
	 ;login:  JUNE 2012     15

In early 2009, recognizing the growing importance of cloud storage, and build-
ing on top of the earlier XAM object storage standard [1], the Storage Networking
Industry Association (SNIA) [2] started a new technical working group with the
primary goal of creating an industry standard for cloud storage. The result was
the Cloud Data Management Interface (CDMI) [3], which was released as a formal
industry standard in 2011 and is currently in the process of becoming an ISO/IEC
standard.

The creation of the CDMI standard has been a collaborative effort, with contribu-
tions from over a hundred storage vendors, end users, and university researchers.
All of the major enterprise storage vendors contributed to the standard, including
Dell, Cisco, EMC, HP, Hitachi Data Systems, Huawei, IBM, Intel, LSI, NetApp,
Oracle, Symantec, and VMware [4]. This represents a unique cross-industry
endorsement of cloud storage, and the results are clearly visible in the breadth of
use cases that CDMI is able to address.

In the year following the initial publication of CDMI, the SNIA has published an
errata release of the standard and held four plugfests to demonstrate interoper-
ability and conformance of open source, research, and commercial implementa-
tions. In the coming year, additional milestones will be reached, with major storage
vendors bringing CDMI-compatible systems to market, and work ongoing to add
CDMI to open source platforms, including OpenStack [5].

Design Principles

The following principles guided the design of the CDMI protocol:

u	 Complementary—A key design principle is that CDMI is designed to comple-
ment, not replace, existing NAS, SAN, and object protocols. Traditional file
systems and LUNs can be managed out-of-band using CDMI, in conjunction
with access via NAS and SAN protocols. CDMI can also be used as a self-service
management and/or access protocol alongside other object protocols, such as
OpenStack’s Swift. CDMI adopts many best-practice designs from existing pro-
tocols, such as NFSv4 ACLs, XAM globally unique identifiers, RESTful HTTP,
and JSON structured metadata. Furthermore, as a protocol specification, CDMI
places minimal restrictions on how servers are implemented, allowing it to be
easily added to existing file, object, and cloud servers.

u	 Simple—In order to foster adoption and reduce the cost required to implement
CDMI, the protocol is designed to be as simple as possible. By building on top

An Introduction to CDMI
D A V I D S L I K

David Slik is the Technical

Director for Object Storage

at NetApp and is a co-chair

of the SNIA Cloud Storage

Technical Working Group. He participated in

the creation of the XAM and CDMI standards

and has architected and developed large-scale

distributed object storage systems deployed

worldwide as a key component of mission-

critical enterprise applications.

dslik@netapp.com

	16    ;login:  VOL. 37, NO. 3

of HTTP, standard libraries and language constructs can be used, reducing the
need for cloud libraries and allowing direct access by JavaScript browser-based
clients. Using standard HTTP authentication and security mechanisms avoids
complex header calculations. And providing the ability to start simple and add
complexity only when needed reduces the learning curve and simplifies client
code. Storing and retrieving your first CDMI object is as easy as:

demo$ curl -X PUT -d ‘Hello CDMI World’ -k http://127.0.0.1:18080/hello.txt

demo$ curl -X GET -v -k http://127.0.0.1:18080/hello.txt

	 This simplicity makes CDMI very script-friendly, allowing it to be easily used to
create structured data repositories. At a recent coding challenge, a distributed
CDMI-based temperature monitoring and reporting system was developed in
hours, complete with a Web-based JavaScript front-end that retrieved data
directly from the repository.

u	 Extensible—Recognizing that cloud storage is still in its infancy and that
custom features are often required and desired, CDMI was designed from the
ground up to allow functionality to be added to the standard without breaking
client interoperability. CDMI allows clients to dynamically discover what fea-
tures a server implements, and it allows clients to discover profiles of capabilities
required to perform common use cases. The SNIA also has defined a process by
which emerging extensions can be documented, and once multi-vendor imple-
mentations have been demonstrated, they can then be incorporated into the next
version of the standard.

CDMI as a Storage Protocol

CDMI is an encapsulation protocol based around RESTful HTTP. Representa-
tional State Transfer, or REST, was initially described by Roy Fielding in Chapter
five of his PhD dissertation [6], and codifies a series of architectural patterns
for the creation of Web-scale distributed systems. The key principles of REST-
ful architectures include stateless communication, idempotent operations with
minimal side effects resulting from repeating a given transaction, and the use of
negotiated “representations” for entities that are transferred between clients and
servers.

CDMI defines five basic representations (content-types), described in RFC 6208,
which are transferred between a client and a server in HTTP Request Bodies and
HTTP Response Bodies, as illustrated in Figure 1.

While CDMI 1.0 defines JSON-based representations, the standard is structured
such that XML representations can easily be added.

CDMI also defines “Non-CDMI” interactions, where the value is directly trans-
ferred in the HTTP request and response body. This provides the ability for a
CDMI server to act as a standard Web server to unmodified Web clients and
browsers.

A Non-CDMI Request for a stored data object returns a standard HTTP response:

demo$ curl -X GET -v -k http://127.0.0.1:18080/hello.txt

* Connected to 127.0.0.1 (127.0.0.1) port 18080 (#0)

> GET /hello.txt HTTP/1.1

> User-Agent: curl/7.19.7 (universal-apple-darwin10.0) libcurl/7.19.7

OpenSSL/0.9.8r zlib/1.2.3

Figure 1: CDMI requests and responses are
embedded in HTTP sessions.

http://127.0.0.1:18080/hello.txt
http://127.0.0.1:18080/hello.txt
http://127.0.0.1:18080/hello.txt

	 ;login:  JUNE 2012   An Introduction to CDMI    17

> Host: 127.0.0.1:18080

> Accept: */*

>

< HTTP/1.1 200 OK

< Content-Type: text/plain

< Content-Length: 16

<

Hello CDMI World

* Closing connection #0

A CDMI Request for the same stored data object returns the CDMI JSON repre-
sentation, which includes additional information about the stored object:

demo$ curl -X GET -v --header ‘Accept: application/cdmi-object’--header

‘X-CDMI-Specification-Version: 1.0.1’ -k http://127.0.0.1:18080/hello.txt

* Connected to 127.0.0.1 (127.0.0.1) port 18080 (#0)

> GET /hello.txt HTTP/1.1

> User-Agent: curl/7.19.7 (universal-apple-darwin10.0) libcurl/7.19.7

OpenSSL/0.9.8r zlib/1.2.3

> Host: 127.0.0.1:18080

> Accept: */*

> Content-Type: application/cdmi-object

> X-CDMI-Specification-Version: 1.0.1

>

< HTTP/1.1 200 OK

< Content-Type: application/cdmi-object

< Content-Length: 1033

< Connection: close

< X-CDMI-Specification-Version: 1.0.1

<

{

 “objectType”: “application/cdmi-object”,

 “objectID”: “00007ED90012E02F466C7574746572736879”,

 “objectName”: “hello.txt”,

 “parentURI”: “/”,

 “parentID”: “00007ED90010C2A44D4C503A46694D21”,

 “domainURI”: “/cdmi_domains/”,

 “capabilitiesURI”: “/cdmi_capabilities/dataobject/”,

 “completionStatus”: “Complete”,

 “mimetype”: “text/plain”,

 “metadata”: {

 “cdmi_ctime”: “2012-03-20T18:53:46.238543”,

 “cdmi_mtime”: “2012-03-20T18:53:46.238543”,

 “cdmi_mcount”: “1”,

 “cdmi_owner”: “root”,

 “cdmi_group”: “root”,

 “cdmi_acl”: [

 {

 “identifier”: “OWNER@”,

 “acetype”: “ALLOW”,

 “aceflags”: “OBJECT_INHERIT, CONTAINER_INHERIT, INHERITED”,

 “acemask”: “ALL_PERMS”

http://127.0.0.1:18080/hello.txt

	18    ;login:  VOL. 37, NO. 3

 },

 {

 “identifier”: “AUTHENTICATED@”,

 “acetype”: “ALLOW”,

 “aceflags”: “OBJECT_INHERIT, CONTAINER_INHERIT, INHERITED”,

 “acemask”: “READ”

 }

],

 “cdmi_size”: “16”

 },

 “valuerange”: “0-15”,

 “valuetransferencoding”: “utf-8”,

 “value”: “Hello CDMI World”

}

* Closing connection #0

In the above data object retrieval example, the meaning of the JSON fields in the
HTTP response body is listed in Table 1.

JSON Field Description

objectType
Indicates the type of object described in the JSON
body. CDMI mimetypes are defined in RFC 6208.

objectID
Every CDMI object has a globally unique identifier
that remains constant over the life of the object.

objectName
The name of the object. Present only if the object is
stored in a container.

parentURI
The URI of the container where the object is stored.
Present only if the object is stored in a container.

parentID
The object ID of the parent container when stored in a
container.

domainURI
The URI of a domain object corresponding to the
administrative domain that owns the object.

capabilitiesURI
The URI to a capabilities object describing what can be
done to the object.

completionStatus
Indicates whether the object is complete or is in the
process of being created. This is used for long-running
operations.

mimetype Indicates the mimetype of the value of the data object.

metadata

System and user-provided metadata, in JSON format.
Examples of metadata include system properties such
as creation time, size, owner, ACLs. Additional user-
specified metadata is also stored.

	 ;login:  JUNE 2012   An Introduction to CDMI    19

valuerange Indicates the byte range returned in the value field.

valuetransferencoding
Indicates the encoding of the value field. CDMI
supports both UTF-8 and base64 encodings.

value The data stored in the object.

Table 1: JSON fields returned in an example CDMI Data Object retrieval

Each CDMI object type defines different JSON fields that, in turn, define how
objects are set and retrieved, with data objects defined in clause 8, containers
defined in clause 9, domains defined in clause 10, queues defined in clause 11, and
capabilities defined in clause 12.

Example Client Use Cases

To provide a real-world example, let us suppose that we have been tasked with
creating a distributed temperature monitoring system. Our requirements are to
sample the temperature of the processor of each of our servers, storing second
granular samples every minute to a repository, and providing a Web-based front-
end allowing users to visualize temperature across the datacenter.

Using CDMI, a small daemon would be written that runs on each server. This
daemon collects 60 samples of data aligned to a minute, and stores it as a CDMI
object, including user metadata for the start time, end time, server name, system
load average, and processor type.

A JavaScript-based Web page is also served from the CDMI server. When
accessed, the JavaScript program is run within the browser and performs a CDMI
query based on the user metadata stored in the objects. For example, if a user
wishes to see temperature for a given time range, the metadata is used to return
only the temperature values within those time ranges. Various visualizations are
then generated based on the temperature values returned in the query results.

A second example is a scalable cloud-based OCR system. Multiple scanning work-
stations scan documents and store them as a data objects. Once scanned, the object
ID for each data object is enqueued into a CDMI queue object.

Multiple OCR engines are then instantiated within one or more compute clouds,
with the number of instances dynamically varying based on the current size of the
CDMI queue. Each OCR engine checks out a scan from the queue, performs OCR
processing, and generates a new data object containing a PDF. Based on notifica-
tions of the creation of these PDFs, email notifications are then sent to the origina-
tor of the scan, or the PDF shows up in the user’s home directory.

CDMI Functionality

The following sections provide a survey of the functionality defined by the CDMI
standard. To learn more, additional details and examples can be found in the CDMI
standard document [3].

Client-to-Cloud Data Transfer

The first area of scope for the CDMI standard is providing standardized methods
for clients to exchange data for storage in clouds.

	20    ;login:  VOL. 37, NO. 3

C A PA B I L I T I E S DI S C O V E R Y

The CDMI standard mandates that every CDMI server shall provide the abil-
ity for clients to discover what optional parts of the standard are implemented
in a given server. As the CDMI standard addresses many different cloud-related
use cases, allowing an implementer to select the subset of CDMI’s functionality
specific to their target applications avoids imposing additional development costs
for unneeded functionality. For example, a read-only cloud service is free to only
implement functionality related to retrieval of stored data, whereas a cloud using
CDMI to manage block storage LUNs would only need to implement containers
and the ability to define exports.

Clients discover which parts of the CDMI standard are implemented by inspecting
published “capabilities.” Profiles are also defined to allow clients to determine if
logical sets of related capabilities are implemented.

D ATA O B J E C T S

CDMI data objects are similar to files, and store a value along with metadata. Data
objects can be accessed by ID and/or name and support partial retrievals and
updates.

C O N TA I N E R S

CDMI container objects are similar to directories and contain named children that
can be listed, along with metadata. Containers can be accessed by ID and/or name
and support partial listing of children. Traditional hierarchies can be created
using sub-containers.

Q U E U E S

CDMI queue objects are similar to data objects, where multiple values can be
stored in a first-in/first-out manner. Queues are typically used to provide per-
sistent inter-process communication structures between distributed programs
running in the cloud, and are also used as a foundation for advanced CDMI func-
tionality such as query and notification.

N O T I F I C AT I O N

CDMI allows clients to request that when stored objects are created, retrieved,
updated, or deleted, notifications of these changes are enqueued into a client-cre-
ated CDMI queue. Clients can specify the characteristics of the objects for which
notifications are generated, based on metadata matching criteria, and can specify
which events are of interest and what information is to be returned in each gener-
ated notification. Notifications allow powerful workflows to be created, where
loosely coupled programs can react to events in the cloud, such as performing
transcoding, format conversion, sending notifications, and synchronizing between
multiple storage systems.

Q U E R Y

CDMI allows clients to perform a query to find all stored objects that match a set
of client-specified metadata matching criteria. Clients can specify which objects
are included in the query results and what information from each object is to be
included for each query result found. Query allows clients to quickly locate stored

	 ;login:  JUNE 2012   An Introduction to CDMI    21

objects, which can be used for further processing or displayed as results to end
users.

A C C E S S C O N T R O L

Access to CDMI objects is controlled by ACLs, which define the visibility, read,
write, and deletion privileges. The mapping of client credentials to the ACL
principal is managed via CDMI domains, which allows content administered by
different organizations to co-exist within a single namespace.

Client-to-Cloud Management

The second area of scope for the CDMI standard is providing standardized meth-
ods for clients to manage data stored in clouds.

A D M I N I S T R AT I V E D O M A I N S

CDMI introduces the concept of Cloud Domains, which permit clients to manage
credential to identity mapping (think nsswitch for the cloud) and provide account-
ing and summary usage information. Domains are hierarchical, which permits
tenant and subtenant models, along with delegated administration. Every stored
object belongs to a single domain, which controls how the object is accessed and
determines who has administrative control over the object.

D ATA S Y S T E M M E TA D ATA

In order to provide a channel that enables clients to express the data services they
desire for content stored in the cloud and to give cloud storage system feedback to a
client indicating which services are being offered, CDMI introduces a specialized
type of metadata known as Data System Metadata (DSM). Instead of providing
low-level details about storage, such as RAID level, DSM is expressed in terms of
service level objectives, such as desired throughput, latency, and protection.

A client specifies the desired DSM characteristics on individual objects or on con-
tainers of objects, which then propagate their DSM to all child containers and data
objects. This provides hints about how data should be stored internally within the
cloud, allowing a cloud to optimize its internal operations and to charge based on
services requested and thus delivered.

The cloud can then create corresponding DSM feedback items, known as “_pro-
vided” metadata items, that indicate to a client which actual service the client is
receiving. For example, if a client requests three-way replication by setting the
“cdmi_data_redundancy” DSM to the value “3”, but the system can only provide
two-way replication, the “cdmi_data_redundancy_provided” DSM would have the
value “2”.

A complete list of standardized DSM items can be found in clause 16.4 of the CDMI
standard.

R E T E N T I O N

CDMI defines a series of DSM that allow restrictions to be placed on stored objects
for compliance, eDiscovery, and regulatory purposes. Objects can be placed under
retention, meaning they cannot be altered or deleted; can be placed under legal hold

	22    ;login:  VOL. 37, NO. 3

(preventing deletion or modification); and can be automatically deleted when they
are no longer under retention periods or any holds.

S N A P S H O T S

CDMI allows clients to trigger the creation of snapshots on a container-based
granularity. Snapshots can be accessed through the CDMI interface, and provide
read-only access.

E X P O R T S

DMI defines the ability to export CDMI containers via standard NAS or SAN
protocols. The same approach can be extended to export CDMI namespaces via
other cloud protocols, or export queues via other queuing protocols such as AMQP
[7]. When combined with cloud computing standards such as OCCI [8] and CIMI
[9], CDMI can provide full storage management services for both traditional block
and file services accessed by cloud computing resources.

L O G G I N G

CDMI defines a standardized queue-based mechanism by which clients can
receive cloud logging and audit data. This is especially important when a cloud acts
as a proxy or broker and logging data must be aggregated or translated. The CDMI
standard does not define the contents of log messages originating from clouds.

Cloud-to-Cloud Interactions

The third and final area of scope for the CDMI standard is providing standardized
methods for clouds to transfer data with other clouds, both as a result of client
requests and automatically.

G L O B A L LY U N I Q U E I D E N T I F I E R S

Every CDMI object has a globally unique identifier that remains constant for the
life of the object, even as objects are moved or replicated across systems provided
by different vendors. This enables location-independent access and allows content
to be migrated and replicated without requiring updates to the client’s knowledge
about how to access the stored data, as the identifier remains constant.

S E R I A L I Z AT I O N/ D E S E R I A L I Z AT I O N

CDMI objects can be serialized into a JSON format that can be used to
transport objects and their metadata between systems. This provides a portable
representation for backup and restore, as well as cloud-to-cloud transfer, even if it
entails shipping hard drives or tapes storing the data.

C L O U D -T O - C L O U D D ATA M O V E M E N T

CDMI defines primitives that allow a client to request that a new object be created
from an existing object in the same or a different cloud. This allows the destination
cloud to retrieve the object directly from the source cloud (using credentials from
the CDMI domain, or distributed authentication systems such as OAuth), avoiding
the need to transfer the data to and from the client. This also enables clouds to
provide transparent proxy and broker functions, while still allowing client access
to the underlying clouds themselves.

	 ;login:  JUNE 2012   An Introduction to CDMI    23

A U T H E N T I C AT I O N D E L E G AT I O N

CDMI allows resolution of user credentials and mapping to ACL principals to be
delegated, allowing CDMI systems to be easily interfaced both with local identity
management systems such as AD and LDAP and with emerging federated identity
systems.

Future Directions

The SNIA Cloud Technical Working Group encourages interested parties to join
the group, participate in plugfests, and submit extensions to the CDMI protocol.
Following review by the technical working group, extensions are published for
public review. Once two interoperable implementations of an extension are demon-
strated at a plugfest, the extension can then be voted on for incorporation into the
next version of the CDMI standard.

CDMI extensions currently under public review can be found at the SNIA Web site
[10].

References

[1] XAM standard: http://snia.org/forums/xam/technology/specs.

[2] Storage Networking Industry Association: http://www.snia.org/.

[3] CDMI standard: http://snia.org/sites/default/files/CDMI_SNIA_Architecture
_v1.0.1.pdf.

[4] Cloud Storage Initiative member companies: http://www.snia.org/forums/csi.

[5] CDMI submission to Swift: https://blueprints.launchpad.net/swift/+spec/
cdmi.

[6] REST architecture style: http://www.ics.uci.edu/~fielding/pubs/dissertation/
rest_arch_style.htm.

[7] Advanced Message Queuing Protocol: http://www.amqp.org/.

[8] OCCI standard: http://occi-wg.org/about/specification/.

[9] CIMI standard: http://dmtf.org/sites/default/files/standards/documents/
DSP0263_1.0.0c.pdf.

[10] Draft CDMI extensions: http://snia.org/tech_activities/publicreview/cdmi.

