
o c t o b e r  2 0 1 2   v o l .  3 7 ,  n o .  5
ELECTRON        I C  S U P P LE  M ENT 

 | OCTOBER 2012 | VOL. 37, NO. 5 | 4th USENIX Workshop on Hot Topics in Parallelism (HotPar ’12) | WWW.usenix.org	PAG E 1

4th USENIX Workshop on Hot Topics in 
Parallelism (HotPar ’12)

Berkeley, CA  
June 7-9, 2012 

Surfing in Tandem: Parallelism and the Web
Summarized by Matt Sinclair (mdsincl2@illinois.edu)

Parallel Programming for the Web
Stephan Herhut, Richard L. Hudson, Tatiana Shpeisman, and Jaswanth 
Sreeram, Intel Labs

Dr. Stephan Herhut began the HotPar ’12 workshop with 
a discussion of how to enable more parallel programming 
for Web applications, which are commonly programmed in 
JavaScript. His talk introduced River Trail (https://github.
com/RiverTrail/RiverTrail), an open source system which 
makes expressing parallelism in JavaScript programs easy 
and doesn’t require programmers to write parallel code. The 
main components of this talk were the design choices they 
made for River Trail and how River Trail enables JavaScript 
programs to be run in parallel.

As JavaScript is written predominantly by amateurs and 
beginner programmers, Herhut highlighted the importance 
of making River Trail easy to use and of taking sequential 
code written by others and using it in a parallel context. To 
this end, they made sure that all of their programs are still 
correct sequential JavaScript programs, albeit ones that 
are safe for parallel execution. Additionally, it needs to be 
portable and able to execute with high performance on both 
sequential and parallel architectures, which requires the 
runtime to exploit the available parallelism on each architec-
ture. To make this practical, they decided to use high-level 
parallel patterns and have the runtime decide on how to 
best run the program. River Trail maintains the key safety, 
security, and deterministic execution tenets of JavaScript by 
using a fully managed runtime and disallowing side-effects 
on shared (immutable) state during parallel execution.

River Trail’s API uses a data-parallel model and compiles 
the JavaScript programs for various parallel hardware to 
utilize the vector units and/or available parallelism. The API 
uses a three pillar approach. First, they introduce a new data 
structure, ParallelArray, which is immutable, dense, and 
homogeneous; these traits help obtain good performance and 
simplify the implementation and performance reasoning. 
Second, they introduce six methods—map, combine, reduce, 
scan, filter, and scatter—which Herhut claimed are suffi-
cient to implement most use cases. Finally, they use elemen-
tal functions written purely in JavaScript and free of side 

effects; these functions require a trust-but-verify contract 
with the programmer, and River Trail verifies that these 
functions are indeed side-effect free. 

After discussing these concepts, Herhut showed how River 
Trail operates at runtime. When a programmer calls one of 
their six methods, River Trail intercepts the call and runs 
its compiler instead. Next, they use the Intel OpenCL SDK 
to generate binary code. After the OpenCL runtime executes 
the code and the result is ready (they chose OpenCL because 
it can be run on many hardware platforms), they inject it back 
into the JavaScript program and execution continues. For all 
other calls in a program, the JavaScript executes normally. 
Herhut showed that, for a particle physics and a matrix mul-
tiplication benchmark, they are able to obtain speedups over 
the default JavaScript implementation and over a sequential 
C implementation of matrix multiply (to demonstrate that 
their speedups aren’t just inflated by comparing them to 
JavaScript, which is quite slow).

There were numerous questions on the various components 
of River Trail. First, there were several questions about the 
compiler aspects of River Trail. Burton Smith (Microsoft 
Research) asked if it was strict or lenient with respect to 
function calls. Herhut replied that it is strict. Hans-J. Boehm 
(HP Labs) asked how side effects are handled, in particular if 
writing to the heap is allowed. Herhut responded that River 
Trail’s compiler statically detects if there are writes to the 
global shared heap, but that this isn’t always sufficient, so 
the runtime also has to check for it. Luis Ceze (University 
of Washington) asked if the authors had looked into auto-
parallelizing JavaScript. Herhut replied that doing this for 
existing code is really hard, and JavaScript makes it even 
harder because its semantics don’t list what the side effects 
are (the second presenter explains that JavaScript’s DOM 
sequentializes things, which creates lots of synchronization 
costs) and makes it unclear what to access. Tracking state is 
one possibility, but doing this would create overheads and eat 
into the benefits they see from this approach.

Second, there were questions on the benchmarks they used. 
Paul McKenney (IBM Beaverton) asked why they weren’t 
able to get single-threaded results for their prototype (all sin-
gle-threaded JavaScript results presented were the default 
JavaScript results). Herhut responded that the OpenCL 
implementation can’t run single-threaded, but that if it could, 
they expect to still see some performance gains because their 
JIT is more efficient since typical JIT engines don’t know 
whether there’s a benefit to doing things like unrolling, while 
River Trail’s JIT does know this. Luis Ceze asked if they had 

Conference Reports



PAGE 2	  | OCTOBER 2012 | VOL. 37, NO. 5 | 4th USENIX Workshop on Hot Topics in Parallelism (HotPar ’12) | WWW.usenix.org

E L E C T R O N I C  S U P P L E M E N T

looked into any other applications. Herhut said that they had 
also looked into real-time physics for game engines, image 
processing, and modification benchmarks, and that they’d 
also seen some speedups there.

There were also several questions about parallelism they 
obtain from JavaScript. Burton Smith noted that here the 
parallelism is abstracted away from the hardware resources 
fairly well, and was curious how they decided how many 
hardware resources to apply. Herhut responded that they 
could try to grab every resource, but that chose to leave that 
out of the programming model and let runtime deal with it. 
As a result, the number of resources used is client dependent. 
This is something they are still working on though, Herhut 
concluded.

Finally, several audience members pointed out that WebGL 
provides a way to stick kernels into code with some of the 
CUDA/OpenCL features, which game developers are starting 
to exploit for optimized browser execution; the theme of their 
questions was how River Trail copes with coexisting highly 
parallel programming models. Herhut admitted that they 
don’t yet have a good answer for this problem, because this 
would require a centralized management of resources that 
doesn’t exist yet. Sam King (University of Illinois at Urbana-
Champaign) pointed out that this is a fundamental flaw of 
modern OSes, not just these projects, which provided an 
interesting tie-in to the second session of talks.

A Case for Parallelizing Web Pages
Haohui Mai, Shuo Tang, and Samuel T. King, University of Illinois at 
Urbana-Champaign and Valkyrie Computer Systems; Calin Cascaval and 
Pablo Montesinos, Qualcomm Research

Time is money for companies such as Google and Microsoft. 
Unfortunately, Web browsing on mobile devices is very slow, 
which Google estimates costs them approximately $200M 
per year in revenue (for a 0.7% increase in delay of searches). 
The client CPU presents a significant bottleneck in attain-
ing high performance Web browsing on mobile devices. 
Mobile CPUs are limited in the performance they can attain 
by device form factors and battery life. With the arrival of 
multicore mobile devices, parallelizing Web browsing would 
appear to be an attractive option; however, the current struc-
ture of modern Web programming is inherently sequential, 
which makes this difficult. In this talk, Haohui Mai intro-
duced Adrenaline, a system that attempts to speed up Web 
apps for multicore mobile devices.

Adrenaline consists of two components: a server-side pre-
processor and a client browser on the mobile device. When a 
user accesses a Web page, the request is sent to the server. At 
the server, the Web page request is decomposed into “mini-
pages,” which can be processed in parallel and sent back to 
the browser as they’re completed (the server attempts to 

aggregate the mini-page responses so that the user sees them 
all appearing simultaneously). Finally, the browser on the 
mobile device is responsible for putting all the mini-pages 
back together in a coherent manner (such that the Web page 
looks exactly like it would without using Adrenaline) and 
presenting the page to the user. This approach improves per-
formance, maintains the current Web applications seman-
tics, and requires minimal modifications, all of which help to 
encourage adoption.

Maintaining the current Web application semantics intro-
duces several important challenges. The HTML for a Web 
page says what should appear, and internally the browser 
parses the HTML into a DOM, the core data structure used 
by many browser components such as JavaScript, which 
takes the shape of a tree. Identifying places in the DOM 
that are suitable for parallelization is crucial in Adrenaline. 
Additionally, each of the mini-pages needs to be compatible—
the Web developer shouldn’t need to change anything; they 
should only see their performance improved. To ensure this 
compatibility, while they are distributing the DOM inside 
Adrenaline, they maintain a main page that only executes the 
JavaScript. All created mini-pages are merged back together 
on the main page. To reduce overhead, they pre-compute and 
cache results. The use of a Bloom filter minimizes synchro-
nization overhead when accessing the pre-computed results.

The Adrenaline browser is built on top of QtWebKit. To dem-
onstrate its power, they evaluated it on 170 of the most popu-
lar Alexa Web sites using a quad-core ARM board with the 
Web sites being run locally to ensure repeatable results. Mai 
showed that Adrenaline is able to achieve a mean speedup of 
1.54x and a mean latency reduction of 1.75 seconds. Overall, 
Adrenaline improved performance for 89% of the 170 sites. 
They also performed a case study loading the Nokia Wiki-
pedia page. When the page loaded on Adrenaline instead 
of QtBrowser, latency was reduced by 12 seconds and they 
achieved a 3.34x speedup. A breakdown of their speedups 
showed that they incur some synchronization overhead, but 
that the improvement from parallelism is larger. Additionally, 
they see that they need to perform less work in Adrenaline 
because of the decomposition, which creates smaller working 
sets. Finally, Mai showed a demo (http://www.youtube.com/ 
watch?v=TBcurpe89PI) where Adrenaline was noticeably 
faster than QtBrowser on a Tegra 2.

Mai received numerous questions at the end of his talk. 
Luis Ceze (University of Washington) asked him why they 
can’t do the decomposition in the browser itself, because the 
server seems like a liability. Ceze added that locally cach-
ing and reusing seemed like a better idea. Mai replied that 
they observed that the mobile Web browser is serial-bound, 
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so pushing more stuff onto the mobile device would cause a 
bottleneck due to its limited resources.

David Johnston (Canon Research/CiSRA) asked if Adrena-
line Web pages can have fancy layouts and rendering. Mai 
responded that they implemented mini-pages as a plugin, so 
it’s a process and the content is in a Web browser, so every-
thing that a Web browser can lay out are things it can do.

Nicholas Matsakis (Mozilla Research) asked how sensitive 
their performance results are to the connection to the server. 
Mai replied that Adrenaline works like HTTP processing: get 
page, process it; things like images may go through a direct 
connection between remote server and client. They could 
do this differently, though, which is ongoing work. Matsakis 
later asked how flexible Adrenaline’s decomposition is, how 
much work the server does, and whether there’s a floating 
drive that affects the layout. Mai replied that their current 
implementation renders the whole page on the server, figures 
out the layout, then determines what’s appropriate to move to 
mini-pages. 

Stephan Herhut (Intel Research) asked, since pages are 
rendered once then looked at, is there a benefit for dynamic 
pages? Mai answered that this depends on the character-
istics of the Web applications. This isn’t fundamental to 
their approach, but it is how they currently do it. David Reed 
(SAP Research) asked if the added network latency offsets 
the benefits they see in Adrenaline by parallelizing. While 
they do pay a price for more network requests, Mai said, they 
cache everything locally, which ignores some of these effects. 
When they have run non-local experiments, they haven’t seen 
this become a problem yet.

Paul McKenney (IBM Beaverton) asked if some of Adrena-
line’s benefits come from the server caching, then parcel-
ing out the data to multiple users. Mai replied that this 
was partially true, and that they don’t do well for heavily 
personalized pages (like Facebook) because they have to do 
decomposition every time. Finally, Burton Smith (Microsoft 
Research) asked how they determine how many hardware 
resources to apply. Mai replied that this is future work, but 
that they haven’t worked on it much yet.

We Need Support! OS Support
Summarized by Matt Sinclair (mdsincl2@illinois.edu)

For Extreme Parallelism, Your OS Is Sooooo Last-
Millennium
Rob Knauerhase, Romain Cledat, and Justin Teller, Intel Labs

The design philosophy of OSes has worked well for current 
systems because programmers didn’t need to worry about the 
hardware details, instead relying on hardware to continue 
improving their performance. Unfortunately, at exascale lev-
els, this isn’t true, largely because the cost of data movement 

is an overriding concern. Additionally, current OSes don’t 
deal with communication costs. At exascale, the systems will 
require an unprecedented amount of complexity in managing 
the effective coordination and use of resources. Unfortu-
nately, according to Romain Cledat, many of the traditional 
OS functions are not optimal for exascale, which leads him to 
propose eliminating the traditional OS.

In their proposed exascale system (Runnemede), instead of a 
traditional OS and traditional cores, they instead have “Con-
trol Engines” (CEs) and “Execution Engines” (XEs) arranged 
in a hierarchy. The CEs, which are sprinkled throughout the 
system, are responsible for executing the runtime environ-
ment and do not execute (directly) user code, while the XEs, 
which are much more numerous, are responsible for execut-
ing the application code only. Such a separation allows them 
to specialize the duties and hardware in each core. The sys-
tem breaks programs into codelets, which are small chunks 
of code with dataflow-like dependencies between them. 
Codelets run uninterrupted on the XEs and fire only when 
their dependencies are met. The system software for such a 
system needs to be able to dynamically adapt and move data 
around (which current OSes can’t do). Given this baseline 
system, Cledat discussed three proposed changes to the 
OS for increased energy efficiency: separation of concerns, 
memory management, and threading abstractions.

Traditionally, resources are shared between a kernel that 
interacts with the hardware and user code. However, the 
latency of switching between user and kernel mode is too 
expensive in terms of energy and latency for exascale. In 
Runnemede, since resources are plentiful at exascale, 
they remove this distinction and instead provide separate 
privileges spatially instead of temporally—the CEs run the 
kernel code and the XEs run the user code. This allows for 
specialization of resources (queue processing on CEs, energy 
efficiency and custom functionality on XEs). Additionally, 
since system code only runs on the CEs, there is no need for 
device drives in the traditional sense.

In traditional OSes, where virtual memory abstracts away 
the physical memory, memory management overhead is too 
high for exascale, especially in terms of loss of visibility 
into the memory hierarchy—exploiting locality as much as 
possible is crucial. Simply making virtual memory smarter 
is not sufficient, because it uses the granularity of pages, 
which isn’t well suited to multiple levels of memory hierarchy 
(which an exascale machine will likely have). Additionally, 
the OS’s support for memory allocation is also agnostic to the 
characteristics of the underlying memory, as they are unable 
to efficiently move around since its access pattern varies over 
time. To solve these issues, the authors propose to make data 
a first-class object. A runtime system can track the usage of 
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the data at a application-dependent controllable granularity. 
This enables memory management to be done in a way that 
minimizes wasted movement, while precisely placing data 
in memory and allowing it to be moved around as the access 
pattern changes over time.

Scheduling management in traditional OSes is also an issue. 
Context switching is very expensive in terms of latency and 
energy—exascale machines will want to avoid it as much 
as possible since it’s trying to “save” a plentiful computing 
resource. Additionally, Cledat argued that exascale machines 
will want to avoid hard-binding to hardware resources 
because the tradeoffs in the system will change during an 
application’s lifetime. In short, in exascale systems, co-
locating the thread and its data is key to reducing energy. 
Because XEs are plentiful in their system, and because they 
use codelets, Cledat’s solution to this problem is to expose the 
affinity interface among tasks and data instead of to particu-
lar hardware or threads. This allows the runtime to adapt 
to the time-varying capabilities of the underlying hardware 
and provides an explicit dependency interface. By making the 
dependency information available at the lowest levels of the 
system software, they can make better scheduling decisions.

When asked how such a system would be programmed since 
he advocates removing the abstraction of a big global address 
space, Cledat responded that they aren’t proposing to remove 
the address space, but that they just want visibility into it and 
some contract about what will happen. Further questions on 
this related to how to specify where data will be placed, such 
as using instructions to specify where to put data. Cledat 
replied that the audience should think of this as happening in 
a NUMA fashion, where there is memory physically close and 
far from a core, and the core wants to use the memory that’s 
close to it as much as possible. 

David Reed (SAP Research) asked if the authors had a spe-
cific design proposal for allowing an application to reflect 
on its own behavior, or how an application could take into 
account what power got spent where (i.e., a way to express 
causality). Cledat answered that they haven’t implemented 
something like this but are interested in looking into it. 
Reed asked how this approach scales to large-scale memory 
systems/data management. Cledat replied that is another 
issue they haven’t solved directly yet. So far, they’ve only 
looked at a decomposition approach where data is decom-
posed into smaller sets that go onto on-chip memories (i.e., 
dividing the data up into reasonable chunks). They’re looking 
at things like Hierarchically Tiled Arrays (HTAs) to help, but 
this still leaves a missing component in the middle. Hans-J. 
Boehm (HP Labs) asked how the address of an object and 
its references are updated when the object is moved. Cledat 
responded that the object moves in the address space and 
updates all the references that use it. The compiler is respon-

sible for generating proper instructions to decode the offset 
of the moved pointer. In this approach, they only update one 
field in each of the users and rely on indirection to help (simi-
lar to physical virtual memory addresses).

Session chair Sam King (University of Illinois at Urbana-
Champaign) asked Cledat to compare the work being done at 
Intel with the work being done at Wisconsin, since they are 
advocating very different positions—the Wisconsin group 
is advocating adding functionality to the OS, while the Intel 
group is advocating removing functionality from the OS. 
Cledat responded that they are looking purely at exascale, 
while the Wisconsin project is looking at “smaller” platforms, 
where it’s possible that adding more functionality to the OS is 
the correct approach.

Operating Systems Should Manage Accelerators
Sankaralingam Panneerselvam and Michael M. Swift, University of 
Wisconsin, Madison

In the past, the additional transistors available with each 
generation of CPU were better used improving general-
purpose execution than accelerating a single computation, 
despite the efficiency advantage accelerators offered for 
some applications. However, with the rise of dark silicon, this 
approach is no longer viable because not all of the transistors 
can be on simultaneously. As a result, incorporating accelera-
tors on-chip has become more attractive. However, there is 
little or no support in current OSes for accelerators. In this 
talk, Sankaralingam Panneerselvam proposes to solve that 
issue by managing the accelerators in the OS. Specifically, 
this work is focused on how the OS can support these diverse 
devices while abstracting heterogeneity (virtualization), 
enabling flexible task execution (task invocation), and multi-
plexing shared accelerators among applications (scheduling).

First, Panneerselvam presented a taxonomy of accelera-
tors (based on Table 1 in the paper) and identified resource 
contention as a cross-cutting issue and access methods as a 
differentiator between the classes. All of the suggestions he 
made later in the talk were based on this taxonomy.

Next, Panneerselvam raised four challenges in program-
ming accelerators. First, current systems decide statically 
at compile time where to execute a task. However, a task can 
be executed through different means (e.g., a parallel task can 
be run on a CPU or GPU). This static method fails to capture 
application factors like data granularity and system-level 
constraints like power limits. Second, virtual addresses used 
by programs must be translated physical addresses for an 
accelerator. Third, asynchronous accelerators may produce 
results after a task has been context-switched out. Finally, 
shared accelerators requires some sort of scheduling to pri-
oritize accesses. This is particularly difficult for accelerators 
that can be directly accessed from user mode.
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To combat these issues, Panneerselvam proposed a new OS 
design (Rinnegan) where calls to accelerators are treated 
as function calls that can be dynamically dispatched to an 
accelerator or executed locally on the CPU at runtime. The 
OS is responsible for enforcing the system-wide policies and 
tries to provide support for the accelerator classes. Rinnegan 
allows accelerators to be integrated into common program-
ming paradigms with little effort and provides flexibility on 
when they’re used. Effectively, this means that calls to accel-
erators are treated as non-blocking processor calls.

The key components of Rinnegan are the accelerator stub, 
agent, and monitor. The accelerator stub is the entry point 
for invoking an accelerator; it abstracts different processing 
elements from the programmer and provides a single proce-
dural interface to the application. The stubs are responsible 
for deciding where to execute the code, passing it and the 
data there, then implementing synchronization mechanisms 
or blocking if necessary. An accelerator agent acts as a 
middleman; its job is to manage the accelerator by providing 
mechanisms to bind programs to accelerators, creating com-
munication channels to expose accelerator usage to the OS to 
guide policy decisions and to implement scheduling decisions 
for the accelerator based on OS policy. The accelerator agent 
is the local scheduler in a two-level scheduler. Finally, the 
accelerator monitor is a system-wide service that monitors 
utilization of all the resources in the system. In a two-level 
scheduler, the monitor plays the role of global scheduler, 
maintaining system-wide constraints such as minimizing 
power or maximizing performance (the agents are the local 
scheduler).

Panneerselvam was asked if his work had any notion of data-
driven task invocation, like the codelets in the Knauerhase 
paper. Panneerselvam answered that this isn’t something 
they have focused on yet but would like to in the future. 
David Reed (SAP Research) asked if they are looking at the 
composition of accelerators. Panneerselvam responded that 
they are, because while every core has support for doing AES, 
obviously a cryptographic accelerator is best-suited for this, 
and that one way to choose between them is the data granu-
larity: depending on size, one may want to run it on different 
devices in the system.

Paul McKenney (IBM Beaverton) asked if hardware will 
evolve to the point that there’s an accelerator associated 
with each core (like vector units) and, if so, whether this will 
affect the approach discussed in this talk. Panneerselvam 
replied that a tradeoff should be made between performance 
and flexibility of the accelerator units while designing 
processor chips. OS involvement might still be needed to 
maintain constraints such as power limits. Burton Smith 
(Microsoft Research) talked about how hardware vendors 

are implementing shared virtual memory, such as AMD’s 
Fusion, and asked what Panneerselvam thought was a good 
way to implement shared virtual memory in this space (per-
haps having TLBs for every accelerator, determining how 
they’re shut down, how to do demand paging, etc.). Panneer-
selvam didn’t have a specific answer for this question, but 
talked about some possibilities.

David Johnston (Canon Research/CiSRA) followed up by 
asking if a “super MMU” could replace the accelerator stubs 
and other components in the proposed design. Panneer-
selvam replied that smarter MMUs could definitely be of 
great help, but that the accelerator agents are also responsible 
for other functions like local scheduling and exposing usage. 
Finally, David Reed asked if this approach would scale to 
large-scale memory systems in terms of data management. 
Panneerselvam replied that this might be a new category of 
problem for the OS. As with the previous paper in this ses-
sion, Sam King asked Panneerselvam to compare the work 
being done at Intel with the work being done at  Wisconsin. 
Panneerselvam agreed with Cledat; because the Wisconsin 
project looks at “smaller” platforms, adding functionality to 
the OS could be the correct approach.

Discipline Action: Programming Models
Summarized by: Zoltan Majo (zoltan.majo@inf.ethz.ch)

Parallel Closures: A New Twist on an Old Idea 
Nicholas D. Matsakis, Mozilla Research

Nicholas Matsakis describes a framework for parallel 
programming that statically guarantees data-race freedom. 
The framework uses closures to express parallelism. These 
closures can be executed in parallel with their parent task 
(i.e., the code that declares and schedules them). However, 
there is a problem with using closures to define parallel 
tasks: programs that use closures are prone to contain data 
races, as closures and their parent task can be executed in 
parallel and thus they can simultaneously access shared 
data. Nicholas’ work presents a solution to this problem based 
on two changes to parallel closures.

The first change involves the schedule of parallel closures. In 
Nicholas’ system a parent task and its children are scheduled 
one after another, and therefore the parent and its children 
are guaranteed not to access shared data at the same time. 
The first change eliminates data races between the parent 
and its children, but children can be executed in parallel, 
and thus they can still cause data races. The second change 
involves changing the type system so that it guarantees 
that state data is read-only. More specifically, a child is not 
allowed to modify data found in its surrounding environment 
nor data obtained from a sibling closure.
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Making all data available to parallel read-only is too restric-
tive, so the framework presented by Nicholas provides a way 
to control accesses to mutable data. One example presented 
in the talk involves offering different views of a shared array 
to closures using the array. 

Russell Williams asked whether there is anything special to 
this approach that is not already available in C++. Nicholas 
replied that casting is problematic in C++, but otherwise the 
library is not much different. Vivek Sarkar asked whether it 
is possible to use static fields. Nicholas said yes. Sankaral-
ingam Panneerselvam asked about the difference between 
the join() and get() methods. Nicholas said that get() is used 
by the parent task, join() is used by sibling closures. Paul E. 
McKenney wondered whether async was necessary. Nicholas 
answered that it is, otherwise a parent could mutate data 
after tasks have been created.

“Simultaneous” Considered Harmful: Modular 
Parallelism (Deprecating “Locks,” “Semaphores,” 
Serializability, and Other Sequential Thinking)
David P. Reed, SAP Research

David Reed stated that the world is embarrassingly parallel, 
and yet it still works without using globally synchronized 
clocks. Parallel programming is now widespread, but we 
parallel programmers consider it more as an acceleration of 
sequential programming. As a result, our way of thinking 
about parallel programming is overly restricted, and this lim-
its our ability to efficiently use parallel machines. The author 
proposes that we should think of parallel computing as the 
norm, and we should consider sequentializing computations 
to be the hard problem.

David proposed several calls to action: (1) the scope of paral-
lel action should be limited, because simultaneous action at 
a distance is a bad habit; (2) serializability is probably not the 
correct definition of correctness; (3) good modularity should 
never rely on the concept of simultaneity; (4) programmer 
thinking should be fixed by teaching parallel programming 
first; and (5) Amdahl’s Law should be rejected, because it 
dominated only because programs are conceived as sequen-
tial, and not because problems are sequential.

As practical examples of programming constructs that are 
problematic in today’s parallel programming David listed 
semaphores, the mprotect() and open() calls, and compare-
and-swap operations. Instead of these constructs, clean 
primitives should be used and should include but not be 
limited to the following: fork() and join(), event counts and 
sequencers, producer-consumer LIFO and FIFO buffers, and 
write-once and read-many memory cells.

Disciplined Concurrent Programming Using Tasks 
with Effects
Stephen Heumann and Vikram Adve, University of Illinois at Urbana-
Champaign

Stephen Heumann stated the case for a task-based parallel 
programming model that offers strong correctness guar-
antees based on programmer-specified effects. The model 
targets programs that rely on parallelism not only to speed up 
computations, but also to guarantee interactivity (e.g., GUIs). 
Stephen defines strong correctness guarantees as data-race 
freedom, strong atomicity, deadlock freedom, and determin-
istic semantics. Current parallel programming models are 
limited either because they offer restricted forms of parallel-
ism or have high overheads, or in some cases both.

The model proposed by the authors plans to address these 
problem by requiring parallel programmers to annotate each 
task of a parallel program with effects. Effects specify for 
each task the memory regions read/written by the task. The 
compiler statically checks effect summaries; thus there is 
no need to check effects at runtime. Based on the computed 
effects, the runtime system schedules tasks so that tasks 
having overlapping effects do not execute concurrently. As a 
result, the model guarantees data-race freedom.

An interesting aspect of the model is effect transfer. On task 
creation (implemented by the spawn() operation), the effects 
of the parent are transferred to the created task. When the 
created child task is joined, the effects of the child task are 
transferred back to the parent. The model does not guarantee 
deadlock freedom, but effect transfers help to avoid dead-
locks possible because of the effect system.

Someone asked about tasks whose effects are not known 
statically. Stephen answered that there can be a runtime 
component that checks effects at run time. Additionally, the 
system could be extended to support types parameterized 
with regions and effects. Someone else asked what happens 
if a task is annotated improperly (e.g., task modifies every-
thing); in this case, the static analysis would probably fail. 
Stephen replied that the system could deduce at runtime 
what the actual effects are (using the previously mentioned 
dynamic-effect checking).

Bringing Down the House: Speculation
Summarized by Brandon Myers (bdmyers@cs.washington.edu)

HydraVM: Extracting Parallelism from Legacy 
Sequential Code Using STM
Mohamed M. Saad, Mohamed Mohamedin, and Binoy Ravindran, Virginia 
Tech

Mohamed Saad presented work on automatically parallel-
izing general sequential code using software transactional 
memory (STM). One motivation for this work is that very 
large legacy code bases tend to consist of mostly sequential 
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code (for development cost and scalability reasons). Some-
times source-level transformations or manual refactoring is 
not possible because the source code is unavailable. Auto-
mated concurrency refactoring at the bytecode level can 
address this problem.

HydraVM is a speculative parallelization system that works 
by analyzing the program statically and with dynamic 
profiling, constructing superblocks that may be good to be 
run in parallel, using them to reconstruct the program into 
a producer-consumer pattern, and executing the blocks 
as transactions. Superblocks are formed by representing a 
sequence of executed code as a string and performing string 
factorization. Transactions may commit in program order 
(1) if the block was actually reachable and (2) if there were no 
memory conflicts with previous blocks. Excessive commit 
conflicts can hurt performance. HydraVM continuously col-
lects conflict information to tune the superblocks; conflict-
ing superblocks are coalesced and recompiled.

HydraVM parallelization shows 2–5x speedup on sequential 
implementations of JOlden benchmark algorithms, which 
exhibit data-level parallelism. The source code is available at 
www.hydravm.org.

Parallelization by Simulated Tunneling
Amos Waterland, Harvard University; Jonathan Appavoo, Boston 
University; Margo Seltzer, Harvard University

Amos Waterland presented “basic research” towards an 
aggressive goal of a different kind of computing system 
that uses a generalization of memoization that is based on 
“dynamical systems.” It consists of a master compute node 
and a huge “intelligent cache” made up of a large cluster of 
predictive simulation nodes. The master always knows the 
true current state of the program and evolves the state. Each 
cluster node simulates an x86 processor starting from some 
prior distribution over program states, finding trajectories 
to proceeding states. The master advances the program by 
first querying all predictor nodes, asking if they have seen 
its current state before. If there is a match, then the master 
node can “tunnel” to the endpoint state of the trajectory that 
has been calculated from that start state. The master node 
has skipped ahead in the program using previously computed 
results of the predictor node. There are many predictor nodes 
working on different parts of the state space, so the system is 
performing parallel execution of a sequential program.

Poster Session and Reception
Summarized by Dongdong Deng (deng@cae.wisc.edu) and Brandon Holt

Performance Implications of Co-Scheduling Modern 
Parallel Applications on NUMA Multi-Core Systems
Cheol-Ho Hong and Chuck Yoo, Korea University

Cheol-Ho Hong presented their investigation on the per-
formance impact of co-scheduling parallel threads in 

the NUMA system. The NUMA system has increasingly 
attracted researchers’ attention due to its capability of 
overcoming the limitation on the number of cores. AMD 
and Intel have applied cross-chip interconnect technologies 
to their products where one processor can access remote 
memory belonging to other processors via a cross-chip con-
nect. However, a recent study has found that no significant 
performance improvement can be obtained on PARSEC by 
gathering threads in the same cache. Thus, Hong and Yoo 
studied the impact of co-scheduling and found that the per-
formance of parallel threads is highly dependent on the miss 
rate of the last level cache as well as the pattern of memory 
usage in each thread.

Evaluation of Hardware Synchronization Support of 
the SCC Many-Core Processor.
Pablo Reble, Stefan Lankes, Florian Zeitz, and Thomas Bemmerl, RWTH 
Aachen University

Pablo Reble presented work on hardware support of fast 
synchronization methods. The authors believe that hard-
ware support is critical to achieving high performance. An 
increasingly large number of cores have been integrated into 
one chip, resulting in degraded performance. What’s more, 
the problem of coherence becomes severe as the number 
of cores increases due to the performance overhead intro-
duced by hardware cache coherency protocols. In addition, 
software-based coherency has become an alternative way for 
shared memory programming models on manycore systems. 
Thus, the authors studied the characteristics of the hardware 
synchronization support of a cluster-on-chip architecture.

Does Shared-Memory, Highly Multi-Threaded, Single-
Application Scale on Many-Cores?
Ghassan Almaless and Franck Wajsburt, UPMC Sorbonne Universités

Ghassan Almaless presented work on the study of scaling 
highly multithreaded applications on manycore systems. 
Manycore systems can now support up to 100 cores, and 
it is reasonable to believe that hundreds of cores can be 
integrated into one chip in the near future. The cores have 
been designed increasingly simple with small-sized cache in 
consideration of power efficiency. In this study, the authors 
found the scalability limitation of SPLASH-2 FFT and 
EPFilter on a simulated 512 core system. Their analysis 
shows that the scalability limitation not only depends on the 
notion of thread and process, but also becomes worse due to 
the small cache of each core.

A Lightweight Approach to Compiling and Scheduling 
Highly Dynamic Parallel Programs
Ettore Speziale and Michele Tartara, Politecnico di Milano

Ettore Speziale presented work concerned with a dynamic 
and lightweight compiler that is able to control the execu-
tion of highly dynamic multithreaded programs at runtime. 
With this dynamic and lightweight compiler, a full-fledged 
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just-in-time compile is no longer needed. In addition, this 
lightweight compiler is capable of performing runtime opti-
mizations that are impossible to conduct during the compila-
tion due to lack of sufficient information. Furthermore, the 
optimizations can be conducted multiple times according to 
the actual runtime environment, which confines the perfor-
mance overhead to a negligible amount.

ExM: High Level Dataflow Programming for Extreme-
Scale Systems
Timothy G. Armstrong, University of Chicago; Justin M. Wozniak, 
Michael Wilde, and Ketan Maheshwari, Argonne National Laboratory; 
Daniel S. Katz, University of Chicago and Argonne National Laboratory; 
Matei Ripeanu, University of British Columbia; Ewing L. Lusk, Argonne 
National Laboratory; Ian T. Foster, University of Chicago and Argonne 
National Laboratory

Timothy G. Armstrong presented work related to a high-level 
data flow programming model for extreme-scale systems. 
They propose an extreme-scale many-task (ExM) program-
ming and execution model, overcoming the difficulties of 
higher-level logic of complicated multithreaded applications 
on large scale systems. ExM offers an high-level and demon-
strative programming model that enables pervasive paral-
lelism by accurate and automated concurrent execution. 
Furthermore, ExM includes integration of dataflow con-
structs, function evaluation, and task generation, solving the 
challenges of programmability and scalability required by 
highly paralleled systems. Finally, Armstrong demonstrates 
the potential applications of current ExM implementation. 

They are currently restricting the work to deterministic 
executions, and all I/O must be done at the beginning of the 
program so that there is a starting state. The state is repre-
sented by one vector of the memory in the machine. The state 
is evolved with an evolution rule that implements something 
like one x86 fetch-decode-execute. This is a dynamical 
system. The master node’s state vector is matched if a predic-
tor node has a vector that is equivalent under a symmetry 
transform. Currently, translation is the symmetry used for 
the x86 dynamical system. That is, if certain memory bits did 
not affect a trajectory, then those do not have to match.

A predictor node starts with some prior distribution of start-
ing program states. It can either spend cycles advancing a 
trajectory or exploring new possible starting states based on 
its belief distribution.

Luis Ceze commented that the technique is like memoiza-
tion except at a granularity that is not necessarily intuitive 
to a human. Amos replied that, yes, it is like memoization 
but more general. He imagines that generations of a civiliza-
tion could pass down accumulated knowledge in the form 
of important computed trajectories. Luis also referred the 
attendees to related work, “Massively Speculative Parallel-
ization” from MICRO 2003. 

On the subject of reuse, David Reed asked how the “don’t care 
bits” for translation symmetries are inferred. Amos replied 
that they keep track of which bits are used in an application 
of the evolution rule, and those not used are assumed to be 
non-causal. Symmetries play a crucial role; if only 5% of the 
bits in the state vector have to match, the prediction problem 
gets easier and the trajectory cache is more useful.

Burton Smith made a related comment regarding memoiza-
tion techniques, that sometimes higher level knowledge can 
reduce the distinguishing state to a single integer. He also 
suggested it would be possible to use more than one master 
compute node, each starting at different places. Amos said 
that knowledge can be injected into the cache. Luis men-
tioned that in some applications and systems there is massive 
reuse, such as shared structure in cloud computing.

Luis asked how we should consider speculation in a world 
concerned about energy. Mohamed agreed that it is impor-
tant to study performance and energy tradeoffs. Amos 
replied that right now they use full CPUs for everything 
(32,000 cores of IBM Blue Gene at Argonne Lab as part of 
their DOE grant) but that in a full realization of the tunnel-
ing computer, the different pieces should be specialized to 
achieve efficiency. The predictive inference could use low-
power neuromorphic devices, the parallel cache search could 
use a large parallel associative memory, and only the specula-
tive execution would require a full CPU.

Amos also presented his work at a physics conference, sug-
gesting applications in molecular dynamics. In future work, 
he would like to explore other possible symmetries; in the x86 
tunneling system they only use a form of translation. 

Poster Session
CnC-Python: Multicore Programming with High 
Productivity 
Shams Imam and Vivek Sarkar, Rice University

Shams Imam (shams@rice.edu) from Rice University, 
advised by Vivek Sarkar, presented this work which aims 
to enable Python programmers to leverage parallelism in 
their applications using the Intel Concurrent Collections 
(CnC) paradigm. CnC is a declarative parallel coordination 
model where computation is expressed in terms of serial 
“steps” and declarations of data and control dependences. 
CnC aims to allow non-expert programmers to be productive 
writing efficient parallel programs, so Python is a natural 
implementation choice. One of the primary challenges in 
the implementation was that CPython, the most prevalent 
implementation of Python, has a global interpreter lock 
which makes running multiple threads in parallel difficult. 
Using other popular Python implementations which do sup-
port parallelism is suboptimal because they are incompatible 
with many extension modules. To overcome this obstacle, 



 | OCTOBER 2012 | VOL. 37, NO. 5 | 4th USENIX Workshop on Hot Topics in Parallelism (HotPar ’12) | WWW.usenix.org	PAG E 9

E L E C T R O N I C  S U P P L E M E N T

the CnC-Python library calls out to the Habanero Java 
implementation of CnC, which is multithreaded, which then 
schedules user-specified Python code to run safely across 
those threads.

Gains in Conjugate Gradient Computation with 
Linearly Connected GPU Multiprocessors
Stephen J. Tarsa, Tsung-han Lin, and H.T. Kung, Harvard University

This work out of Harvard focuses on efforts to accelerate 
conjugate gradient computation on graphics processors to 
allow for more efficient processing of compressive sens-
ing signal reconstruction. On the surface, this problem has 
abundant, regular, data parallelism, so it should be highly 
amenable to GPGPU acceleration. However, each stage of 
the iterative process involves a global vector normalization 
step, which on current generations of GPUs cannot be done 
without an expensive synchronization, either through long-
latency communication through the host CPU or global GPU 
memory. In order to mitigate this bottleneck, the authors pro-
pose a linear series of connections between stream multipro-
cessors (SMs) which would allow a 15x improvement in their 
implementation. They believe that the overhead of introduc-
ing such a small change to the architecture should not be 
very expensive, but they admitted that it would be difficult to 
integrate such a primitive interconnect cleanly in something 
like the CUDA-C programming model because the schedul-
ing of thread blocks is completely opaque.

Concurrent Predicates: Finding and Fixing the Root 
Cause of Concurrency Violations
Justin E. Gottschlich, Gilles A. Pokam, and Cristiano L. Pereira, Intel 
Corporation

Debugging concurrency violations is notoriously difficult 
because their non-deterministic nature makes them dif-
ficult to recreate consistently. The concurrent predicates 
(CPs) coined in this work allow a programmer to single out 
a bug by specifying the conditions that are known to trig-
ger the bug. In a live demo of the tool, Justin Gottschlich 
(justin.e.gottschlich@intel.com) showed how these CPs, 
which look like simple function calls, can be inserted into 
the buggy code at one of the points where the bug is known 
to reside. When executed, we could see how the CPs delayed 
threads’ execution so that they consistently recreated the 
particular interleaving known to cause the bug. Justin also 
demonstrated more parts of the tools that allow for some 
automation in placing predicates, although he warned that 
this introduces a risk of false-positives appearing.

Middleware for Many-Cores—Why It Is Needed and 
What Functionality It Should Provide
Randolf Rotta, Steffen Büchner, and Jörg Nolte, Brandenburg University 
of Technology

This work consists of an exploration of manycore platforms 
such as Intel Knight’s Corner, AMD Interlagos, or Tilera 

TilePro100. These platforms, while having much in common 
architecturally, provide differing coherence and communica-
tion mechanisms, which, while they provide a common inter-
face, have drastically different performance implications, 
obviating the need for middleware to make software written 
for these platforms more performance-portable. Some of the 
useful functionality includes: support for cross-core method 
calls and ways to coordinate groups of tasks. The authors of 
this work ported the existing TACO template library to use 
shared memory rather than MPI and ran several benchmarks 
to understand the performance implications of their design.

The Road to Parallelism Leads Through Sequential 
Programming
Gagan Gupta, Srinath Sridharan, and Gurindar S. Sohi, University of 
Wisconsin—Madison

This work proposes a parallel programming model that, 
while asking the programmer to explicitly express parallel 
regions, enforces serial semantics to help programmers rea-
son about their program. The system, described in previous 
publications, dynamically schedules non-interfering tasks 
(as specified by explicit read/write sets) to run in parallel. 
This work focuses on automatically tuning parallelism to 
improve efficiency and a way to implement low-overhead 
restartable parallel execution. Using a “Goodness of Paral-
lelism” (GoP) metric composed of periodic samplings of effi-
ciency, the authors determine whether excessive contention 
is hurting efficiency, making it beneficial to use less paral-
lelism. This approach provides many of the benefits claimed 
by STM and other speculative parallelism approaches with 
lower overhead but, as a tradeoff, requires more programmer 
knowledge to express the read/write sets.

Elastic Scaling for Transactional Memory: From 
Centralized to Distributed Architectures
D. Didona, Instituto Superior Técnico/INESC-ID, Portugal; P. Felber 
and D. Harmanci, University of Neuchâtel, Switzerland; P. Romano, 
Instituto Superior Técnico/INESC-ID, Portugal; J. Schenker, University 
of Neuchâtel, Switzerland

Transactional memory allows threads to safely run in paral-
lel. However, the more threads that are operating at once, 
the more likely they are to collide and cause each other to be 
squashed. Because the likelihood of overlap can be highly 
program-, phase-, and data-dependent, the optimal number 
of parallel threads must be determined dynamically. This 
work explores and contrasts dynamic parallelism tuning 
on shared and distributed memory machines. For shared 
memory machines, the cost of being wrong is not too high, 
so it is sufficient to make some measurements to character-
ize the workload and do simple hill-climbing to find a good 
number of transactions. In a distributed setting, many more 
factors interact interdependently and non-linearly, and the 
cost of being wrong is much higher. They show that in these 
cases, it is necessary for the runtime to construct a model of 
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the performance characteristics and simulate transaction-
scaling decisions to choose the best one.

SMT QoS: Hardware Prototyping of Thread-Level 
Performance Differentiation Mechanisms
Andrew Herdrich, Ramesh Illikkal, Ravi Iyer, Ronak Singhal, Matt 
Merten, and Martin Dixon, Intel Corporation

Simultaneous multithreading (SMT) allows multiple inde-
pendent threads to run in the same pipeline. However, some 
operations, particularly memory operations which missed 
the cache, take significantly longer to complete than others. 
When two SMT threads have differing workloads (i.e., one 
has more memory operations), that thread is unable to use 
its pipeline slots, and that can cripple the performance of the 
other compute-bound thread by tying up resources it could 
use to run faster. In addition to demonstrating this issue on 
the Nehalem architecture, this work also introduces and 
explores new forms of source-based execution rate control 
at the pipeline level to enhance SMT control. By limiting the 
instruction issue rate and limiting the amount of reserva-
tion station slots allocated for memory-bound threads, they 
show they can prevent useless starvation of compute-bound 
threads and improve overall efficiency.

Imposing Order: Scheduling
Summarized by Dongdong Deng (deng@cae.wisc.edu)

Fine-Grained Resource Sharing for Concurrent 
GPGPU Kernels
Chris Gregg, Jonathan Dorn, Kim Hazelwood, and Kevin Skadron, 
University of Virginia

Chris Gregg presented KernelMerge, a kernel scheduler 
enabling multiple applications to run concurrently on one 
device. Load balancing and resource allocation are two 
main problems. Allocating computing units and memory 
reasonably among computing-bound and memory-bound 
applications is critical to performance improvement. In this 
presentation, Gregg shows the scheduling algorithms, experi-
ment results, limitations of KernelMerge, and a case study of 
determining optimal workgroup balance.

KernelMerge adopts two different scheduling algorithms: a 
round-robin work-stealing algorithm and a fixed percentage 
of workgroups assignment algorithm. Experiment results 
show that 39% of concurrent kernel pairs obtain a speedup. 
Also, the results indicate that a naive way of scheduling ker-
nels is harmful. However, KernelMerge has three limitations. 
First, the high utilization of registers limits the number of 
workgroups that can use one device at the same time. Second, 
the usage of shared memory by the scheduling kernel reduces 
the number of possible workgroups that concurrently run on 
the same device. Third, barriers are not allowed if two ker-
nels have different numbers of workgroups to avoid deadlock.

Finally, Gregg demonstrated the case study of finding an 
optimal workgroup balance. The results confirm that Ker-

nelMerge is effective in determining optimal workgroup and 
naive scheduling of kernels may have negative impact on 
performance. With KernelMerge, an 18% speedup is achieved 
for two concurrent kernels over the time to sequentially run 
these two kernels.

Do We Need a Crystal Ball for Task Migration?
Brandon Myers and Brandon Holt, University of Washington

Brandon Myers presented the authors’ exploration of profit-
able task migration decisions based on data locality. To 
improve the performance of applications with intensive com-
munication on distributed systems, network traffic needs 
to be reduced. Task migration is considered as a possible 
solution to achieve this. Myers presented their system model, 
simulation framework, online policies and evaluation results.

Myers showed that they use a simple model that merely 
focuses on the data amount transferred over the network. 
Thus, this model only has two layers of locality hierarchy: 
local and remote. Several simplifications have been made to 
obtain theoretical cost bounds in polynomial time. Also, load 
balancing is not considered in the model because local com-
putation time is absent. With these constraints, the problem 
has been formulated as a single source, multiple destination 
shortest path problem over a DAG of task location over time.

The simulation framework includes two stages: one is gener-
ating a memory trace for each task in a multithreaded shared 
memory application and the other is simulating the sequence 
of memory accesses in the manner they happen on a distrib-
uted system. PIN, a binary instrumentation library, is used 
for collecting memory traces on annotated benchmarks. The 
simulator takes memory traces, an allocation table, number 
of distributed nodes, task size, and migration policy as inputs.

Hindsight Migrate policy is employed as a migration predic-
tor. Unlike Stream Predictor, a task does not suffer from 
the cost of extra remote accesses to form a pattern. Instead, 
migration occurs immediately when an instruction with 
characteristics of locality appears, taking full advantage 
of the locality. Two branch predictor-inspired policies are 
developed. Experiment results indicate these policies bring 
up to 60% of the maximum possible benefit for task migra-
tion.

A Template Library to Integrate Thread Scheduling 
and Locality Management for NUMA Multiprocessors
Zoltan Majo and Thomas R. Gross, ETH Zurich

Zoltan Majo presented a template library that can explicitly 
divide data and threads among different processors. In a 
NUMA system, reducing remote memory access is critical to 
improving performance. This can be achieved by data parti-
tioning so that each processor can access locally. Also, thread 
execution should be assigned appropriately to guarantee that 
data required by a thread is local. Although there are many 



 | OCTOBER 2012 | VOL. 37, NO. 5 | 4th USENIX Workshop on Hot Topics in Parallelism (HotPar ’12) | WWW.usenix.org	PAG E 11

E L E C T R O N I C  S U P P L E M E N T

researchers who focus on NUMA systems, few of them have 
investigated the problem of data locality in NUMA systems. 
In this presentation, Majo first showed a case study of ferret, 
a program from the PARSEC benchmark suite, and then 
discussed a template library for explicitly partitioning data 
and thread execution.

In Majo’s case study, 16 threads of ferret run on a two-
processor eight-core system. The memory access behavior 
is recorded by data address profiling, and only memory 
access to heap is considered. According to the percentage 
of accesses from the main processor, all memory accesses 
are divided into six categories. Majo explained the charac-
teristics of these six types and also analyzed the reason for 
interprocessor data sharing in ferret.

After the ferret case study, Majo introduced a template 
library that enables programmers to explicitly allocate data 
and thread execution. This library allows programmers to 
pre-define data distribution and thread-scheduling primi-
tives. Experiment results show that remote memory accesses 
are reduced from 42% to 10%, and the overall performance is 
improved by 3%.

Panel: Parallel Programming in the Real World
Summarized by Mohamed Mohamedin (mohamedin@vt.edu)

Moderator: Luis Ceze, University of Washington
Panelists: Andrew Brownsword, Intel; Niall Dalton; Goetz Graefe, HP 
Labs; Russell Williams, Adobe

Parallelism in the “Real” World
Andrew Brownsword 

Andrew started by defining what real software is: large, 
written by many people, expressed by program models, 
having many levels of abstraction; and it should be fast, 
robust, and maintainable. He used games as an example for 
real software. Games are medium to large, may have a large 
toolchain and online infrastructure, have many diverse 
subsystems running together (e.g., graphics, environment, 
audio, animation, game logic, AI, physics), are soft real-time, 
frame oriented, sequential dependency, and have many target 
devices (e.g., from phones to servers, different CPUs, multi-
core, GPUs). Moreover, games have short development cycles, 
changing rapidly, substantial volume, and usually are ported 
between diverse platforms.

Andrew then talked about HPC (high performance comput-
ing). HPC is characterized by wide varying code bases and 
domains (e.g., C/C++, Fortran, MPI, OpenMP), few kernels, 
big data, and different target platforms. The HPC devel-
opment process is ongoing, and it should be correct and 
portable. 

Programming models are very important. They must have 
the following properties: integration (i.e., with other models, 

runtimes, etc.), portability between different hardware and 
OSes, composability, concurrent execution on multiple levels 
(e.g., vectorization, parallel cores, distributed nodes), data 
organization and access patterns (i.e., FLOPS are cheap but 
memory bandwidth is not), and specialization. 

Stock  Market Environment
Niall Dalton 

The stock market handles billion of messages every day. It 
must be able to handle large amounts of data in memory and 
respond to messages in real time without faults. In this envi-
ronment, they use FPGAs, GPUs, manycores, and SOCs. We 
shouldn’t fight the last war; we started with the clock speed 
war, followed by the current core war. Instead, we now have 
the efficiency war, which concentrates on pure throughput. 

In order to support the stock market’s special environment, 
they used custom solutions based on special FPGA hardware, 
custom switches, SSD, and a special programming language 
that looks like a mix between SQL and Matlab. Using this 
custom language, one can easily run parallel jobs on huge 
amounts of data. 

They are facing problems that are still open. One problem is 
machines are already beyond our ability to program pro-
ductively with high performance. Another problem is it is 
getting harder to observe, understand, debug, and tune our 
programs/machines.

Hot Topics in Parallelism in Data Management
Goetz Graefe

Historically, there’s been concurrency among independent 
database transactions (single-threaded) since the 1960s, and 
parallel query processing since the 1980s. Database transac-
tions follow the ACID (atomicity, consistency, isolation, and 
durability) model and can be divided into two types: user and 
system transactions. User transactions are those visible to 
the user in the form of queries and updates. They lock the 
database to commit, and if the commit fails, the changes are 
rolled back from recovery logs. System transactions handle 
the internal representation of the database and how the data 
structures are accessed. 

The current trend is to focus on scalability. Techniques 
like MapReduce (e.g., Hadoop), data mining, and business 
intelligence are used to handle large databases. Also, new 
implementation techniques—such as transactional memory, 
a new synchronization abstraction based on database trans-
actions—are required to handle low-level synchronization. 

Parallelism in Adobe Photoshop
Russell Williams

Photoshop is a huge cross-platform program based on a single 
thread. Parallel computations were designed as a general 
framework in the mid-90s and do not scale well after four 
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cores. It trades off throughput for latency and maintains a 
large pool of unused threads. 

The structure of the problems facing parallel desktop 
software is whether we do asynchronous actions or paral-
lel computations that need synchronization. What are the 
sources of parallelism? Are we using events and views or are 
we controlled by Amdahl’s Law? FLOPS now are cheap but 
the bandwidth is limited; we can have 80-core chips but the 
software cannot use them. We have a heterogeneous environ-
ment (e.g., different cache designs, different languages), and 
the hardware is rapidly changing (e.g., SSE, AVX, AVX2). All 
this makes developing software over the next five or 10 years 
very difficult as hardware and software tools keep changing.

One major problem in parallel computations is that we have 
a large number of FLOPS that are not utilized. For example, 
in an eight-core machine with AMD 6950, we have two 
GFLOPS in the GPU, 0.5 GFLOPS in CPU vector unit, and 
a very small fraction of GFLOPS in multithread and scalar 
core. On the other hand, 99% of the code is written for the 
scalar core. Moreover, most programmers’ expertise is in this 
area.

Discussion 
Since the bandwidth is the major problem in parallelism, can 
we formulate the problem so that we have a framework where 
we can decide on the data flow and where the data is placed in 
the memory hierarchy? The problem is most of the programs 
are written in C/C++. They follow the same order of fields 
in structures. Even if we had a magic compiler that could 
reorganize the data, optimization would be very difficult. 
For example, optimizing just two functions took a month. 
Maybe the solution is to have a domain-specific language like 
the one used in the stock market. Someone else mentioned 
that debugging in some new languages is very difficult: for 
example, OpenCL. Another person pointed out that one of the 
problems with C/C++ is lack of reflection so that all variable 
names get lost in compilation, making optimization and data 
rearrangement difficult.

Someone else mentioned that most of the talks have been 
about performance. Does this mean that the current tools 
are enough? We still need good tools for debugging and for 
handling bugs dynamically. Another panelist commented 
that we need to choose one technology and focus on it. This 
is why OpenCL is not common and has a small code base. 
Another person wondered why there is so much concentra-
tion on computing power only. What about network latency? 
A panelist replied that we consider latency too. For example, 
our private network between two main cities is very fast and 
has low latency.

Amazing Applications
Summarized by Brandon Myers (bdmyers@cs.washington.edu)

Retrofitted Parallelism Considered Grossly Sub-
Optimal
Paul E. McKenney, Linux Technology Center, IBM Beaverton

Paul McKenney introduced his talk by referring to the 
human fascination with mazes, showing an example of an 
ancient maze dug into the earth. “Not much has changed 
since then except now our mazes are stored in silicon instead 
of silicon dioxide.” A straightforward sequential maze-solv-
ing algorithm consists of storing branch points and revisiting 
them until the endpoint is found (SEQ). A common approach 
to parallelizing this solver is to have multiple threads, all 
adding and removing branch points to a work queue (PWQ). 
This approach can give up to linear speedup. The weak point 
of PWQ is that at most one thread is ever making progress 
along the solution path at a given time.

Another approach is to trace from both the start and the end 
with two threads. This algorithm is called PART, since it is 
analogous to the parallel programming approach of parti-
tioning the problem into two. Run on the random test mazes, 
this version solves mazes up to 40x faster than SEQ. This 
superlinear speedup makes the problem appear “humiliat-
ingly parallel”: adding threads reduces the total work. Why is 
this? For PART, when threads get in each other’s way, rather 
than causing contention, it helps because as soon as a thread 
sees a branch point already covered by the other thread, the 
solution has been found. The superlinear speedup is statisti-
cal; a random maze is likely to benefit from PART, but in the 
worst case, all maze cells may have to be touched (e.g., for the 
trivial maze with no branches). Given that PART gives super-
linear speedup, Paul found that a co-routine implementation 
gets much of the speedup of parallel PART, although having 
two threads provides some advantage for larger mazes. He 
also compared sequential compiler optimizations to parallel 
speedups.

Paul’s high-level takeaways included parallelizing a sequen-
tial algorithm is not always the best approach; parallelism 
should be treated as first class; and be aware of parallel 
results that are vulnerable to better sequential optimizations. 
To the question, do all humiliatingly parallel problems have 
good co-routine implementations, Paul thinks perhaps some 
might not: for example, if context switch overhead outweighs 
the computation.

Parakeet: A Just-In-Time Parallel Accelerator for 
Python
Alex Rubinsteyn, Eric Hielscher, Nathaniel Weinman, and Dennis Shasha, 
New York University

Alex Rubinsteyn presented work on JIT parallel acceleration 
of Python code using a GPU. Dynamically typed, interpreted 
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languages like Python can enable high productivity but have 
poor efficiency compared to low-level C++ or CUDA code. 
Python application programmers with numerical workloads 
can get better performance by using the NumPy library, 
which uses precompiled functions like sum. The deficiency is 
that most computations using NumPy are still locked to one 
core, except for some functions that use Basic Linear Algebra 
Subprograms (BLAS). We want to do better, while staying 
completely within the Python programming language. The 
Parakeet library exposes a variety of adverbs, higher order 
functions that can be run safely in parallel if provided pure 
functions. Some of the adverbs that Parakeet provides are 
map, reduce, scan, and allpairs, which consists of nested 
maps. 

Parakeet supports a very limited subset of Python; for exam-
ple, functions cannot use any structures other than scalars 
and NumPy arrays. What is left makes Parakeet an “array 
calculator,” but if your Python program has a bottleneck then 
writing that part in a subset might be tolerable. Providing the 
parallel adverbs already allows many data parallel computa-
tions to be expressed.

Parakeet calls can be parallelized currently as either a GPU 
kernel or using a work queue for multicore CPUs. On each call 
to Parakeet, the runtime must reanalyze the intermediate 
representation to infer the shape of data for GPU prealloca-
tion and decide which level of the computation to parallelize. 
Alex has found that single-core BLAS operations can still 
perform far better than Parakeet. The lesson is that data lay-
out and cache-locality are critical. Future work will improve 
locality, use a more portable GPU back-end, and use a better 
cost model for accurately deciding what work to assign to the 
GPU or CPU.

Discussion centered on programmability tradeoffs. Luis Ceze 
commented that accelerator or parallelization approaches 
like Parakeet can sacrifice programmability and was curious 
whether one can support a subset of Python that is interest-
ing and useful enough. Alex replied that it is too early to tell 
whether restrictions that Parakeet code sections require 
will deter adoption. But he argued that from his experience, 
many Python programmers who need more performance 
would prefer to stay within a .py file (as opposed to, e.g., 
having a hybrid C and Python program) even if they have to 
write part of the application in a restricted way. David Reed 
asked whether the subset of Python can be expanded. Alex 
answered that as soon as you move beyond arrays of data or 
allow dynamic features, parallel implementation gets far 
more complicated.

Test and Be Safe
Summarized by Mohamed Mohamedin (mohamedin@vt.edu)

Concurrency Attacks
Junfeng Yang, Ang Cui, Sal Stolfo, and Simha Sethumadhavan, Columbia 
University

Junfeng Yang said that concurrent programs have many 
hidden bugs, which can be called concurrency attacks. These 
attacks are difficult to exploit. The authors found 46 exploit-
able concurrency errors in famous programs. For example, 
Moonlight has such an attack when code copies an array. 
The code has no problems in sequential execution. A second 
example is that Internet Explorer can have a data race due to 
an appendChild bug. A third example is that in iOS there is a 
physical proximity attack that can allow access to the phone 
without entering the passcode. Their study shows that such 
errors are pervasive.

There are some factors that affect exploitability of these 
attacks. One of them is the vulnerable window size. In physi-
cal proximity attacks, the window size is in seconds. It is in 
milliseconds in file-system-related bugs and microseconds 
in memory-related bugs. An attacker can enlarge the window 
size (e.g., increase the array size in the Moonlight bug). Also, 
attackers can catch the small window size by programmati-
cally retrying (e.g., the IE bug).

Concurrency attacks cannot be prevented by current defense 
techniques, which are designed for sequential execution. For 
example, metadata tracking, software checks, and anomaly 
detection are all weakened while other defenses like hard-
ware checks are not affected.

Someone wondered whether removing data race prevents 
SQL attacks, Junfeng Yang answered no, since this data race 
is not in the original program, it is injected by the attacker. 
There was also a comment that other types of concurrency 
attacks are not mentioned in this study such as the one that 
allowed finding a password by monitoring the cache.

CONCURRIT: Testing Concurrent Programs with 
Programmable State-Space Exploration
Jacob Burnim, Tayfun Elmas, George Necula, and Koushik Sen, University 
of California, Berkeley

Tayfun Elmas began by saying that it is difficult to write a 
unit test for concurrent programs. In sequential ones, it was 
enough to fix the input and use assertions. In concurrent 
ones, they need to fix the schedule as well as the input. Stress 
testing gives no guarantees, and model checking is not appli-
cable to large programs as it requires testing all schedules; 
thus, they need to control the program schedule.

The current technique of using “sleeps” is considered ad hoc 
and not formal. Concurrit provides a DSL for writing concur-
rent tests. The software under test (SUT) is instrumented 
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so that it blocks after each event and waits for the continue 
signal. A test case consists of events (conditions), and the 
response to these events determines the number of schedules 
in the test case. Choosing the right conditions leads to fewer 
schedules, so they can detect the bug in a short time. Concur-
rit is available online at http://code.google.com/p/concurrit/.

Someone asked whether a deadlock can occur in Concurrit. 
Elmas answered yes; they are handled using timeouts and 
backtracking.

Understanding the Interleaving-Space Overlap Across 
Inputs and Software Versions
Dongdong Deng, Wei Zhang, Borui Wang, Peisen Zhao, and Shan Lu, 
University of Wisconsin, Madison

Testing a program using data-race detections results in a 
10–200x slowing of program execution. The problem is that 
when a new version is tested, a lot of tests are redundant. 
Wei Zhang described this work as finding redundancy across 
inputs of the test cases without doing a slow interleaving 
space analysis.

The first step is to write concurrent function pairs (CFP), 
then design the testing plan. The final step is running the 
CFP-based race detection. This system is tested and did not 
miss any failure-inducing data races. Results shows that this 
new method reduced the number of test cases that produce 
the same error significantly. In some cases, they reached only 
one test case, which is the best solution.

Currently this work is limited to data races only. Supporting 
detection of redundancy in other types of bugs is planned 
future work.


