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For a decade, the Ceph distributed file system followed the conventional 
wisdom of building its storage back end on top of local file systems. 
The experience with different file systems showed that this approach 

always leaves significant performance on the table while incurring signifi-
cant accidental complexity [2]. Therefore, the Ceph team embarked on an 
ambitious project to build BlueStore, a new back end designed to run directly 
on raw storage devices. Somewhat surprisingly, BlueStore matured in less 
than two years. It outperformed back ends built atop file systems and got 
adopted by 70% of users in production.

Figure 1 shows the high-level architecture of Ceph. At the core of Ceph is the Reliable Auto-
nomic Distributed Object Store (RADOS) service. RADOS scales to thousands of Object 
Storage Devices (OSDs), providing self-healing, self-managing, replicated object storage with 
strong consistency. Ceph’s librados library provides a transactional interface for manipu-
lating objects and object collections in RADOS. Out of the box, Ceph provides three services 
implemented using librados: the RADOS Gateway (RGW), an object storage similar to 
Amazon S3; the RADOS Block Device (RBD), a virtual block device similar to Amazon EBS; 
and CephFS, a distributed file system with POSIX semantics.

Objects in RADOS are stored in logical partitions called pools. Pools can be configured to 
provide redundancy for the contained objects either through replication or erasure coding. 
Within a pool, the objects are sharded among aggregation units called placement groups 
(PGs). Depending on the replication factor, PGs are mapped to multiple OSDs using CRUSH, 
a pseudo-random data distribution algorithm. Clients also use CRUSH to determine the OSD 
that should contain a given object, obviating the need for a centralized metadata service. PGs 
and CRUSH form an indirection layer between clients and OSDs that allows the migration of 
objects between OSDs to adapt to cluster or workload changes.

In every node of a RADOS cluster, there is a separate Ceph OSD daemon per local storage 
device. Each OSD processes I/O requests from librados clients and cooperates with peer 
OSDs to replicate or erasure code updates, migrate data, or recover from failures. Data is 
persisted to the local device via the internal ObjectStore interface, which is the storage 
back-end interface in Ceph. ObjectStore provides abstractions for objects, object collections, 
a set of primitives to inspect data, and transactions to update data. A transaction combines 
an arbitrary number of primitives operating on objects and object collections into an atomic 
operation.

The FileStore storage back end is an ObjectStore implementation on top of a local file system. 
In FileStore, an object collection is mapped to a directory and object data is stored in a file. 
Throughout the years, FileStore was ported to run on top of Btrfs, XFS, ext4, and ZFS, with 
FileStore on XFS becoming the de facto back end because it scaled better and had faster 
metadata performance [7].
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BlueStore: A Clean-Slate Approach
The BlueStore storage back end is a new implementation of ObjectStore designed from 
scratch to run on raw block devices, aiming to solve the challenges [2] faced by FileStore. 
Some of the main goals of BlueStore were:

1.	 Fast metadata operations 

2.	 No consistency overhead for object writes 

3.	 Copy-on-write clone operation 

4.	 No journaling double-writes 

5.	 Optimized I/O patterns for HDD and SSD 

BlueStore achieved all of these goals within just two years and became the default storage 
back end in Ceph. Two factors played a key role in why BlueStore matured so quickly com-
pared to general-purpose POSIX file systems that take a decade to mature. First, BlueStore 
implements a small, special-purpose interface and not a complete POSIX I/O specification. 
Second, BlueStore is implemented in userspace, which allows it to leverage well-tested and 
high-performance third-party libraries. Finally, BlueStore’s control of the I/O stack enables 
additional features (see “Features Enabled by BlueStore,” below).

The high-level architecture of BlueStore is shown in Figure 2. A space allocator within 
BlueStore determines the location of new data, which is asynchronously written to raw disk 
using direct I/O. Internal metadata and user object metadata is stored in RocksDB. The 
BlueStore space allocator and BlueFS share the disk and periodically communicate to bal-
ance free space. The remainder of this section describes metadata and data management in 
BlueStore. 

BlueFS and RocksDB
BlueStore achieves its first goal, fast metadata operations, by storing metadata in RocksDB. 
BlueStore achieves its second goal of no consistency overhead with two changes. First, it 
writes data directly to raw disk, resulting in one cache flush [10] for data write, as opposed to 
having two cache flushes when writing data to a file on top of a journaling file system. Sec-
ond, it changes RocksDB to reuse write-ahead log files as a circular buffer, resulting in one 
cache flush for metadata write—a feature that was upstreamed to the mainline RocksDB.

RocksDB itself runs on BlueFS, a minimal file system designed specifically for RocksDB that 
runs on a raw storage device. RocksDB abstracts out its requirements from the underlying 
file system in the Env interface. BlueFS is an implementation of this interface in the form 
of a userspace, extent-based, and journaling file system. It implements basic system calls 
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Figure 1: High-level depiction of Ceph’s architecture. 
A single pool with 3× replication is shown. There-
fore, each placement group (PG) is replicated on 
three OSDs.

Figure 2: The high-level architecture of BlueStore. 
Data is written to the raw storage device using 
direct I/O. Metadata is written to RocksDB running 
on top of BlueFS. BlueFS is a userspace library file 
system designed for RocksDB, and it also runs on 
top of the raw storage device.
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required by RocksDB, such as open, mkdir, and pwrite. BlueFS 
maintains an inode for each file that includes the list of extents 
allocated to the file. The superblock is stored at a fixed offset 
and contains an inode for the journal. The journal has the only 
copy of all file-system metadata, which is loaded into memory 
at mount time. On every metadata operation, such as directory 
creation, file creation, and extent allocation, the journal and 
in-memory metadata are updated. The journal is not stored at a 
fixed location; its extents are interleaved with other file extents. 
The journal is compacted and written to a new location when it 
reaches a preconfigured size, and the new location is recorded in 
the superblock. These design decisions work because large files 
and periodic compactions limit the volume of metadata at any 
point in time.

Metadata Organization. BlueStore keeps multiple namespaces 
in RocksDB, each storing a different type of metadata. For example, 
object information is stored in the O namespace (that is, RocksDB 
keys start with O and their values represent object metadata), 
block allocation metadata is stored in the B namespace, and 
collection metadata is stored in the C namespace. Each collec-
tion maps to a PG and represents a shard of a pool’s namespace. 
The collection name includes the pool identifier and a prefix 
shared by the collection’s object names. For example, a key-value 
pair C12.e4-6 identifies a collection in pool 12 with objects that 
have hash values starting with the six significant bits of e4. 
Hence, the object O12.e532 is a member, whereas the object O12.
e832 is not. Such organization of metadata allows a collection of 
millions of objects to be split into multiple collections merely by 
changing the number of significant bits. This collection splitting 
operation is necessary to rebalance data across OSDs when, for 
example, a new OSD is added to the cluster to increase the aggre- 
gate capacity or an existing OSD is removed from the cluster due 
to a malfunction. With FileStore, collection splitting was an 
expensive operation performed by renaming many directories in 
a deeply nested hierarchy.

Data Path and Space Allocation
BlueStore is a copy-on-write back end. For incoming writes 
larger than a minimum allocation size (64 KiB for HDDs, 16 KiB 
for SSDs), the data is written to a newly allocated extent. Once 
the data is persisted, the corresponding metadata is inserted to 
RocksDB. This allows BlueStore to provide an efficient clone 
operation. A clone operation simply increments the reference 
count of dependent extents, and writes are directed to new 
extents. It also allows BlueStore to avoid journal double-
writes for object writes and partial overwrites that are larger 
than the minimum allocation size.

For writes smaller than the minimum allocation size, both 
data and metadata are first inserted to RocksDB as promises 
of future I/O and then asynchronously written to disk after the 
transaction commits. This deferred write mechanism has two 
purposes. First, it batches small writes to increase efficiency, 
because new data writes require two I/O operations whereas 
an insert to RocksDB requires one. Second, it optimizes I/O 
based on the device type: 64 KiB (or smaller) overwrites of a 
large object on an HDD are performed asynchronously in place 
to avoid seeks during reads, whereas in-place overwrites only 
happen for I/O sizes less than 16 KiB on SSDs.

Space Allocation. BlueStore allocates space using two modules: 
the FreeList manager and the Allocator. The FreeList manager 
is responsible for a persistent representation of the parts of the 
disk currently in use. Like all metadata in BlueStore, this free 
list is also stored in RocksDB. The first implementation of the 
FreeList manager represented in-use regions as key-value pairs 
with offset and length. The disadvantage of this approach was 
that the transactions had to be serialized: the old key had to be 
deleted first before inserting a new key to avoid an inconsistent 
free list. The second implementation is bitmap-based. Alloca-
tion and deallocation operations use RocksDB’s merge operator 
to flip bits corresponding to the affected blocks, eliminating the 
ordering constraint. The merge operator in RocksDB performs 
a deferred atomic read-modify-write operation that does not 
change the semantics and avoids the cost of point queries [8].

The Allocator is responsible for allocating space for the new 
data. It keeps a copy of the free list in memory and informs the 
FreeList manager as allocations are made. The first implemen-
tation of Allocator was extent-based, dividing the free extents 
into power-of-two-sized bins. This design was susceptible to 
fragmentation as disk usage increased. The second implementa-
tion uses a hierarchy of indexes layered on top of a single-bit-per-
block representation to track whole regions of blocks. Large and 
small extents can be efficiently found by querying the higher 
and lower indexes, respectively. This implementation has a fixed 
memory usage of 35 MiB per terabyte of capacity.

Cache. Since BlueStore is implemented in userspace and 
accesses the disk using direct I/O, it cannot leverage the OS  
page cache. As a result, BlueStore implements its own write-
through cache in userspace, using the scan-resistant 2Q algo-
rithm. The cache implementation is sharded for parallelism. It 
uses an identical sharding scheme to Ceph OSDs, which shard 
requests to collections across multiple cores. This avoids false 
sharing, so that the same CPU context processing a given client 
request touches the corresponding 2Q data structures.
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Features Enabled by BlueStore
In this section we describe new features implemented in BlueStore. 
These features were previously lacking because implementing 
them efficiently requires full control of the I/O stack.

Space-Efficient Checksums
Ceph scrubs metadata every day and data every week. Even with 
scrubbing, however, if the data is inconsistent across replicas it 
is hard to be sure which copy is corrupt. Therefore, checksums 
are indispensable for distributed storage systems that regularly 
deal with petabytes of data, where bit f lips are almost certain  
to occur.

Most local file systems do not support checksums. When they 
do, like Btrfs, the checksum is computed over 4 KiB blocks to 
make block overwrites possible. For 10 TiB of data, storing 32-bit 
checksums of 4 KiB blocks results in 10 GiB of checksum meta-
data, which makes it difficult to cache checksums in memory for 
fast verification.

On the other hand, most of the data stored in distributed file 
systems is read-only and can be checksummed at a larger gran
ularity. BlueStore computes a checksum for every write and 
verifies the checksum on every read. While multiple checksum 
algorithms are supported, crc32c is used by default because it is 
well optimized on both x86 and ARM architectures, and it is suf
ficient for detecting random bit errors. With full control of the 
I/O stack, BlueStore can choose the checksum block size based 
on the I/O hints. For example, if the hints indicate that writes are 
from the S3-compatible RGW service, then the objects are read-
only and the checksum can be computed over 128 KiB blocks, 
and if the hints indicate that objects are to be compressed, then a 
checksum can be computed after the compression, significantly 
reducing the total size of checksum metadata.

Overwrite of Erasure-Coded Data
Ceph has supported erasure-coded (EC) pools through the 
FileStore back end since 2014. However, until BlueStore, EC 
pools only supported object appends and deletions—overwrites 
were slow enough to make the system unusable. As a result, the 
use of EC pools was limited to RGW; for RBD and CephFS only 
replicated pools were used.

To avoid the “RAID write hole” problem, where crashing during 
a multi-step data update can leave the system in an inconsistent 
state, Ceph performs overwrites in EC pools using two-phase 
commit. First, all OSDs that store a chunk of the EC object make 
a copy of the chunk so that they can roll back in case of failure. 
After all of the OSDs receive the new content and overwrite their 
chunks, the old copies are discarded. With FileStore on XFS, the 
first phase is expensive because each OSD performs a physical 
copy of its chunk. BlueStore, however, makes overwrites practical 
because its copy-on-write mechanism avoids full physical copies.

Transparent Compression
Transparent compression is crucial for scale-out distributed 
file systems because 3× replication increases storage costs. 
BlueStore implements transparent compression where written 
data is automatically compressed before being stored.

Getting the full benefit of compression requires compressing 
over large 128 KiB chunks, and compression works well when 
objects are written in their entirety. For partial overwrites of a 
compressed object, BlueStore places the new data in a separate 
location and updates metadata to point to it. When the com-
pressed object gets too fragmented due to multiple overwrites, 
BlueStore compacts the object by reading and rewriting. In 
practice, however, BlueStore uses hints and simple heuristics 
to compress only those objects that are unlikely to experience 
many overwrites.

Exploring New Interfaces
Despite multiple attempts [5, 9], local file systems are unable 
to leverage the capacity benefits of SMR drives due to their 
backward-incompatible interface, and it is unlikely that they 
will ever do so efficiently [6]. Supporting these denser drives, 
however, is important for scale-out distributed file systems 
because it lowers storage costs.

Unconstrained by the block-based designs of local file systems, 
BlueStore has the freedom of exploring novel interfaces and data 
layouts. This has recently enabled porting RocksDB and BlueFS 
to run on host-managed SMR drives, and an effort is underway 
to store object data on such drives next [1]. In addition, the Ceph 
community is exploring a new back end that targets a combina-
tion of persistent memory and emerging NVMe devices with 
novel interfaces, such as ZNS SSDs [3].

Evaluation
This section compares the performance of a Ceph cluster using 
FileStore, a back end built on a local file system, and BlueStore, 
a back end using the storage device directly. We compare the 
throughput of object writes to the RADOS distributed object 
storage.

We ran all experiments on a 16-node Ceph cluster connected 
with a Cisco Nexus 3264-Q 64-port QSFP+ 40GbE switch. Each 
node had a 16-core Intel E5-2698Bv3 Xeon 2GHz CPU, 64GiB 
RAM, 400GB Intel P3600 NVMe SSD, 4TB 7200RPM Seagate 
ST4000NM0023 HDD, and a Mellanox MCX314A-BCCT  
40GbE NIC. All nodes ran Linux kernel 4.15 on Ubuntu 18.04 
and the Luminous release (v12.2.11) of Ceph. We used the default 
Ceph configuration parameters and focused on write perfor-
mance improvements because most BlueStore optimizations 
affect writes.
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Figure 3 shows the throughput for different object sizes written 
with a queue depth of 128. At the steady state, the throughput on 
BlueStore is 50–100% greater than FileStore. The throughput 
improvement on BlueStore stems from avoiding double writes 
and consistency overhead.

Figure 4 shows the 95th and above percentile latencies of object 
writes to RADOS. BlueStore has an order of magnitude lower 
tail latency than FileStore. In addition, with BlueStore the tail 
latency increases with the object size, as expected, whereas with 
FileStore even small-sized object writes may have high tail 
latency, stemming from the lack of control over writes.

The read performance on BlueStore (not shown) is similar or 
better than on FileStore for I/O sizes larger than 128 KiB; for 
smaller I/O sizes, FileStore is better because of the kernel read-
ahead. BlueStore does not implement read-ahead on purpose. It 
is expected that the applications implemented on top of RADOS 
will perform their own read-ahead.

Conclusion
Distributed file system developers conventionally adopt local 
file systems as their storage back end. They then try to fit the 
general-purpose file system abstractions to their needs, incur-
ring significant accidental complexity [4]. At the core of this 
convention lies the belief that developing a storage back end 
from scratch is an arduous process, akin to developing a new 
file system that takes a decade to mature.

Our paper, relying on the Ceph team’s experience, showed this 
belief to be inaccurate. Furthermore, we found that developing 
a special-purpose, userspace storage back end from scratch 
(1) reclaimed the significant performance left on the table when 
building a back end on a general-purpose file system; (2) made it 
possible to adopt novel, backward-incompatible storage hard-
ware; and (3) enabled new features by gaining complete control 
of the I/O stack. We hope that this experience paper will initiate 
discussions among storage practitioners and researchers on 
fresh approaches to designing distributed file systems and their 
storage back ends.

Figure 3: Throughput of steady state object writes to RADOS on a 16-
node all-HDD cluster with different sizes using 128 threads. Compared 
to FileStore, the throughput is 50–100% greater on BlueStore and has a 
significantly lower variance.

Figure 4: 95th and above percentile latencies of object writes to RADOS 
on a 16-node all-HDD cluster with different sizes using 128 threads. 
BlueStore (top graph) has an order of magnitude lower tail latency than 
FileStore (bottom graph).
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