem
occurs because the UDP flow fully utilizes the link and forces
the TCP flow to back up. Motivated by this, Vimalkumar
developed EyeQ. The key idea behind EyeQ is to prevent full
link utilization by creating artificial bandwidth headroom
(bandwidth throttling) at the receiving server. Artificially
throttling a link at the server prevents the network link from
being fully utilized and allows congestion to be detected
before it hits the network. EyeQ consists of two components:
a rate limiter at the sender and a congestion detector at the
receiver which creates the bandwidth head room, detects
congestion, and sets the sender-side rate limiters based on
the amount of congestion detected.

An audience member asked if Vimalkumar would once again
explain the bandwidth headroom? Vimalkumar responded
that EyeQ currently leaves a 10% bandwidth headroom on
server uplinks, thus restricting server links to 90% utiliza-
tion. Vimalkumar further described that EyeQ measured link
utilization at a fine time scale, and when utilization reached
90%, EyeQ would send information to the sending server’s
rate limiter to limit the sender’s sending rate. Another
member asked about the processing overhead of fine-grained
monitoring. Vimalkumar responded that these calculations
are simple, require little state, and can be performed on hard-
ware in network interface cards using a simple counter.

A Case for Performance-Centric Network Allocation
Gautam Kumar, Mosharaf Chowdhury, Sylvia Ratnasamy, and Ion Stoica,
University of California, Berkeley

Gautam Kumar explained that highly parallel applications
are written in high-level languages oblivious of the network
support required for the jobs. Gautam then explained how
these jobs have only a few network communication patterns,
and thus it is feasible to expand the language’s framework
to make decisions about how to determine the support
required for the network’s communication patterns. Current
approaches to expanding the frameworks either focus explic-
itly on fairness or performance. Gautam illustrated through
examples how different network communications patterns
achieve significantly different performance under different
network-sharing approaches as they scale up. Thus different
solutions are required for different network communication
patterns to ensure better sharing.

Gautam illustrated that the appropriate allocation strategy
for broadcast is flow allocation, while for the shuffle pat-
tern, proportional allocation is the appropriate solution. In
experiments with jobs containing different communica-
tion patterns, Gautam showed that his framework is able to
allocate the appropriate scheme for each type of communica-

tion pattern and allow jobs to finish within comparable time
periods ever when scaled up.

An audience member asked what sort of jobs he examined
and why shuffle took a large portion of the time. Gautam
responded that he didn’t know the exact type of jobs, but the
traces that he examined were from Facebook traces. Another
audience member asked whether Gautam’s framework sup-
ported jobs with different priorities and how he would extend
his framework to support priorities. Gautam reframed the
question in terms of the number of resources given to each
job and described how the underlying formulation for his
framework can be changed to introduce a scaling factor that
would support priorities.

Programming Models
Summarized by Rik Farrow (rik@usenix.org)

Discretized Streams: An Efficient and Fault-Tolerant
Model for Stream Processing on Large Clusters
Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Stoica,
University of California, Berkeley

Matei Zaharia explained that working with large data
streams has usually meant spending a lot of resources for
resiliency in case of node failure. Examples of data streams
include user activity statistics, spam detection, traffic
estimation, and network intrusion detection. The traditional
method for dealing with data streams is a record-at-a-time,
using either an upstream backup or replication for fault
tolerance, both of which are costly. Batch processing is both
efficient and fault tolerant, but increases latency.

Matei introduced their solution, discretized streams, or
D-streams. They split up the input stream into chunks
for MapReduce processing, and can feed back results into
the next data set. Since they implement D-streams on top
of Spark, they use Resilient Distributed Datasets (RDDs)
and logs of translations in place of replication or upstream
backups. In tests, they found they could process 2 GBps or 20
million records per second using 50 nodes, and recover from
a node failure in less than one second.

Batching data in small timesteps enables both efficient
parallel processing as well as parallel recovery schemes. And
by leveraging Spark, they provide a functional programming
interface.

Marco Serfini (Yahoo! Research) pointed out that upstream
backup, which appears similar to their approach, is bad for
time to recover. And good stream processing needs to tolerate
load spikes. Marco wondered whether they tried to evalu-
ate this? Matei said that their system can recover while still
processing streaming data, but it can take a long time.

PAGE 6	  | OCTOBER 2012 | VOL. 37, NO. 5 | 4th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud ’12)

E L E C T R O N I C S U P P L E M E N T

Using R for Iterative and Incremental Processing
Shivaram Venkataraman, UC Berkeley; Indrajit Roy, Alvin AuYoung, and
Robert S. Schreiber, HP Labs

Shivaram Venkataraman presented an alternative approach
to stream processing from the previous paper. Shivaram
presented Presto, a prototype that extends R, an array-based
language, that runs on clusters and supports incremental
processing. Shivaram asserted that many problems pro-
cessed today using MapReduce could be better handled using
iterative linear algebra operations.

Shivaram said that their project faces many challenges. R
itself has over 2000 packages for analysis, and is single-
threaded for running on a single machine. He also discussed
having to develop a storage driver—Presto uses HBase or HP
Vertica—as well as needing memory management, partition-
ing, and scheduling. For fault tolerance, Presto uses primary-
backup replication of the master node, and can restart
workers to reconstruct lost partitions, somewhat like Spark.

Derek Murray asked if they used a dense matrix. Shivaram
replied that they specify if a matrix is dense or sparse.
Apache Hadoop, for example, uses a sparse matrix. Amal
Fahad of the University of Rochester wondered how they
decided to partition their data. Shivaram said they use a
configurable threshold, and see some convergence after some
number of iterations.

The Resource-as-a-Service (RaaS) Cloud
Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan
Tsafrir, Technion—Israel Institute of Technology

Dilma Da Silva, IBM Watson Research, presented this work,
as both of the Ben-Yehudas were unable to attend the confer-
ence because of a last-minute family issue. Dilma began by
pointing out that with IaaS, there is a trend toward shrink-
ing the duration of rental periods, with more fine-grained
resources offered for sale. Along with provisioning according
to service level agreements (SLAs), these trends will drive
IaaS toward RaaS. Already we have CloudSigma and a spot
market for EC2 instances, where you can specify how much
you are willing to pay for a VM or an SLA.

In the paper, the authors project that client pressure for effi-
ciency will drive cloud providers to supply levels of quality
of service: prices for reaching a 95% level of some quality of
service (QoS) versus reaching just 80% of the QoS over time.
The provider can sell the 95% level for more, and sell spare
cycles to those with less concern about QoS. To deal with this
fluctuating market, agents will be needed both to set pricing
and to acquire resources. The result will be a real market.

Discussion
A very active discussion followed the three presentations.
Byung-Gun Chun, Yahoo!, asked the first two presenters to

choose between Spark and Presto, laying out the pros and
cons of each. Shivaram said that you should pick the language
you are most comfortable with. Matei agreed, adding that
they are adding more interfaces to Spark, so they can support
other languages, like SQL.

Malte Schwarzkopf, University of Cambridge Computer
Laboratory, wondered if people should trust cloud provid-
ers to provide accurate accounting of their resources. They
could lie or produce very coarse-grained accounting. Dilma
responded that CloudSigma provides a dashboard that sup-
plies accounting, and you can also use another dashboard.
Amazon provides more than one dashboard, so you can
choose. You can also use the power of the market and use
another cloud provider if you feel you are getting your SLAs
met, regardless of the accounting data provided. Someone
pointed out that using automated agents can result in mar-
kets with violent price swings. Dilma agreed, saying that she
had looked at Amazon spot prices, and they already vary a lot,
but that this is an understood issue.

Tim Wood, University of Washington, wondered that with
the high cost of fault tolerance, is it possible to have projects
that don’t care about fault tolerance. Matei responded that
he suspects that some projects, like machine learning, don’t
require that property. But having fault tolerance makes it
easier for programmers to imagine how things work. Tim
Wood commented that you can pay more for a more precise
answer. Derek Murray of MS Research asked Shivaram
whether they need to serialize the records determinantly to
make consistency work. Matei responded that the data is a
set, and you need to decide what’s in it. Shivaram said their
approach uses functions for partitioning.

Raja Sambasivan wondered if an IaaS client that relied on
many downstream services would need to have SLAs for
those downstream services. Dilma answered that you can
specify the resources required for each level of your applica-
tion, using the same system described in the paper. Someone
else asked Dilma if she or the authors were foreseeing a
significantly different OS or programming system instead
of Linux and Windows with all of their libraries. Dilma
said there is motivation for building a new OS and runtime
environment that can handle more flexibility. There are a few
groups exploring resources as a market, and they are consid-
ering moving away from UNIX APIs and processes.

Yun Mao of AT&T Labs asked what happens if the data
source reaches a higher rate than actual processing. Matei
responded that if the data includes a timestamp, this can be
used to update the state. But this must be done at the applica-
tion level. His group would like to add libraries that support
doing this and other things. Andrew Wong of UCB asked if

 | OCTOBER 2012 | VOL. 37, NO. 5 | 4th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud ’12) 	P AGE 7

E L E C T R O N I C S U P P L E M E N T

they had compared their research with MPI. Shivaram said
that programming in MPI brings impressive gains in perfor-
mance, while losing in programming expressiveness. Andrew
said that he had seen some high-level abstractions on top of
MPI, as well as seeing an order of magnitude improvement
over things in their project. And he can use Python. Shivaram
responded that Presto is Python powered. Byung-Gun Chun
said that if he can checkpoint and batch, what did their soft-
ware add? Matei answered that they are already doing more
than just batching in their handling of data streams.

Mike Kozuch, Intel Labs Pittsburgh, the session chair, asked
an open-ended question about programming models vs.
languages. Being a programmer relies on the ability to pop
between different languages, but the cloud tries to hide this
from their customers. Will people have to be aware of the
underlying issues in their use of clouds? Matei responded
that with Spark they are trying to see the limits of what can
be done with an execution engine. The engine provides a
deterministic graph, and a lot of parallel algorithms can be
reduced to this low-level computation engine. At the top, you
exchange queries at a high level. He finds it interesting to ask
about the limits of this type of model and about what needs to
change to support other models. Shivaram answered that the
challenge is how composable some of the properties are; can
you express this in one sequence of operations? It is challeng-
ing to come up with examples that compare Python to Scala,
the basis of Spark. Dilma provided a final comment: we in
the systems community look at this from the perspective of
performance, but in HPC, programming with MPI is very
expensive; we have to be careful not to go in that direction.

Posters
Summarized by Dan Levin (dlevin@net.t-labs.tu-berlin.de) and Phil
Schmidt (phils@net.t-labs.tu-berlin.de)

The HotCloud ‘12 poster session included approximately 10
posters, some of which had been presented as full or short
papers during the workshop.

Saving Cash by Using Less Cache
Timothy Zhu, Anshul Gandhi, Mor Harchol-Balter, Michael Kozuch CMU,
Intel Labs

Applications which rely on database back-ends often make
use of simple key-value caching mechanisms (e.g., mem-
cached) to improve performance by reducing load on the
database. Dedicated machines are often provisioned to act as
transparent cache instances, but provisioning and running
these instances incur an operational cost. This work presents
an analysis into the feasibility of achieving sufficient data-
base offloading while minimizing the number of provisioned
cache instances subject to performance goals. The authors
leverage the Zipf-like distribution of database content in
different workloads to explore the potential for cost savings

while maintaining performance. The authors also consider
the impact of the ratio between peak and average load proper-
ties of different workloads on the potential for cache and
operational cost reduction.

vCrib: Virtualized Rule Management in the Cloud
Masoud Moshref, Minlan Yu, Abhishek Sharma, Ramesch Govindan, USC
Viterbi School of Engineering

Managing forwarding state in the context of virtualized
cloud environments is difficult. Network forwarding state
changes in response to changes in network policy (e.g., access
control), host mobility, and responses to routing updates
and failures. Furthermore, forwarding state must be man-
aged both at the VM hypervisor as well as at the forwarding
devices within the network—these two areas expose different
strengths and limitations in terms of what forwarding state
can be expressed and what performance can be realized. This
work, which follows up ideas from the “DIFANE” Sigcomm
paper, attempts to address the challenges in managing the
partitioning, placement, and updates to distributed, hetero-
geneous forwarding state.

How Much Energy Can You Save? An Energy
Perspective of YouTube
Zhonghong Ou, Hao Zhuang, Antti Ylä-Jääski, Aalto University, Finland

Given the limited battery resources of mobile computing
devices, reducing power consumption is of utmost impor-
tance. This work presents a preliminary analysis of power
consumption on mobile devices in the context of download-
ing and watching YouTube streaming video. When mobile
devices play streaming video, they incur both a cost in terms
of radio power consumption as well as video decoding. When
video streaming traffic leads to prolonged radio transmis-
sion, power consumption on the mobile device can be unduly
increased. Alternatively, faster bursting with aggressive
buffering of traffic may lead to improved power consumption
at the mobile device, as the radio may be turned off for longer
periods. The authors compared two different YouTube video
clients which employ different video buffering to allow more
or less aggressive download bursts. The measured power
consumption is compared between these two clients to argue
that power savings can come through optimization of traffic
streaming behavior.

Automated Diagnosis without Predictability Is a
Recipe for Failure
Raja Sambasivan, Greg Ganger, Carnegie Mellon University

Performance analysis on complex distributed systems
is becoming more and more important, but the variance
in performance data of such composed systems makes it
sometimes hard to reason about performance problems. This
work presents a nomenclature about how to reason about
performance data variance in composed systems and tools
to deal with this variance. The authors categorize sources of

PAGE 8	  | OCTOBER 2012 | VOL. 37, NO. 5 | 4th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud ’12)

E L E C T R O N I C S U P P L E M E N T

variance as “intentional variance,” introduced intentionally
by system designers, i.e., through randomized algorithms;
“inadvertent variance” by, for example, poor quality code; and
“intrinsic variance,” which is part of the system domain and
cannot be removed anyway. The tools they intend to build
should help to find sources of variance in the system by ana-
lyzing traces from all levels of a system and estimating where
the variances in the performance data originate.

Overcoming Risks in Hidden Dependencies within the
Cloud
Ennan Zhai, David Isaac Wollinsky, Bryan Ford, Yale University

If services within the cloud are composed of various cloud
services, there is a strong temptation to use similar services
of different cloud providers for redundancy. But are these
services really independent? To give guarantees and calcu-
late failure probabilities, it is crucial to know that, but cloud
providers will keep this information as a business secret. To
solve this problem, the work proposes introducing a trusted
third party—the Cloud Reliability Recommender—which is
entrusted with the hidden dependencies and their reliability
information and therefore can do correct fault tree analysis
and give correct fault probabilities for given configurations.

Towards Fair Sharing of Block Storage in a Multi-
Tenant Cloud
Xing Lin, University of Utah; Yun Mao, AT&T Labs—Research; Feifei Li and
Robert Ricci, University of Utah

While it is advisable from a cost perspective to share storage
resources between as many applications as possible, their
workloads might negatively impact one another. In their
analysis, the authors show that random read workloads nega-
tively impact all sequential workloads, and random write
workloads negatively impact all workloads. They propose a
storage architecture they call FAST using three redundant
copies. Random and sequential reads are sent to two differ-
ent storages where all write effects are neglected by caching.
The third storage uses a log-structured storage to provide
data safety even in case of system failures and which does not
suffer from random writes.

Working with Big Data
Summarized by Malte Schwarzkopf (malte.schwarzkopf@cl.cam.ac.uk)

Big Data Platforms as a Service: Challenges and
Approach
James Horey, Edmon Begoli, Raghul Gunasekaran, Seung-Hwan Lim, and
James Nutaro, Oak Ridge National Laboratory

James Horey kicked off this talk by briefly describing the “big
data” work done at the Oak Ridge National Lab (ORNL). A lot
of their work happens in collaboration with, and is sponsored
by, federal agencies, who have many large data sets of vari-
able size and nature. As a result of these variable needs and
due to its flexibility, cloud computing is a highly interesting
paradigm for the ORNL. Nonetheless, the existing para-

digms of infrastructure, platform or software-as-a-service
(IaaS/PaaS/SaaS) are not exactly what the sponsors require:
instead, they want “Big Data Analytics as a Service,” which
amounts to using familiar, standard methods and commands
to set up cloud environments and execute analytics jobs.
Indeed, Horey said that what the ORNL scientists identified
as a key need is a “cloud package manager”—an analogy to
Debian’s “apt-get”—to set up and configure complex distrib-
uted systems, respecting interdependencies.

To satisfy this need, Horey et al. implemented “Cloud-Get,”
a concept for an apt-like repository for cloud services such
as Hadoop, Cassandra, etc. By way of example, he discussed
the command “Cloud-Get install cassandra --nodes=20
--storage=20TB”, which would configure a 20-node Cassan-
dra cluster with 20 TB of storage. The aim here is to achieve
standardization of deployment procedures, and to provide a
common infrastructure that package writers can hook into.
Furthermore, an additional goal is to support elasticity, i.e.,
“reconfiguration” of packages, for example with different
numbers of nodes. Finally, moving data between systems
is hard today, and requires ad hoc scripts. Instead, Horey
proposed a tool dubbed “data-get,” standardizing the process
of moving data packages, akin to a UNIX-named pipe. The
system does, however, rely on an external cloud manager (in
the prototype, Xen and ClockStack are used). Service pack-
age authors must then define VM types, as well as dependen-
cies between classes and event handlers. This abstraction
operates a level above IaaS: users do not need to know about
VM or storage placement, and the package manager does not
necessarily control scheduling and co-location; it can make
QoS guarantees.

Someone asked how the ORNL toolchain compares to open
source system configuration tools like Puppet. Horey replied
that these tools operate on a different level, setting up bare
VMs rather than entire distributed systems. The Cloud-Get
suite makes it possible for non-expert users to easily config-
ure complex systems. Another questioner pointed out that
cloud tools like Hadoop are hard to configure, and setting
them up surely cannot be as simple as just using Cloud-Get,
as they still require user configuration? Horey answered that,
indeed, performance-tuning systems are hard, and not solved
by Cloud-Get. However, he pointed out that its goal is to have
a quick way of setting prototype systems up, which can then
be tuned further.

Why Let Resources Idle? Aggressive Cloning of Jobs
with Dolly
Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica,
University of California, Berkeley

In this talk, Ganesh Ananthanarayanan presented Dolly, a
system to speed up the completion time of MapReduce jobs

 | OCTOBER 2012 | VOL. 37, NO. 5 | 4th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud ’12) 	P AGE 9

E L E C T R O N I C S U P P L E M E N T

by opportunistically duplicating them. The large fraction
of relatively small, but interactive, latency-constrained
data-analysis jobs observed, for example, in traces from
Facebook, are not only especially sensitive to stragglers, but
also particularly benefit from accelerated completion. Previ-
ous approaches to straggler mitigation, such as blacklisting
bad machines, do not mitigate non-deterministic stragglers.
Speculative execution of backup tasks may help with this,
but making the decision to speculate is tricky—especially
with small jobs, which do not run long enough to take many
samples of their progress, and which often execute all of their
tasks in parallel, achieving no amortization of stragglers over
time. Existing approaches only really help with large jobs;
small jobs still have 6–8x difference in runtime between the
median and the slowest task.

In contrast, the authors propose to proactively launch entire
job clones, and then pick results from the earliest clone to
finish, thus probabilistically mitigating stragglers. Of course,
a key question is whether there are sufficient resources to do
this. Most clusters are underutilized due to provisioning for
peak load, so the outlook is hopeful. Of course, cloning could
still lead to a “tragedy of the commons,” where everyone
is using extra resources on the assumption of low utiliza-
tion. But, as Ananthanarayanan pointed out, in the case of
Facebook, 90% of jobs only use 6% of resources, thus making
it entirely feasible to duplicate these small jobs at a modest
utilization impact. One challenge, however, is that well over
three clones are needed in order to statistically avoid strag-
glers. Having this many clones leads to contention on input
data with naive cloning at job-level granularity. Instead,
the authors propose to still clone the entire job, but do so at
the task-level, and pick the first task to succeed out of every
equivalence class. This means far fewer clones are needed,
although Ananthanarayanan pointed out that contention
on the intermediate data, e.g., from map outputs used by all
reduce task clones, is as of yet an unresolved issue. When
evaluating Dolly against the baseline of LATE, using a trace-
driven simulator, on a month-long Facebook trace and with
a 5% cloning budget, the authors found a ~42% reduction
in completion time on small (<10 tasks) jobs for task-level
cloning.

A member of the audience pointed out that the size of the
small jobs’ input data is likely to be very small, which Anan-
thanarayanan confirmed, saying that it is usually tens or
hundreds of megabytes. The questioner then asked why one
would even bother with distributed parallelism for such jobs.
Ananthanarayanan explained that small jobs often share
inputs with larger jobs, the latter point necessitating running
on a cluster.

Another questioner asked if any thought had been given to
input data size skew as a source of stragglers in Dolly. Anan-

thanarayanan said that their slowdown measurements took
input size into account, but that such deterministic strag-
glers were not otherwise considered. Finally, it was pointed
out that Dolly clearly assumes fully deterministic tasks, and
non-determinism could cause trouble for the cloning strat-
egy, which Ananthanarayanan confirmed.

Predicting Execution Bottlenecks in Map-Reduce
Clusters
Edward Bortnikov, Yahoo! Labs, Haifa, Israel; Ari Frank, Affectivon Inc.
Kiryat Tivon, Israel; Eshcar Hillel, Yahoo! Labs, Haifa, Israel; Sriram Rao,
Yahoo! Labs, Santa Clara, US

Alex Shraer explained that this work takes a motivation
similar to Dolly: stragglers are bottlenecks in MapReduce
clusters. Commonly, people use the dual strategies of avoid-
ance (reduce the probability of straggler occurrence, for
example, by using data locality) and detection (identification
of stragglers, followed by speculative backup tasks) to deal
with them. However, all existing approaches are based on
heuristics. In this work, the authors use machine learning
to predict stragglers. The main motivation for this heavy-
weight approach is that speculation is typically quite waste-
ful: 90% of speculative tasks at Yahoo! are killed because
the original ended up finishing first. Looking at the 15%
top straggler nodes over time, they find that there are some
consistently pathological nodes. Furthermore, jobs are often
re-run many times: 95% of mappers and reducers are part of
jobs that run more than 50 times over five months. This sug-
gests that historical information can be used as a predictor of
stragglers.

To do so, the authors look at the task slowdown factor, the
ratio between a task’s runtime and the median runtime
among sibling tasks in the same job. They find the root
causes of stragglers to be data skew (rarely >4x, though),
and hotspots (hardware issues, contention). A sample over
~50k jobs shows that mappers with a slowdown exceeding 5x
occurred in 1% of jobs overall, and in 5% among of jobs with
more than 1000 mappers. Of these slowdowns, 60% were due
to skew, and 40% due to hotspots. With reducers, slowdown
is even more common: 5% of overall jobs experience it, and
50% (!) of large jobs do (10% of these due to skew, 90% due to
hotspots).

The authors propose developing a slowdown predictor
(“oracle”) to address this. As inputs, it takes machine and
task features, and produces a slowdown estimate as its
output. Their prototype predictor considers a large number
of features, detailed in the paper. For slowdown prediction
of mappers, they find an R^2 value of 0.79; for reducers, R^2
= 0.401 (where 1.0 is optimal). Hence, map stragglers are
better predicted than reduce stragglers; Shraer suggested
that one might be able to alleviate this difference by using
stage-specific predictors. He also pointed out that this work

PAGE 10	  | OCTOBER 2012 | VOL. 37, NO. 5 | 4th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud ’12)

E L E C T R O N I C S U P P L E M E N T

focuses on the “average straggler” rather than the pathologi-
cal outlier.

There were no questions after the talk.

Discussion
In a lively panel session, the discussion revolved around
ways of achieving better predictability for large-scale data
processing, as well as the nature and quality of the data itself.
The first questioner asked if there was any scope to be more
creative in Dolly: for example, sub-splitting tasks to achieve
more parallelism, or processing the data from opposite ends
until the tasks “meet.” Ganesh Ananthanarayanan replied
that Dolly makes the assumption that the task size is already
optimized, and thus the point is an orthogonal one. Someone
asked what the panelists considered to be the most challeng-
ing problems working with “big data.” James Horey said that,
while not a technical challenge, the ORNL scientists found
that data sets were often noisy, necessitating complex pre-
processing. Ganesh Ananthanarayanan suggested increased
resilience to partial and total failures of tasks (stragglers and
“lost” tasks, respectively) as a challenge. Alex Shraer pointed
out that business intelligence of many companies depends on
machine-learning algorithms, which are hard to parallelize
using MapReduce, and suggested looking at this.

James Horey also made the point that many people dealing
with “big data” are not necessarily thinking of using “the
cloud”; instead, they often have highly specialized software
loaded with domain-specific assumptions that they want
to use.

Someone pointed out that the second and third presenta-
tion of the session were essentially trying to address the
same problem, but using different approaches. As a result,
the questioner wondered how much use of prediction might
be adequate for straggler detection. Ganesh Ananthana-
rayanan believed that heuristics and prediction could
happily co-exist: for large jobs, prediction and speculation
were important, but for small jobs, cloning was affordable.
Alex Shraer agreed, and emphasized that quick prediction
algorithms facilitate the use of machine learning and similar
approaches.

Dilma Da Silva asked James Horey what pricing model he
imagined when offering big data analysis as a service, and if
it differed from the currently dominant machine-hour model.
Horey said that the answer was still unclear, and pointed out
that users often have no idea how their analysis task trans-
lates into CPU-hours. Instead, he suggested investigating a
charging model based on the amount of data analyzed.

Raja Sambasivan from CMU asked if the speakers could
point out changes to frameworks like Hadoop, or indeed to

hardware, that one could make to achieve better or easier
predictions. Alex Shraer saw two main problems: first, how
to collect information efficiently, given that interactive log
analysis (as used in the paper he presented) does not scale
to a live production system; and second, that it is unclear
what the best time to do the prediction is: before or during
scheduling, or at task runtime. Changes to systems could
help facilitating answers to these questions. Ganesh Anan-
thanarayanan concluded the panel session by emphasizing
that there is a lot of heterogeneity and variance at low levels
(hardware), and that ways to extract more fine-grained pro-
filing data would be useful to high-level system optimization.

Scheduling
Summarized by Malte Schwarzkopf (malte.schwarzkopf@cl.cam.ac.uk)

Dynamic Virtual Machine Scheduling in Clouds for
Architectural Shared Resources
Jeongseob Ahn, Changdae Kim, and Jaeung Han, KAIST; Young-ri Choi,
UNIST; Jaehyuk Huh, KAIST

In a virtualized environment, VMs share physical machine
resources. Contention on these resources can lead to perfor-
mance degradation, and the multicore trend increases the
degree of resource sharing. The authors assert that cache
contention is especially a problem: cache coherence protocols
mean that excessive cache misses on one core can cause a
cascade of cache evictions on others. Previous work tries to
mitigate this on a purely intra-machine level by balancing
threads to minimize system-wide miss rate and interference
in shared caches. This does not, however, help in a cloud set-
ting, where many similar tasks may be running on a machine.
Furthermore, NUMA makes such cache-aware scheduling
harder, since some memory requests will go to remote mem-
ory controllers, making them very expensive. However, vir-
tualization technology and the use of VMs in the cloud open
up a new opportunity for load balancing at the global level
using live migration (e.g., of customer VMs in a public cloud).
The goal is to try and minimize global LLC miss count and/or
global remote page access count. Ahn et al. compare the best
case placement of 32 VMs running different workloads from
SPEC CPU to the worst-case setup, as well as an interleaved
memory allocation setup, where pages are allocated both on
local and remote NUMA nodes. They found that there are
significant benefits over the worst case to be had from plac-
ing VMs in a micro architecture-aware manner.

Based on these findings, the authors propose a system with
a global cloud manager node, which makes global scheduling
and re-balancing decisions in cache-aware and/or NUMA-
aware fashion. Back-end nodes report their statistics to this
node, which then makes decisions to move VMs between
sockets inside a machine, and across machines in the cluster,
in “local” and “global” phases, respectively.

 | OCTOBER 2012 | VOL. 37, NO. 5 | 4th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud ’12) 	P AGE 11

E L E C T R O N I C S U P P L E M E N T

In their experiments, the authors used a four-node testbed
(plus one manager node), with each node having eight cores
across two sockets with 12 MB shared last-level cache.
They ran eight VMs using 1 GB memory and 1 vCPU on each
machine, and find that, for different workload mixes, the
cache-aware and NUMA-aware schedulers can give sig-
nificant improvements over the worst case when combining
CPU-bound with memory-bound workloads, after taking VM
migration costs into account. With homogeneous workloads
(e.g., all CPU-bound), the improvement is far less substantial.

There were no questions after the talk.

North by Northwest: Infrastructure Agnostic and
Datastore Agnostic Live Migration of Private Cloud
Platforms
Navraj Chohan, Anand Gupta, Chris Bunch, Sujay Sundaram, and Chandra
Krintz, University of California, Santa Barbara

Navraj Chohan started this talk off by explaining how
private PaaS offerings can bring cloud technology (elastic-
ity, distribution, fault tolerance, high availability) into the
local environment and thus enable programmer productivity,
as programmers no longer have to worry about distracting
setup and maintenance issues which are not part of the core
application. He also introduced AppScale, a PaaS offering
similar to Google AppEngine, but which is infrastructure-
and datastore-agnostic (unlike AppEngine). This is achieved
by having abstraction layers, allowing high-level use of GQL
and Google’s datastore API, as well as ZooKeeper for coordi-
nation and transactional semantics, while supporting a range
of different back-end stores.

The reason why such support is crucial, according to Chohan,
lies in the fact that PaaS systems are being upgraded all the
time—both at the underlying hardware layers and at OS-level
and datastore software layers. Ideally, this should be possible
with minimal downtime and overhead; furthermore, it is use-
ful to be able to substitute another datastore underneath the
system, eliminating vendor lock-in, and facilitating seamless
upgrades to better technology. AppScale achieves this in a
real-system, with backwards compatibility and transac-
tional semantics, and without data loss. Chohan explained an
example: moving a storage solution from Cassandra on Open-
Stack to HBase on Eucalyptus. This is an automated six-step
process in AppScale: (1) the new deployment is initialized; (2)
ZooKeeper metadata is synchronized; (3) a temporary mem-
cache is provisioned and warmed up (in order to minimize
load on storage backend during the migration); (4) a snapshot
of the datastore is initiated, transferred over, and loaded into
the new system; (5) data proxy mode is entered in order to
keep the old system running to finish off any outstanding
requests; (6) and, finally, handover to the new system occurs.

Chohal showed some evaluation results from a single-node
deployment, moving from Cassandra to Hypertable. The

authors found that the per-request overhead is less than 1%
during migration, because the memcache is very fast. The
ZooKeeper metadata synchronization takes about 45 seconds
for 100,000 locks, and the overall difference in client latency
between normal operation and the background migration
situation is small and well within acceptable bounds.

There were no questions after the talk.

Automated Diagnosis Without Predictability Is a
Recipe for Failure
Raja R. Sambasivan and Gregory R. Ganger, Carnegie Mellon University

This provocative talk by Raja Sambasivan began with the oft-
quoted statement that systems research is all about tradeoffs.
He pointed out that there are a few commonly agreed upon
metrics: for example, correctness, performance, reliability,
and power. He, however, argued that a key metric has been
ignored, but is very important: predictability. Indeed, Sam-
basivan explained, this is especially true for distributed sys-
tems, as it affects the ability to optimize other metrics. And
what is worse, there is also no single fix or answer—achiev-
ing predictability requires lots of hard work when building
systems. Above all, low performance variance is essential,
but sometimes hard to achieve.

However, without predictability, resources are wasted
(because the slowest resource dominates), and also provid-
ing SLAs becomes much harder. Sambasivan pointed to this
as his key motivation for this work, and it is also important
for the success of automated diagnosis. There exist many
automated diagnostics tools, but few are making it to produc-
tion use. Sambasivan claimed that the problem is not the
tools but the system, or rather, the layering of many systems
on top of each other. Since diagnosis tools focus on deviations
in metrics to localize performance problems, high variance
makes their life very difficult. Sambasivan exemplified this
using the sample distributions of two metrics: if they do not
overlap very much, they probably represent different underly-
ing distributions. But if they do, because of high variance, we
cannot really tell. This is complicated even within a single
system, but with a complex setup of interacting systems, a
diagnosis tool’s life is incredibly hard. The key takeaway of
this point was that the usefulness of a diagnosis tool is really
limited unless the entire system has good predictability.

Unfortunately, as Sambasivan re-emphasized, there exists no
secret sauce here, just hard work. Developers must identify
sources of high variance, and rigorously isolate them. The
authors thus postulate the “three I’s” of variance: inadver-
tent variance is unintentional, but can be reduced; intrinsic
variance is fundamental (e.g., disk performance), so it must
be isolated; intentional variance is a result of a tradeoff made
by developers (e.g., low-latency scheduling) and must be
isolated. Still, Sambasivan pointed out, there remain many

PAGE 12	  | OCTOBER 2012 | VOL. 37, NO. 5 | 4th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud ’12)

E L E C T R O N I C S U P P L E M E N T

open questions: how much reduction in variance do we need
to achieve predictability properties? If intrinsic variance is
significant, maybe we need to change something about our
hardware to reduce it? If intentional variance is significant,
maybe we need to re-evaluate our tradeoffs?

There were no questions after the talk.

Discussion
The panel discussion for this session consisted partly of
questions relating to Navraj Chohan’s talk about live migra-
tion in AppScale, and partly of discussion on Raja Sambasi-
van’s talk about predictability and variance in large systems.
On the former topic, someone asked whether the migration
assumed that, apart from the ZooKeeper locks and the actual
datastore, the system being migrated was stateless. Chohan
confirmed that this is the case, and pointed out that most
APIs in this space are stateless. In a second question, Chohan
was asked how the switch between two completely different
databases is performed, and what translation is applied to the
data. He explained that datastore is dumped as a set of blobs,
which are converted to protocol buffers, and reinserted into
the new datastore one entity at a time. Furthermore, he said
that some cleverness to deal with locks is required, making
sure they are mapped correctly in a different system.

In the discussion pertaining to Raja Sambasivan’s presenta-
tion, an audience member commented that he would go even
further than postulating a need for tools to cope with vari-
ance, since a lot of new code is built with every system, intro-
ducing new sources of variance and uncertainty. Sambasivan
responded that this is indeed a tough challenge. He suggested
that we might be able to annotate libraries, or evolve a policy
of flagging some operations as having (potentially) high
variance in the documentation. Another questioner inquired
whether the way to build better systems would be to probe
lots of different metrics, but consensus was that even then,
variance would still occur and present a challenge. Finally,
someone asked, somewhat provocatively, whether we really
have such an essential need for predictability as the talk
made out, noting that we do have systems that deal with
unpredictable events. Sambasivan said that he did not have
an answer either, and that it might be interesting to further
investigate building predictable systems from unpredictable
components.

