
6    S P R I N G 2020  VO L . 45 , N O. 1 	 www.usenix.org

SYSTEMSFile Systems Unfit as Distributed Storage
Back Ends
Lessons from 10 Years of Ceph Evolution

A B U T A L I B A G H A Y E V , S A G E W E I L , M I C H A E L K U C H N I K , M A R K N E L S O N ,
G R E G G A N G E R , A N D G E O R G E A M V R O S I A D I S

Abutalib Aghayev is a PhD stu-
dent in the Computer Science
Department at Carnegie Mellon
University. He has broad research
interests in computer systems,

including storage and file systems, distributed
systems, and operating systems. 
agayev@cs.cmu.edu

Sage Weil is the Lead Architect
and co-creator of the Ceph open
source distributed storage sys-
tem. Ceph was created to pro-
vide a stable, next generation

distributed storage system for Linux. Inktank
was co-founded by Sage in 2012 to support
enterprise Ceph users, and then acquired by
Red Hat in 2014. Today Sage continues to lead
the Ceph developer community and to help
shape Red Hat’s overall storage strategy. 
sweil@redhat.com

Michael Kuchnik is a PhD stu-
dent in the Computer Science
Department at Carnegie Mellon
University and a member of the
Parallel Data Lab. His research

interests are in the design and analysis of com-
puter systems, specifically those involving stor-
age, high performance computing, or machine
learning. Before coming to CMU, he earned his
BS in computer engineering from the Georgia
Institute of Technology. mkuchnik@cmu.edu

For a decade, the Ceph distributed file system followed the conventional
wisdom of building its storage back end on top of local file systems.
The experience with different file systems showed that this approach

always leaves significant performance on the table while incurring signifi-
cant accidental complexity [2]. Therefore, the Ceph team embarked on an
ambitious project to build BlueStore, a new back end designed to run directly
on raw storage devices. Somewhat surprisingly, BlueStore matured in less
than two years. It outperformed back ends built atop file systems and got
adopted by 70% of users in production.

Figure 1 shows the high-level architecture of Ceph. At the core of Ceph is the Reliable Auto-
nomic Distributed Object Store (RADOS) service. RADOS scales to thousands of Object
Storage Devices (OSDs), providing self-healing, self-managing, replicated object storage with
strong consistency. Ceph’s librados library provides a transactional interface for manipu-
lating objects and object collections in RADOS. Out of the box, Ceph provides three services
implemented using librados: the RADOS Gateway (RGW), an object storage similar to
Amazon S3; the RADOS Block Device (RBD), a virtual block device similar to Amazon EBS;
and CephFS, a distributed file system with POSIX semantics.

Objects in RADOS are stored in logical partitions called pools. Pools can be configured to
provide redundancy for the contained objects either through replication or erasure coding.
Within a pool, the objects are sharded among aggregation units called placement groups
(PGs). Depending on the replication factor, PGs are mapped to multiple OSDs using CRUSH,
a pseudo-random data distribution algorithm. Clients also use CRUSH to determine the OSD
that should contain a given object, obviating the need for a centralized metadata service. PGs
and CRUSH form an indirection layer between clients and OSDs that allows the migration of
objects between OSDs to adapt to cluster or workload changes.

In every node of a RADOS cluster, there is a separate Ceph OSD daemon per local storage
device. Each OSD processes I/O requests from librados clients and cooperates with peer
OSDs to replicate or erasure code updates, migrate data, or recover from failures. Data is
persisted to the local device via the internal ObjectStore interface, which is the storage
back-end interface in Ceph. ObjectStore provides abstractions for objects, object collections,
a set of primitives to inspect data, and transactions to update data. A transaction combines
an arbitrary number of primitives operating on objects and object collections into an atomic
operation.

The FileStore storage back end is an ObjectStore implementation on top of a local file system.
In FileStore, an object collection is mapped to a directory and object data is stored in a file.
Throughout the years, FileStore was ported to run on top of Btrfs, XFS, ext4, and ZFS, with
FileStore on XFS becoming the de facto back end because it scaled better and had faster
metadata performance [7].

www.usenix.org	   S P R I N G 2020  VO L . 45 , N O. 1  7

SYSTEMS
File Systems Unfit as Distributed Storage Back Ends: Lessons from 10 Years of Ceph Evolution

George Amvrosiadis is an
Assistant Research Profes-
sor of Electrical and Computer
Engineering at Carnegie Mel-
lon University and a member

of the Parallel Data Lab. His current research
focuses on distributed and cloud storage, new
storage technologies, high performance com-
puting, and storage for machine learning. His
team’s research has received an R&D100 Award
and was featured on WIRED, The Morning Paper,
and Hacker News. He co-teaches two graduate
courses on Storage Systems and Advanced
Cloud Computing attended by 100+ graduate
students each. gamvrosi@cmu.edu

BlueStore: A Clean-Slate Approach
The BlueStore storage back end is a new implementation of ObjectStore designed from
scratch to run on raw block devices, aiming to solve the challenges [2] faced by FileStore.
Some of the main goals of BlueStore were:

1.	 Fast metadata operations

2.	 No consistency overhead for object writes

3.	 Copy-on-write clone operation

4.	 No journaling double-writes

5.	 Optimized I/O patterns for HDD and SSD

BlueStore achieved all of these goals within just two years and became the default storage
back end in Ceph. Two factors played a key role in why BlueStore matured so quickly com-
pared to general-purpose POSIX file systems that take a decade to mature. First, BlueStore
implements a small, special-purpose interface and not a complete POSIX I/O specification.
Second, BlueStore is implemented in userspace, which allows it to leverage well-tested and
high-performance third-party libraries. Finally, BlueStore’s control of the I/O stack enables
additional features (see “Features Enabled by BlueStore,” below).

The high-level architecture of BlueStore is shown in Figure 2. A space allocator within
BlueStore determines the location of new data, which is asynchronously written to raw disk
using direct I/O. Internal metadata and user object metadata is stored in RocksDB. The
BlueStore space allocator and BlueFS share the disk and periodically communicate to bal-
ance free space. The remainder of this section describes metadata and data management in
BlueStore.

BlueFS and RocksDB
BlueStore achieves its first goal, fast metadata operations, by storing metadata in RocksDB.
BlueStore achieves its second goal of no consistency overhead with two changes. First, it
writes data directly to raw disk, resulting in one cache flush [10] for data write, as opposed to
having two cache flushes when writing data to a file on top of a journaling file system. Sec-
ond, it changes RocksDB to reuse write-ahead log files as a circular buffer, resulting in one
cache flush for metadata write—a feature that was upstreamed to the mainline RocksDB.

RocksDB itself runs on BlueFS, a minimal file system designed specifically for RocksDB that
runs on a raw storage device. RocksDB abstracts out its requirements from the underlying
file system in the Env interface. BlueFS is an implementation of this interface in the form
of a userspace, extent-based, and journaling file system. It implements basic system calls

Mark Nelson joined the Ceph
team in January 2012 and has
12 years of experience in distrib-
uted systems, HPC, and bioin-
formatics. Mark works on Ceph

performance analysis and is the primary author
of the Ceph Benchmarking Toolkit. He runs the
weekly Ceph performance meeting and is cur-
rently focused on research and development of
Ceph’s next-generation object store. 
mnelson@redhat.com

Greg Ganger is the Jatras Pro-
fessor of Electrical and Computer
Engineering at Carnegie Mellon
University and Director of the
Parallel Data Lab (www.pdl.cmu

.edu). He has broad research interests, with
current projects exploring system support for
large-scale ML (Big Learning), resource man-
agement in cloud computing, and software
systems for heterogeneous storage clusters,
HPC storage, and NVM. His PhD in CS&E is
from the University of Michigan. 
ganger@ece.cmu.edu

Figure 1: High-level depiction of Ceph’s architecture.
A single pool with 3× replication is shown. There-
fore, each placement group (PG) is replicated on
three OSDs.

Figure 2: The high-level architecture of BlueStore.
Data is written to the raw storage device using
direct I/O. Metadata is written to RocksDB running
on top of BlueFS. BlueFS is a userspace library file
system designed for RocksDB, and it also runs on
top of the raw storage device.

8    S P R I N G 2020  VO L . 45 , N O. 1 	 www.usenix.org

SYSTEMS
File Systems Unfit as Distributed Storage Back Ends: Lessons from 10 Years of Ceph Evolution

required by RocksDB, such as open, mkdir, and pwrite. BlueFS
maintains an inode for each file that includes the list of extents
allocated to the file. The superblock is stored at a fixed offset
and contains an inode for the journal. The journal has the only
copy of all file-system metadata, which is loaded into memory
at mount time. On every metadata operation, such as directory
creation, file creation, and extent allocation, the journal and
in-memory metadata are updated. The journal is not stored at a
fixed location; its extents are interleaved with other file extents.
The journal is compacted and written to a new location when it
reaches a preconfigured size, and the new location is recorded in
the superblock. These design decisions work because large files
and periodic compactions limit the volume of metadata at any
point in time.

Metadata Organization. BlueStore keeps multiple namespaces
in RocksDB, each storing a different type of metadata. For example,
object information is stored in the O namespace (that is, RocksDB
keys start with O and their values represent object metadata),
block allocation metadata is stored in the B namespace, and
collection metadata is stored in the C namespace. Each collec-
tion maps to a PG and represents a shard of a pool’s namespace.
The collection name includes the pool identifier and a prefix
shared by the collection’s object names. For example, a key-value
pair C12.e4-6 identifies a collection in pool 12 with objects that
have hash values starting with the six significant bits of e4.
Hence, the object O12.e532 is a member, whereas the object O12.
e832 is not. Such organization of metadata allows a collection of
millions of objects to be split into multiple collections merely by
changing the number of significant bits. This collection splitting
operation is necessary to rebalance data across OSDs when, for
example, a new OSD is added to the cluster to increase the aggre-
gate capacity or an existing OSD is removed from the cluster due
to a malfunction. With FileStore, collection splitting was an
expensive operation performed by renaming many directories in
a deeply nested hierarchy.

Data Path and Space Allocation
BlueStore is a copy-on-write back end. For incoming writes
larger than a minimum allocation size (64 KiB for HDDs, 16 KiB
for SSDs), the data is written to a newly allocated extent. Once
the data is persisted, the corresponding metadata is inserted to
RocksDB. This allows BlueStore to provide an efficient clone
operation. A clone operation simply increments the reference
count of dependent extents, and writes are directed to new
extents. It also allows BlueStore to avoid journal double-
writes for object writes and partial overwrites that are larger
than the minimum allocation size.

For writes smaller than the minimum allocation size, both
data and metadata are first inserted to RocksDB as promises
of future I/O and then asynchronously written to disk after the
transaction commits. This deferred write mechanism has two
purposes. First, it batches small writes to increase efficiency,
because new data writes require two I/O operations whereas
an insert to RocksDB requires one. Second, it optimizes I/O
based on the device type: 64 KiB (or smaller) overwrites of a
large object on an HDD are performed asynchronously in place
to avoid seeks during reads, whereas in-place overwrites only
happen for I/O sizes less than 16 KiB on SSDs.

Space Allocation. BlueStore allocates space using two modules:
the FreeList manager and the Allocator. The FreeList manager
is responsible for a persistent representation of the parts of the
disk currently in use. Like all metadata in BlueStore, this free
list is also stored in RocksDB. The first implementation of the
FreeList manager represented in-use regions as key-value pairs
with offset and length. The disadvantage of this approach was
that the transactions had to be serialized: the old key had to be
deleted first before inserting a new key to avoid an inconsistent
free list. The second implementation is bitmap-based. Alloca-
tion and deallocation operations use RocksDB’s merge operator
to flip bits corresponding to the affected blocks, eliminating the
ordering constraint. The merge operator in RocksDB performs
a deferred atomic read-modify-write operation that does not
change the semantics and avoids the cost of point queries [8].

The Allocator is responsible for allocating space for the new
data. It keeps a copy of the free list in memory and informs the
FreeList manager as allocations are made. The first implemen-
tation of Allocator was extent-based, dividing the free extents
into power-of-two-sized bins. This design was susceptible to
fragmentation as disk usage increased. The second implementa-
tion uses a hierarchy of indexes layered on top of a single-bit-per-
block representation to track whole regions of blocks. Large and
small extents can be efficiently found by querying the higher
and lower indexes, respectively. This implementation has a fixed
memory usage of 35 MiB per terabyte of capacity.

Cache. Since BlueStore is implemented in userspace and
accesses the disk using direct I/O, it cannot leverage the OS
page cache. As a result, BlueStore implements its own write-
through cache in userspace, using the scan-resistant 2Q algo-
rithm. The cache implementation is sharded for parallelism. It
uses an identical sharding scheme to Ceph OSDs, which shard
requests to collections across multiple cores. This avoids false
sharing, so that the same CPU context processing a given client
request touches the corresponding 2Q data structures.

www.usenix.org	   S P R I N G 2020  VO L . 45 , N O. 1  9

SYSTEMS
File Systems Unfit as Distributed Storage Back Ends: Lessons from 10 Years of Ceph Evolution

Features Enabled by BlueStore
In this section we describe new features implemented in BlueStore.
These features were previously lacking because implementing
them efficiently requires full control of the I/O stack.

Space-Efficient Checksums
Ceph scrubs metadata every day and data every week. Even with
scrubbing, however, if the data is inconsistent across replicas it
is hard to be sure which copy is corrupt. Therefore, checksums
are indispensable for distributed storage systems that regularly
deal with petabytes of data, where bit f lips are almost certain
to occur.

Most local file systems do not support checksums. When they
do, like Btrfs, the checksum is computed over 4 KiB blocks to
make block overwrites possible. For 10 TiB of data, storing 32-bit
checksums of 4 KiB blocks results in 10 GiB of checksum meta-
data, which makes it difficult to cache checksums in memory for
fast verification.

On the other hand, most of the data stored in distributed file
systems is read-only and can be checksummed at a larger gran
ularity. BlueStore computes a checksum for every write and
verifies the checksum on every read. While multiple checksum
algorithms are supported, crc32c is used by default because it is
well optimized on both x86 and ARM architectures, and it is suf
ficient for detecting random bit errors. With full control of the
I/O stack, BlueStore can choose the checksum block size based
on the I/O hints. For example, if the hints indicate that writes are
from the S3-compatible RGW service, then the objects are read-
only and the checksum can be computed over 128 KiB blocks,
and if the hints indicate that objects are to be compressed, then a
checksum can be computed after the compression, significantly
reducing the total size of checksum metadata.

Overwrite of Erasure-Coded Data
Ceph has supported erasure-coded (EC) pools through the
FileStore back end since 2014. However, until BlueStore, EC
pools only supported object appends and deletions—overwrites
were slow enough to make the system unusable. As a result, the
use of EC pools was limited to RGW; for RBD and CephFS only
replicated pools were used.

To avoid the “RAID write hole” problem, where crashing during
a multi-step data update can leave the system in an inconsistent
state, Ceph performs overwrites in EC pools using two-phase
commit. First, all OSDs that store a chunk of the EC object make
a copy of the chunk so that they can roll back in case of failure.
After all of the OSDs receive the new content and overwrite their
chunks, the old copies are discarded. With FileStore on XFS, the
first phase is expensive because each OSD performs a physical
copy of its chunk. BlueStore, however, makes overwrites practical
because its copy-on-write mechanism avoids full physical copies.

Transparent Compression
Transparent compression is crucial for scale-out distributed
file systems because 3× replication increases storage costs.
BlueStore implements transparent compression where written
data is automatically compressed before being stored.

Getting the full benefit of compression requires compressing
over large 128 KiB chunks, and compression works well when
objects are written in their entirety. For partial overwrites of a
compressed object, BlueStore places the new data in a separate
location and updates metadata to point to it. When the com-
pressed object gets too fragmented due to multiple overwrites,
BlueStore compacts the object by reading and rewriting. In
practice, however, BlueStore uses hints and simple heuristics
to compress only those objects that are unlikely to experience
many overwrites.

Exploring New Interfaces
Despite multiple attempts [5, 9], local file systems are unable
to leverage the capacity benefits of SMR drives due to their
backward-incompatible interface, and it is unlikely that they
will ever do so efficiently [6]. Supporting these denser drives,
however, is important for scale-out distributed file systems
because it lowers storage costs.

Unconstrained by the block-based designs of local file systems,
BlueStore has the freedom of exploring novel interfaces and data
layouts. This has recently enabled porting RocksDB and BlueFS
to run on host-managed SMR drives, and an effort is underway
to store object data on such drives next [1]. In addition, the Ceph
community is exploring a new back end that targets a combina-
tion of persistent memory and emerging NVMe devices with
novel interfaces, such as ZNS SSDs [3].

Evaluation
This section compares the performance of a Ceph cluster using
FileStore, a back end built on a local file system, and BlueStore,
a back end using the storage device directly. We compare the
throughput of object writes to the RADOS distributed object
storage.

We ran all experiments on a 16-node Ceph cluster connected
with a Cisco Nexus 3264-Q 64-port QSFP+ 40GbE switch. Each
node had a 16-core Intel E5-2698Bv3 Xeon 2GHz CPU, 64GiB
RAM, 400GB Intel P3600 NVMe SSD, 4TB 7200RPM Seagate
ST4000NM0023 HDD, and a Mellanox MCX314A-BCCT
40GbE NIC. All nodes ran Linux kernel 4.15 on Ubuntu 18.04
and the Luminous release (v12.2.11) of Ceph. We used the default
Ceph configuration parameters and focused on write perfor-
mance improvements because most BlueStore optimizations
affect writes.

10    S P R I N G 2020  VO L . 45 , N O. 1 	 www.usenix.org

SYSTEMS
File Systems Unfit as Distributed Storage Back Ends: Lessons from 10 Years of Ceph Evolution

Figure 3 shows the throughput for different object sizes written
with a queue depth of 128. At the steady state, the throughput on
BlueStore is 50–100% greater than FileStore. The throughput
improvement on BlueStore stems from avoiding double writes
and consistency overhead.

Figure 4 shows the 95th and above percentile latencies of object
writes to RADOS. BlueStore has an order of magnitude lower
tail latency than FileStore. In addition, with BlueStore the tail
latency increases with the object size, as expected, whereas with
FileStore even small-sized object writes may have high tail
latency, stemming from the lack of control over writes.

The read performance on BlueStore (not shown) is similar or
better than on FileStore for I/O sizes larger than 128 KiB; for
smaller I/O sizes, FileStore is better because of the kernel read-
ahead. BlueStore does not implement read-ahead on purpose. It
is expected that the applications implemented on top of RADOS
will perform their own read-ahead.

Conclusion
Distributed file system developers conventionally adopt local
file systems as their storage back end. They then try to fit the
general-purpose file system abstractions to their needs, incur-
ring significant accidental complexity [4]. At the core of this
convention lies the belief that developing a storage back end
from scratch is an arduous process, akin to developing a new
file system that takes a decade to mature.

Our paper, relying on the Ceph team’s experience, showed this
belief to be inaccurate. Furthermore, we found that developing
a special-purpose, userspace storage back end from scratch
(1) reclaimed the significant performance left on the table when
building a back end on a general-purpose file system; (2) made it
possible to adopt novel, backward-incompatible storage hard-
ware; and (3) enabled new features by gaining complete control
of the I/O stack. We hope that this experience paper will initiate
discussions among storage practitioners and researchers on
fresh approaches to designing distributed file systems and their
storage back ends.

Figure 3: Throughput of steady state object writes to RADOS on a 16-
node all-HDD cluster with different sizes using 128 threads. Compared
to FileStore, the throughput is 50–100% greater on BlueStore and has a
significantly lower variance.

Figure 4: 95th and above percentile latencies of object writes to RADOS
on a 16-node all-HDD cluster with different sizes using 128 threads.
BlueStore (top graph) has an order of magnitude lower tail latency than
FileStore (bottom graph).

SYSTEMS
File Systems Unfit as Distributed Storage Back Ends: Lessons from 10 Years of Ceph Evolution

References
[1] A. Aghayev, S. Weil, G. Ganger, and G. Amvrosiadis, “Rec-
onciling LSM-Trees with Modern Hard Drives Using BlueFS,”
Technical Report CMU-PDL-19-102, CMU Parallel Data
Laboratory, April 2019.

[2] A. Aghayev, S. Weil, M. Kuchnik, M. Nelson, G. R. Ganger,
and G. Amvrosiadis, “File Systems Unfit as Distributed Stor-
age Back Ends: Lessons from 10 Years of Ceph Evolution,” in
Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP ’19), pp. 353–369.

[3] M. Bjørling, “From Open-Channel SSDs to Zoned Name-
spaces,” 2019 Linux Storage and Filesystems Conference (Vault
’19), USENIX Association, 2019: https://www.usenix.org​
/conference/vault19/presentation/bjorling.

[4] F. P. Brooks Jr., “No Silver Bullet—Essence and Accident in
Software Engineering,” in Proceedings of the IFIP 10th World
Computing Conference, 1986, pp. 1069–1076.

[5] D. Chinner, “SMR Layout Optimization for XFS,” March
2015: http://xfs.org/images/f/f6/Xfs-smr-structure-0.2.pdf.

[6] J. Edge, “Filesystem Support for SMR Devices,” March 2015:
https://lwn.net/Articles/637035/.

[7] C. Hellwig, “XFS: The Big Storage File System for Linux,”
;login:, vol. 34, no. 5 (October 2009): https://www.usenix.org​
/system/files/login/articles/140-hellwig.pdf.

[8] Facebook Inc., RocksDB Merge Operator, 2019: https://​
github.com/facebook/rocksdb/wiki/Merge-Operator​
-Implementation.

[9] A. Palmer, “SMRFFS-EXT4—SMR Friendly File System,”
2015: https://github.com/Seagate/SMR_FS-EXT4.

[10] Wikipedia, Cache flushing: https://en.wikipedia.org/wiki​
/Disk_buffer#Cache_flushing.

2020 USENIX Annual Technical Conference
JULY 15 –17, 2020 • BOSTON, MA , USA
www.usenix.org/atc20

The 2020 USENIX Annual Technical Conference will bring together leading systems researchers for cutting-edge systems
research and the opportunity to gain insight into a wealth of must-know topics, including virtualization, system and network
management and troubleshooting, cloud and edge computing, security, privacy, and trust, mobile and wireless, and more.

Registration will open in May 2020.

Save the Dates!

Ethan Miller, University of California, Santa Cruz

The Future of the Past: Challenges in
Archival Storage

Radhika Nagpal, Harvard University

The Pursuit of Collective Intelligence
(and Happiness) in Science

Margo Seltzer, University of British Columbia

The Fine Line between Bold and
Fringe Lunatic

The first USENIX Lifetime Award Keynote!

Keynote Speakers

https://www.usenix.org/conference/vault19/presentation/bjorling
https://www.usenix.org/conference/vault19/presentation/bjorling
http://xfs.org/images/f/f6/Xfs-smr-structure-0.2.pdf
https://lwn.net/Articles/637035/
https://www.usenix.org/system/files/login/articles/140-hellwig.pdf
https://www.usenix.org/system/files/login/articles/140-hellwig.pdf
https://github.com/facebook/rocksdb/wiki/Merge-Operator-Implementation
https://github.com/facebook/rocksdb/wiki/Merge-Operator-Implementation
https://github.com/facebook/rocksdb/wiki/Merge-Operator-Implementation
https://github.com/Seagate/SMR_FS-EXT4
https://en.wikipedia.org/wiki/Disk_buffer#Cache_flushing
https://en.wikipedia.org/wiki/Disk_buffer#Cache_flushing

