
	 ;login:  AUGUST 2012     1

Franzi Roesner is a fourth-year
PhD student in Computer
Science and Engineering at
the University of Washington,

where she is advised by Yoshi Kohno. Her
research focuses on helping users better
understand and control how their data is
used and shared in a range of scenarios, from
third-party tracking on the Web to permission
granting for applications in modern operating
systems (such as smartphones). She received
her BS in Computer Science from the University
of Texas at Austin and has done internships at
Amazon.com, Microsoft Research, and Google.
franzi@cs.washington.edu

Chris Rovillos is a second-year
undergraduate student at the
University of Washington.
He is studying computer

engineering and human-centered design and
engineering.
crovillo@cs.washington.edu

Tadayoshi Kohno is an
Associate Professor in the
University of Washington’s
Department of Computer

Science and Engineering and an Adjunct
Associate Professor in the UW Information
School. Kohno received his PhD from the
University of California at San Diego and his BS
from the University of Colorado. His research
focuses on helping protect the security,
privacy, and safety of users of current and
future technologies.
yoshi@cs.washington.edu

SECURITY

Web tracking, the practice by which Web sites identify and collect information
about users, generally in the form of some subset of Web browsing history, has
become a topic of increased public debate. In this article, we summarize what
we have learned about the Web tracking ecosystem and describe a taxonomy for
understanding Web tracking behavior. In particular, we found that no existing
browser mechanisms prevent tracking by social media sites via widgets (such as
the Facebook “Like” button) while still allowing those widgets to achieve their
utility goals. We then describe ShareMeNot, a browser extension that we developed
to balance privacy with the intended functionality of social widgets.

Social widgets like the ones shown in Figure 1 allow their providers (ßFacebook,
Google, Twitter, and others) to track a user’s online browsing activities on every
site that includes one of these buttons. This tracking is possible even if users never
interact with the widgets and (in most browsers) even if users employ common
defenses for third-party tracking, such as disabling third-party cookies.

To close the gap in defenses available to users, we introduce ShareMeNot. Share-
MeNot is a browser extension (for Firefox and for Chrome) that aims to find a
middle ground between allowing social widgets to track users wherever they
appear and retaining the functionality of these widgets when users explicitly
choose to interact with them (e.g., to “like” or to “tweet” a page). ShareMeNot for
Firefox works by removing the browser cookies attached to requests made while
loading the buttons, and ShareMeNot for Chrome works by replacing the buttons
entirely with local replacement buttons. When users choose to click on a button,
ShareMeNot necessarily allows the widget provider to identify that user to carry
out the widget’s functionality.

ShareMeNot
Balancing Privacy and Functionality of Third-Party Social Widgets

F R A N Z I S K A R O E S N E R , C H R I S T O P H E R R O V I L L O S , T A D A Y O S H I K O H N O ,
A N D D A V I D W E T H E R A L L

David Wetherall is a Professor
of Computer Science &
Engineering at the University
of Washington and led

Intel’s former Seattle research lab from
2006 to 2009. Wetherall received his PhD
in computer science from MIT and his BE in
electrical engineering from the University

of Western Australia. His research interests
are focused on network systems, especially
wireless networks and mobile computing, and
Internet measurement and protocol design.
He is known for pioneering research on
programmable networks, Internet mapping,
network de-duplication, and denial-of-service.
djw@cs.washington.edu

	2    ;login:  VOL. 37, NO. 4

In this article, we provide background on how Web tracking works and summarize
the taxonomy of tracking behavior that we introduced in our recent paper [8]. We
then motivate ShareMeNot by assessing the effectiveness of defenses currently
available to users and describe in detail its functionality and effectiveness.

Figure 1: Example social widgets. Social media sites expose social widgets that can be used
to track users across all the sites on which these widgets are embedded. We refer to this
type of tracking behavior as “personal tracking,” as users visit these Web sites directly during
their normal browsing behavior and are often logged in and thus are not anonymous to these
trackers.

What Is Web Tracking?

Third-party Web tracking refers to the practice by which an entity (the tracker),
other than the Web site directly visited by the user (the site), tracks or assists in
tracking the user’s visit to the site. For instance, if a user visits cnn.com, a third-
party tracker like doubleclick.net embedded by cnn.com to provide, for example,
targeted advertising can log the user’s visit to cnn.com. For most types of third-
party tracking, the tracker will be able to link the user’s visit to cnn.com with the
user’s visit to other sites on which the tracker is also embedded. We refer to the
resulting set of sites as the tracker’s browsing profile for that user. In this section,
we briefly review necessary Web-related background and summarize the taxon-
omy introduced in our recent paper [8].

Table 1: Classification of tracking behavior. This table summarizes the taxonomy of tracking
behavior that we developed in prior work [8]. Note that trackers may exhibit multiple behaviors
at once.

Category Name Profile Scope Summary Example Visit Directly?

A Analytics Within-Site
Serves as third-party analytics engine for
sites.

Google Analytics No

B Vanilla Cross-Site
Uses third-party storage to track users
across sites.

Doubleclick No

C Forced Cross-Site
Forces user to visit directly (e.g., via popup
or redirect).

InsightExpress Yes (forced)

D Referred Cross-Site
Relies on a B, C, or E tracker to leak
unique identifiers.

Invite Media No

E Personal Cross-Site
Visited directly by the user in other con-
texts.

Facebook Yes

	 ;login:  AUGUST 2012   ShareMeNot    3

Table 2: Tracking behavior by mechanism. In order for a tracker to be classified as having a par-
ticular behavior (A, B, C, D, or E), it must display the indicated property. Note that a particular
tracker may exhibit more than one of these behaviors at once.

Web-Related Background

When a page is fetched by the browser, an HTTP request is made to the site for
a URL in a new top-level execution context for that site (that corresponds to a
user-visible window with a site title). The HTTP response contains resources of
several kinds (HTML, scripts, images, stylesheets, iFrames, and others) that are
processed for display and that may trigger HTTP requests for additional resources.
Resources (such as iFrames) fetched from another domain and embedded on the
page are known as third-party content.

Web tracking relies fundamentally on a Web site’s ability to store state on the
user’s machine, as do most functions of today’s Web. Client-side state may take
many forms—most commonly, traditional browser cookies. A cookie is a triple
(domain, key, value) that is stored in the browser across page visits, where domain
is a Web site, and key and value are opaque identifiers. Cookies that are set by the
domain that the user visits directly (the domain displayed in the browser’s address
bar) are known as first-party cookies; cookies that are set by some other domain
embedded in the top-level page are third-party cookies.

Cookies are set either by scripts running in the page using an API call, or by HTTP
responses that include a Set-Cookie header. The browser automatically attaches
cookies for a domain to outgoing HTTP requests to that domain, using Cookie
headers. Cookies may also be retrieved using an API call by scripts running in the
page and then sent via any channel, such as part of an HTTP request (e.g., as part of
the URL). The same-origin policy ensures that cookies (and other client-side state)
set by one domain cannot be directly accessed by another domain.

Users may choose to block cookies via their browser’s settings menu. Blocking
all cookies is uncommon, as it makes today’s Web almost unusable (e.g., the user
cannot log into any account), but blocking third-party cookies is commonly recom-
mended as a first line of defense against third-party tracking.

	
Property

	 Behavior
		 A	 B	 C	 D	 E

	 Tracker sets site-owned (first-party) state.	 3

	 Request to tracker leaks site-owned state.	 3

	 Third-party request to tracker includes tracker-owned state.		 3	 3		 3

	 Tracker sets its state from third-party position; user never directly visits tracker.		 3

	 Tracker forces user to visit it directly.			 3

	 Relies on request from another B, C, or E tracker (not from the site itself).				 3

	 User voluntarily visits tracker directly.					 3

	4    ;login:  VOL. 37, NO. 4

Background on Tracking

Web tracking is highly prevalent on the Web today. From the perspective of Web
site owners and of trackers, it provides desirable functionality, including personal-
ization, site analytics, and targeted advertising. From the perspective of a tracker,
the larger a browsing profile it can gather about a user, the better service it can
provide to its customers (the embedding Web sites) and to the user herself (e.g., in
the form of personalization).

While some users may benefit from the results of this tracking, larger browsing
profiles spell greater loss of privacy for users. A user may not, for instance, wish
to link the articles he or she views on a news site with the type of adult sites he or
she visits, much less reveal this information to an unknown third party. Even if the
user is not worried about the particular third party, this data may later be revealed
to unanticipated parties through court orders or subpoenas.

In our recent paper [8], we investigated tracking in the wild today and introduced
a taxonomy of third-party Web tracking behavior. This taxonomy (summarized in
Table 1) focuses on explicit tracking mechanisms, i.e., tracking mechanisms that
use assigned, unique identifiers per user rather than inferred tracking based on
browser and machine fingerprinting. Other work [9] has studied the use of finger-
printing to pinpoint a host with high accuracy.

More specifically, all trackers we considered have two key capabilities:

u	 The ability to store a pseudonym (unique identifier) on the user’s machine.
u	 The ability to communicate that pseudonym, as well as visited sites, back to the

tracker’s domain.

The pseudonym may be stored using any client-side storage mechanism, including
conventional browser cookies, HTML5 LocalStorage, Flash cookies, and others.
Stored values are communicated to the tracker either automatically when the
browser includes a cookie with a request, or explicitly by tracker-provided Java
Script code that accesses and transmits the stored values. Similarly, the browser
may communicate information about the visited site to the tracker, either implic-
itly via the HTTP Referrer header, or explicitly via tracker-provided code using the
document.referrer API call.

Depending on the mechanisms used by a tracker, the browsing profiles it compiles
can be within-site or cross-site. Within-site browsing profiles link the user’s brows-
ing activity on one site with his or her other activity only on that site, including
repeat visits and how the Web site is traversed, but not to visits to any other site.
Cross-site browsing profiles link visits to multiple different Web sites to a given
user (identified by a unique identifier or linked by another technique [6, 9]).

Our tracking taxonomy categorizes tracking behavior based on client-side observ-
able mechanisms. It distinguishes between within-site and cross-site trackers,
and it further distinguishes different types of cross-site trackers. This is in con-
trast to past work that considered business relationships between trackers and the
embedding Web site [4] and past work that categorized trackers based on preva-
lence rather than user browsing profile size [5]. These distinctions are important,
because they have different implications for how to detect and defend against the
various behaviors.

We summarize the behavior types defined in our taxonomy in Table 1 and below.
Table 2 captures the relationships of specific observable tracking mechanisms to

	 ;login:  AUGUST 2012   ShareMeNot    5

these behavioral categories. In order to fall into a particular behavior category, the
tracker must exhibit (at least) all of the properties indicated for that category in
Table 2. A single tracker may exhibit more than one of these behaviors.

u	 A (Analytics): The tracker serves as a third-party analytics engine for sites. It
can only track users within sites.

u	 B (Vanilla): The tracker uses third-party storage that it can get and set only from
a third-party position to track users across sites.

u	 C (Forced): The cross-site tracker forces users to visit its domain directly (e.g.,
popup, redirect), placing it in a first-party position.

u	 D (Referred): The tracker relies on a B, C, or E tracker to leak unique identifiers
to it, rather than on its own client-side state, to track users across sites.

u	 E (Personal): The cross-site tracker is visited by the user directly in other con-
texts.

In the remainder of this article, we focus in more detail on personal tracking
behavior.

Personal Trackers

Personal trackers are defined as those whose domains the user otherwise visits
intentionally (e.g., facebook.com). Many of these sites, primarily social network-
ing sites, expose social widgets such as the Facebook “Like” button, the Twitter
“Tweet” button, the Google “+1” button and others (see Figure 1). These widgets
can be included by Web sites to allow users logged in to these social networking
sites to Like, Tweet, or +1 the embedding Web page. These widgets allow the cor-
responding tracker to create a cross-site browsing profile of a user across any Web
sites that he or she visits that includes such a widget.

Figure 2: Personal tracking via social widgets. Social sites like Facebook, which users visit
directly in other circumstances allowing the site to (1) set a cookie identifying the user, expose
social widgets such as the “Like” button. When another Web site embeds such a button, the
request to Facebook to render the button (2-3) includes Facebook’s cookie. This allows Face-
book to track the user across any site that embeds such a button.

These buttons present a privacy risk for users because they track users even when
they choose not to click on any of the buttons. Like traditional third-party track-
ing content, simply loading a social widget provides the tracker with sufficient
information to create a cross-site browsing profile for the user. That is, cookies and
referrer information are included with requests to load the widget, with no user
interaction required.

Furthermore, because users are often logged into the Web sites that expose such
widgets (e.g., Facebook or Google), this tracking may not be anonymous. These

	6    ;login:  VOL. 37, NO. 4

trackers have the ability to link the cross-site browsing profiles they collect about
users with the personal information users have entered directly into their accounts
at those Web sites.

As an example, Figure 2 overviews the interaction between Facebook, a site
embedding a “Like” button, and the user’s browser. The requests made to facebook.
com to render this button allow Facebook to track the user across sites. Unlike
vanilla tracking behavior, Facebook sets its cookie from a first-party position when
the user voluntarily visits facebook.com. As a result, defenses like third-party
cookie blocking are ineffective against personal trackers. In the next section, we
explore the weaknesses of existing defenses available to users.

Existing Defenses Against Personal Trackers

We find that existing defenses against third-party Web tracking available to users
today are not well suited to defend against personal trackers. In particular, exist-
ing defenses either fail to prevent personal tracking behavior or disable desired
functionality (e.g., the user’s ability to “Like” a Web page and share it back to his or
her Facebook account).

Third-party cookie blocking is insufficient for personal trackers, for a number of
reasons. First, different browsers implement third-party cookie blocking with dif-
ferent degrees of strictness. While Firefox blocks third-party cookies from being
set as well as from being sent, most other browsers (including Chrome, Safari, and
Internet Explorer) only block the setting of third-party cookies. So, for example,
Facebook can set a first-party cookie when the user visits facebook.com; in brows-
ers other than Firefox, this cookie, once set, is available to Facebook from a third-
party position (when embedded on another page).

Figure 3: Prevalence of trackers on top 500 domains [8]. This graph shows the prevalence of
the top 20 trackers on the Alexa top 500 domains from our 2011 measurement study with no
defenses enabled. Compare to Figure 4, in which third-party cookies are blocked.

	 ;login:  AUGUST 2012   ShareMeNot    7

Figure 4: Prevalence of trackers on top 500 domains with third-party cookies blocked [8].
When third-party cookies are blocked, personal trackers dominate the set of top 20 trackers.
Personal trackers are not affected by third-party cookie blocking, because users visit the track-
ers’ Web sites directly, allowing them to set cookies from a first-party position.

Thus, in most browsers, third-party cookie blocking protects users only from
trackers that are never visited directly. Figures 3 and 4 show data from our mea-
surement study described in [8]. Notice that third-party cookie blocking is effec-
tive for many cross-site trackers, but it is ineffective for personal trackers, leaving
them as the prominent remaining trackers when third-party cookies are blocked
(Figure 4).

Firefox’s strict policy provides better protection, but at the expense of functional-
ity like social widgets and buttons (thus prompting Mozilla to opt against making
this setting the default [7]).

The recently proposed Do Not Track header and legislation aim to give users a
standardized way to opt out of Web tracking via a browser setting that appends a
DNT=1 heading to outgoing requests. DNT has prompted a debate over the defini-
tion of tracking, as its conclusion determines to which parties the legislation will
apply. Facebook, for instance, argues that personal tracking should not be sub-
ject to Do Not Track because users already have an explicit relationship with the
tracker [3].

Users can attempt to minimize the size of the browsing profiles trackers can create
by frequently clearing the client-side state that contains unique identifiers. How-
ever, when users log into the Web sites of personal trackers, the new identifier is by
definition linked with the old identifier, as both are linked to the user’s account on
the tracker’s Web site.

Logging out of a social media site may not prevent the tracking of a user, or prevent
the linking of a user’s browsing profile while they are not logged in with their
browsing profile while logged in. Logging out of these sites often does not clear any
or all cookies containing unique identifiers [1], allowing them to continue to be
used for tracking.

	8    ;login:  VOL. 37, NO. 4

Several possible defenses exist in the form of browser extensions that allow
users to block trackers. These defenses, including NoScript (http://noscript.net),
Ghostery (http://www.ghostery.com), and Disconnect (http://disconnect.me)
(which targets personal trackers directly), work by simply blocking the tracker’s
scripts and their associated buttons from being loaded by the browser at all. This
approach effectively removes the buttons from the user’s Web experience entirely
and thus removes potentially desired functionality.

ShareMeNot

We introduce the ShareMeNot browser extension to protect users from tracking
by social widgets while still allowing these widgets to be used. The use of Share-
MeNot shrinks the profile that the supported personal trackers can create to only
those sites on which the user explicitly clicks on one of the buttons, at which point
the button provider must necessarily know the user’s identity in order to link the
“Like” or the “+1” action to the user’s profile. No other existing approach can shrink
the profile a personal tracker can create while also retaining the functionality of
the buttons, although concurrent work on the Priv3 Firefox add-on [2] adopts the
same basic approach; as of May 2012, Priv3 supports fewer widgets and, to our
knowledge, was not iteratively refined through measurement.

ShareMeNot supports social widgets from Facebook, Google, Twitter, AddThis,
YouTube, LinkedIn, Digg, and Stumbleupon. We chose to support these sites based
in part on our initial, pre-experimental perceptions of popular third-party track-
ers, and in part based on our experimental discovery of the top trackers.

ShareMeNot for Firefox

ShareMeNot for Firefox works by stripping cookies from third-party requests to
any of the supported personal trackers that are made during the loading of a social
widget. ShareMeNot strips cookies from two types of requests:

u	 Requests to a tracker’s domain that have another domain as the referrer. Most
requests made during the loading of a social widget fit this rule.

u	 Specific blacklisted requests, of referrer. This rule is necessary because of the
complexity of some of the social widgets, which include multiple chained
requests. For example, loading the Facebook “Like” button involves requests to
facebook.com with the referrer facebook.com, rather than the embedding site.
ShareMeNot’s blacklist covers these requests.

When ShareMeNot detects that a user has clicked on a button by recognizing the
characteristic request that follows a click on each supported widget, it allows the
cookies to be included with the request. In most cases, this allows the button click
to function as normal and as transparent to the user. The Facebook “Like” button
is more complex, however, and must first be reloaded in the logged-in state to be
active. Thus, a ShareMeNot user must click on this button twice: the first click
will reload the button with personalized content (e.g., “5 of your friends have liked
this”) and the second will actually “like” the page.

ShareMeNot for Firefox does not fully block requests to the trackers, instead only
removing cookies from the relevant requests. Thus, it may expose the user’s IP
address and other fingerprinting information that can be used for implicit track-
ing. It also does not block programmatic access to document.cookie, which would

	 ;login:  AUGUST 2012   ShareMeNot    9

allow personal trackers attempting to circumvent ShareMeNot to continue access-
ing cookie values. ShareMeNot for Chrome addresses these weaknesses.

ShareMeNot for Chrome

Unlike ShareMeNot for Firefox, ShareMeNot for Chrome blocks entire HTTP
requests to tracker buttons. The buttons are replaced with locally stored versions
of the buttons that offer the same functionality. ShareMeNot for Chrome works
in two phases: first, blocking HTTP requests to tracker buttons, then inserting
replacement buttons where the tracker buttons were to originally have been.

ShareMeNot leverages the newly introduced WebRequest API in Chrome to moni-
tor HTTP requests before they are sent by the browser. When a user visits a Web
page, the HTTP requests sent as the page is loaded are compared to a predefined
set of URL patterns that identify requests for tracker buttons; if a URL matches
a pattern, the entire HTTP request is blocked. In that case, ShareMeNot displays
an icon in the Chrome location bar notifying the user, who can choose to unblock
certain sites by clicking on the icon. To avoid impacting functionality when users
directly visit social media sites such as Facebook, ShareMeNot does not block
requests for top-level pages. Instead, it only blocks requests for resources that are
requested by the page that is loading, such as scripts, images, and other Web pages
embedded via iFrames.

In the second phase, ShareMeNot inserts replacement buttons. A Chrome exten-
sion content script is executed in the context of the current page after it has loaded.
As the original widgets were blocked from loading in the first phase, the content
script must search the page using a predefined set of CSS selectors for HTML tags
or other clues about where the buttons should have been. It replaces them with
iFrame elements that point to the replacement buttons stored within the exten-
sion. These replacement buttons either directly activate (for example, opening the
appropriate Twitter sharing page if the user clicks on the “Tweet” button) or load
the original button when clicked. For example, clicking on the replacement Face-
book “Like” button loads the actual “Like” button; as in ShareMeNot for Firefox,
the user must click twice to actually “like” the page. This is necessary because
some social media sites don’t have direct links for button actions; the user must use
that social media site’s real buttons.

By blocking all requests to tracker domains until users click on the replacement
buttons, ShareMeNot for Chrome prevents the leakage of the user’s IP address and
other fingerprinting information, as well as access to document.cookie. We hope
to update ShareMeNot for Firefox to match this more privacy-preserving design in
the future.

Effectiveness

We experimentally verified the effectiveness of ShareMeNot for Firefox (we expect
similar results for ShareMeNot for Chrome). As summarized in Table 3, Share-
MeNot dramatically reduces the presence of the personal trackers it supports to
date. ShareMeNot entirely eliminates tracking by most of these, including Twitter,
AddThis, YouTube, Digg, and Stumbleupon. While it does not entirely remove the
presence of Facebook and Google, it reduces their prevalence to 9 and 15 occur-
rences, respectively. In the Facebook case, this is due to the Facebook comments
widget, which triggers additional first-party requests (containing tracking infor-

	10    ;login:  VOL. 37, NO. 4

mation) not blacklisted by ShareMeNot; the Google cases appear mostly on other
Google domains (e.g., google.ca).

Tracker Without ShareMeNot With ShareMeNot

Facebook 154   9

Google 149 15

Twitter   93   0

AddThis   34   0

YouTube   30   0

LinkedIn   22   0

Digg    8   0

Stumbleupon    6   0

Table 3: Effectiveness of ShareMeNot. ShareMeNot drastically reduces the occurrences of
tracking behavior by the supported set of personal trackers.

To date, ShareMeNot does not fully support the complete set of social widgets
exposed by the supported trackers. Facebook, in particular, exposes a broader set
of “social plugins” that ShareMeNot renders nonfunctional (because it does not
properly activate them when users attempt to interact with them) and/or for which
it does not properly prevent tracking (because it has an incomplete request black-
list). We hope to address these issues in future versions.

As of May 2012, we have seen over 25,000 downloads from our own servers (http://
sharemenot.cs.washington.edu/), in addition to over 8,500 daily users as reported
by the official Mozilla add-on site (https://addons.mozilla.org/firefox/addon/
sharemenot/).

Conclusion

We have introduced ShareMeNot, a browser extension that protects users from
personal tracking by third-party social widgets while retaining the functionality
of these widgets should users wish to click on them. ShareMeNot can be down-
loaded from our Web site, http://sharemenot.cs.washington.edu.

Acknowledgments

We thank the readers and reviewers of earlier versions of our related NSDI paper
[8] for their valuable feedback throughout this work: Jon Crowcroft, Daniel Hal-
perin, Arvind Narayanan, and Charlie Reis. We thank Brandon Lucia for naming
ShareMeNot. This work was supported in part by NSF Awards CNS-0722000,
CNS-0846065, and CNS-0917341, an NSF Graduate Research Fellowship under
Grant No. DGE-0718124, an Alfred P. Sloan Research Fellowship, and a gift from
Google.

References

[1] N. Cubrilovic, “Logging Out of Facebook Is Not Enough,” 2011: http://nikcub
.appspot.com/posts/logging-out-of-facebook-is-not-enough.

	 ;login:  AUGUST 2012   ShareMeNot    11

[2] M. Dhawan, C. Kreibich, and N. Weaver, “The Priv3 Firefox Extension,”:
http://priv3.icsi.berkeley.edu/.

[3] Facebook, “Facebook’s Position on ‘Do Not Track,’” W3C Workshop on Web
Tracking and User Privacy, 2011: http://www.w3.org/2011/track-privacy/papers/
Facebook.html.

[4] C. Jackson, A. Bortz, D. Boneh, and J.C. Mitchell, “Protecting Browser State
from Web Privacy Attacks,” WWW 2006: http://www2006.org/programme/
item.php?id=3536.

[5] B. Krishnamurthy and C. Wills, “Privacy Diffusion on the Web: A Longitudinal
Perspective,” WWW, 2009.

[6] B. Krishnamurthy, K. Naryshkin, and C. Wills, “Privacy Leakage vs. Protection
Measures: The Growing Disconnect,” Web 2.0 Security and Privacy, 2011: http://
www.w2spconf.com/2011/papers/privacyVsProtection.pdf.

[7] Mozilla, “Bug 417800 Revert to Not Blocking Third-Party Cookies,” 2008:
https://bugzilla.mozilla.org/show_bug.cgi?id=417800.

[8] F. Roesner, T. Kohno, and D. Wetherall, “Detecting and Defending against
Third-Party Tracking on the Web,” NSDI ’12.

[9] T.-F. Yen, Y. Xie, F. Yu, R.P. Yu, and M. Abadi, “Host Fingerprinting and Track-
ing on the Web: Privacy and Security Implications,” NDSS 2012.

