
44    S P R I N G 2020  VO L . 45 , N O. 1 	 www.usenix.org

COLUMNSConstraints and Controls
The Sociotechnical Model of Site Reliability Engineering

L A U R A N O L A N

One of the examples described in that SREcon talk was a training exercise undertaken by
a pair of fighter pilots. The plan was for a pilot to fire a dummy missile at another aircraft.
One of the plane’s missile tubes was loaded with a dummy, while other tubes contained live
missiles. The pilot targeted the other aircraft, selected the tube with the dummy, and fired—
a live missile. This wasn’t pilot error: it was a systems accident. The plane had a smart mis-
sile selection system that would substitute another missile if the tube the pilot selected was
blocked, and in this case an antenna was in front of the tube with the dummy.

The thesis of Leveson’s talk is that traditional methods of managing risk in systems, such
as fault tree analysis and analytic decomposition, do not work in the context of complex
systems. These established techniques involve breaking larger systems down into smaller
subsystems, reasoning about the likelihood of failure of these components, and calculating
overall reliability of the system from there. Unfortunately, this isn’t effective: many systems
accidents happen because of unanticipated interactions between parts of the system that
were working as intended.

We see these kinds of interactions in computer systems all the time. Reddit’s outage on
August 11, 2016 [4], is a great example: they were performing maintenance on their Zoo-
keeper cluster. Reddit’s autoscaler system relies on Zookeeper for input data, so in order to
prevent the autoscaler from doing the wrong thing while Zookeeper was under maintenance,
they turned it off. Unfortunately, their configuration management system turned the auto-
scaler back on, and it took their site down. That, of course, isn’t as bad as shooting down a
friendly aircraft, but the incidents do have elements in common.

In both those examples, no part of the system was broken, but the system overall didn’t work
as expected. The failure of analytic decomposition is especially acute for systems involving
software, because so many software problems arise from unexpected interactions between
parts of our systems, not simple component failure. Safety (or reliability, from our perspec-
tive) is a property of the entire system, not of the components of the system.

Leveson’s approach, STAMP (Systems-Theoretic Accident Model and Processes), has
three parts:

 3 Constraints, or conditions needed for the system to operate safely
 3 Hierarchical safety control structures, which work to enforce the constraints
 3 Process models describing the state of a system and how it moves from one state to another

Laura Nolan’s background is
in site reliability engineering,
software engineering, distributed
systems, and computer science.
She wrote the “Managing Critical

State” chapter in the O’Reilly Site Reliability
Engineering book and was co-chair of SREcon18
Europe/Middle East/Africa. Laura Nolan is a
production engineer at Slack. 
laura.nolan@gmail.com

MIT’s Professor Nancy Leveson gave a talk at SREcon19 EMEA
about her research on safety engineering and accident analysis [1].
Leveson’s work draws on case studies from military air-traffic

control in Iraq, contamination of water supplies, failure to launch a satellite [2],
as well as the accidents that resulted from the Therac-25 software-controlled
radiation therapy device [3].

www.usenix.org	   S P R I N G 2020  VO L . 45 , N O. 1  45

COLUMNS
Constraints and Controls: The Sociotechnical Model of Site Reliability Engineering

According to STAMP, designing for reliability starts with
figuring out what the key system constraints are, then analyz-
ing how candidate designs can be controlled in such a way to
be kept within those constraints. One article doesn’t afford
nearly enough space to do justice to the intricacies of STAMP,
so this column will be focused on Leveson’s concepts of system
constraints and control structures and how they relate to site
reliability engineering (SRE).

Hazards, Constraints, and Controls
For Leveson, safety is all about maintaining control of the
system. Start by figuring out the hazards around your system.
For a public water supply the hazard might be “avoid exposing
the public to contaminated water.” In a production software
environment, the hazards are likely to be things like “keep the
error rate under 0.1%,” “don’t expose web servers directly to
the Internet,” or “don’t lose user data.”

From the hazards, you derive a set of constraints. For the water
supply system, those might be “water quality must meet stan-
dards,” and “if water quality falls below standards, steps must be
taken to reduce risk of exposure (e.g., boil-water advisories).”

For your production software system, constraints could be things
such as “new releases must be canaried to ensure the error rate
doesn’t increase,” “firewall rules must be in place to prevent
access to the web servers,” or “maintain at least three replicas of
critical data,” as well as “the system must have enough compute,
storage, and bandwidth available to it in datacenters foo and
bar,” or “service foobaz, on which we depend, must be operating
with a 95th percentile latency under 100 milleseconds.”

This should look pretty familiar so far: these are more-or-less
service level objectives (SLOs) that our system is expected to
fulfill and SLOs that our system needs from other systems or
infrastructure.

According to Leveson, hazards and constraints are a critically
important part of system design, and deriving them needs deep
domain expertise. Once you’ve defined your constraints, you
have to figure out how to monitor them and keep your system
within them. This means designing the controls that enforce the
constraints. If an incident does happen, accident analysis should
be focused on finding the failures or gaps in the system controls
that allowed the incident to take place.

Controls are not only technical, however; the entire system of
humans involved in the development, operation, and oversight
of a system are also part of the control system. For some safety-
critical systems, like nuclear reactors or food safety, this goes as
far as including the government and courts as part of the control
system. For SRE, this usually means the team responsible for a
given service and the management and leadership structure to
which SRE teams report.

Reference and Measuring Channels as SLOs
and SLIs
To control a system you need two things: a way to specify the
constraints on the system and feedback. Take a simple technical
example: an autoscaling group (as provided by the major cloud
platforms).

Figure 1 is a model of an autoscaling group from the perspective
of the user—an implementor would have a more detailed view of
the system internals. The autoscaling group currently contains
three instances. It is configured to keep a minimum of three
instances running. It’ll increase the number of instances if the
CPU utilization exceeds 60%. There’s a cool-down period of 120
seconds, so the autoscaler won’t increase or decrease the number
of instances until two minutes have passed since the last scaling
action.

In STAMP terminology, the control information is the reference
channel (the inward arrow in Fig. 1): this is the information
needed to do the job of imposing constraints on the system. The
outward arrow, the system metrics, is the measuring channel,
which gives information about how the system is behaving—is it
within its constraints or not?

The concepts of reference channels and measuring channels
map very closely to SLOs and SLIs (service level indicators),
respectively. An SLO, or reference channel, is a specification of
how you want your system to behave, and an SLI, or measuring
channel, shows whether or not your system is achieving its SLO.
Control doesn’t work without feedback. This, perhaps, is the
reason that SLOs and SLIs are so often seen as the essential first
step to adopting SRE practices—but they are definitely not the
only form of reference and measuring channels needed.

Figure 1: An autoscaling group

46    S P R I N G 2020  VO L . 45 , N O. 1 	 www.usenix.org

COLUMNS
Constraints and Controls: The Sociotechnical Model of Site Reliability Engineering

The SRE Sociotechnical Model
Leveson’s SREcon talk really resonated with a lot of people at the
conference. The problems of complexity arising from component
interactions are our everyday experience, even if our context
is with RPCs or data pipelines rather than ballistic missiles or
satellite launches. We’re very familiar with the need for dynami-
cally controlling the systems that we run and the difficulties
that arise from that (we saw some examples in the last instal-
ment of this column when we looked at dynamic control systems
and public cloud outages [5]).

The aspect of STAMP that is most relevant to SRE, however,
is that it treats the organizational side of system reliability as
a first-class citizen. What SREs do at a purely technical level
doesn’t look much different to software engineering or system
administration: we do debugging and performance analysis, and
we write C++ or Java or Go or bash scripts or Terraform configs
or Prometheus rules, like anyone else in software. The organi-
zational practices aimed at managing and controlling technical
complexity, however, make SRE different—and it turns out that
many of these practices have close analogues in STAMP.

According to Leveson, safety control structures are hierarchical.
Constraints are created at a higher level to control processes at
the lower levels of the hierarchy, until you eventually arrive at
the operating process itself and its direct control mechanisms.

There are different ways that SRE engagements can be struc-
tured organizationally [6], but the classic setup at Google, where
SRE originated, is for an SRE team to report to an SRE man-
agement function and to collaborate with one or more develop-
ment teams. The SRE team manages the system in production
and uses the experience gained from that to inform its engi-
neering work, which is focused on reliability, scalability, and

performance. The development team works on features and
collaborates with the SRE team on changes needed to keep the
system stable and within its service level objectives.

The SRE organizational model includes a host of different
controls and forms of feedback, from error budgets and direct
interaction with the production system itself to forms of control
generally performed by management, such as setting organiza-
tion-wide policies and objectives and measurements, like pager
load over time. The diagram above is a SRE-specific version of
Leveson’s general model of sociotechnical control [2].

Constraints, Controls, and the SRE Team
At the SRE team level, the focus is on the technical systems. SRE
teams are normally deeply involved in defining SLOs for their
systems. Much of our technical work directly involves ensuring
the system is kept within SLOs—from design work to monitoring
and automation to control the system.

Healthy SRE teams also self-monitor, working at one level of
abstraction above the system itself. They’re looking at trends
in SLIs over longer periods of time, for patterns of incidents, for
upcoming problems like hitting scalability limits, for upgrades or
migrations that need to be performed, for new kinds of repetitive
manual work that may need to be automated.

Teams need control structures to make sure these self-monitoring
activities happen regularly. Most SRE teams use a weekly pro-
duction meeting [7] to review the state of their production
systems, and this meeting is the natural site for much of the self-
monitoring that teams do. Teams will review service metrics,
outages, paging events, and other interrupts such as tickets: all
of these are measuring channel activities. As a result of this,
teams will make decisions that affect their reference channels:
updating runbooks, tweaking alerts. They’ll also surface issues
that require engineering work, which might be done within the
SRE team or become requests to the partner development team,
which usually has some representatives in attendance at the
production meeting.

SRE and Development Team Collaboration
As well as attending the weekly SRE-run production meeting,
SRE teams have several other reference and measurement
channels with developer teams. Development and maintenance
of systems is a joint activity shared by developers and SREs.
Both SREs and developers write design documents (also known
as RFCs, or requests for comment) and provide feedback on the
other team’s designs; this is a very important pair of reference
and measurement channels, as each side has its own set of sys-
tem knowledge and perspectives.

Figure 2: SRE model of sociotechnical control

www.usenix.org	   S P R I N G 2020  VO L . 45 , N O. 1  47

COLUMNS
Constraints and Controls: The Sociotechnical Model of Site Reliability Engineering

Production readiness reviews (PRRs) [8] are another important
channel between developers and SREs. PRRs are generally used
when a new service is being onboarded by an SRE team. SRE
teams normally evolve a fairly comprehensive team-specific
checklist for new services that covers items such as:

 3 Review of system architecture and dependencies
 3 Review of the system against the team and the organization’s
standards
 3 Review and development of SLOs
 3 Review and development of monitoring and alerting
 3 Review of change management practices (such as canarying)
 3 Developing training that can be delivered to the SRE team

During the PRR process, the SRE team will work through this
checklist with the developer team. The PRR process is a refer-
ence channel; the SRE team imposes constraints on the stan-
dards of the systems they are willing to support.

Error budgets are another well-known reference channel that
developer teams and SREs share. Error budgets are defined
based on SLOs: how much unavailability can a service have dur-
ing a given quarter and still be within its SLO? The SRE team
monitors a service’s SLO and error budget. If the error budget for
the quarter has been exhausted, then an SRE team should push
back against risky launches and normally will negotiate with the
developer team to prioritize reliability-related work.

Monitoring SRE Teams
Leveson says control is hierarchical. We’ve already seen how
SRE teams control and monitor their services. In large organiza-
tions, SRE management and leadership should also have a role to
play in monitoring the health and efficiency of SRE teams:

 3 Are their services generally meeting their SLOs?
 3 Are they getting paged too often?
 3 Do teams have sufficient staffing to do substantial engineering
work as well as operational work?
 3 Are high priority postmortem action items being done?

This doesn’t mean that leadership should micromanage. The
feedback loops provided by measurement channels get longer
the further up any hierarchy you go, and so control becomes less
effective. Management should be concerned with longer-term
patterns over multiple quarters.

This should not be a coercive approach, focused on demanding
that teams hit their metrics by working unsustainable hours or
at the cost of doing the right thing for their service—for instance,
teams should be able to prioritize fixing a newly found major risk
to their service’s stability over low and medium-priority post-
mortem action items, even if it means that those open postmor-
tem action items will be visible to management in the form of
metrics. The approach should be about making sure that teams
have resources and organizational support to get their job done
effectively and to prioritize the highest impact work. Done right,
this should not be a box ticking exercise.

SRE management is also in a great position to increase the effec-
tiveness of the entire SRE organization by spotting places where
standard tools and processes can help—these are, of course, refer-
ence channels. Examples of this could be introducing a standard
process for managing incidents, or kicking off a project to build a
production-grade tool for doing deployments or chaos engineering.

Conclusion
This article has just scratched the surface of Leveson’s work.
Nevertheless the STAMP concepts of reference and measure-
ment channels and hierarchical control systems very closely
describe what it is that SREs do. Learning about STAMP gave
me a clearer insight into the organizational side of SRE.

The “what is the difference between SRE versus DevOps” debate
has been well played out by now, but I’ll add my contribution
nonetheless: SRE is about the humans that design and control
the systems as much as it is about technical considerations.

SREs are in the business of defining objectively which system
states are acceptable and which are not. Our job is implementing
controls, both technical and organizational, to keep our sys-
tems healthy. Our teams are part of those systems too, and also
need to be healthy to be effective. Pain is unpleasant, but it is an
essential form of feedback—it tells us to stop doing the thing that
hurts in order to stay healthy. Far too many teams in operations
are in pain, quarter to quarter, year to year. Does your organiza-
tional model notice?

48    S P R I N G 2020  VO L . 45 , N O. 1 	 www.usenix.org

COLUMNS
Constraints and Controls: The Sociotechnical Model of Site Reliability Engineering

References
[1] N. G. Leveson, “A Systems Approach to Safety and Cyber
security,” SREcon19 EMEA: https://www.usenix.org/conference​
/srecon19emea/presentation/leveson.

[2] N. G. Leveson, Engineering a Safer World: Systems Thinking
Applied to Safety (MIT Press, 2012).

[3] N. G. Leveson, “Medical Devices: The Therac-25”: http://​
sunnyday.mit.edu/papers/therac.pdf.

[4] “Why Reddit Was Down on Aug 11”: https://www.reddit.com​
/r/announcements/comments/4y0m56/why_reddit_was_down​
_on_aug_11/.

[5] L. Nolan, “Managing Systems in an Age of Dynamic Com-
plexity Or: Why Does My Single 2U Server Have Better Uptime
than GCP?” ;login:, vol. 44, no. 4 (Winter 2019): https://www​
.usenix.org/publications/login/winter2019/nolan.

[6] D. Ferguson and P. Labhane, “SRE Team Lifecycles,” in
B. Beyer, N. R. Murphy, D. K. Rensin, K. Kawahara, S. Thorne,
eds., The Site Reliability Workbook: Practical Ways to Implement
SRE (O’Reilly, 2018).

[7] N. Murphy et al., “Communication and Collaboration in
SRE,” in B. Beyer, N. R. Murphy, D. K. Rensin, K. Kawahara,
S. Thorne, eds., Site Reliability Engineering: How Google Runs
Production Systems (O’Reilly, 2016).

[8] A. Cruz and A. Bambhani, “The Evolving SRE Engagement
Model,” in B. Beyer, N. R. Murphy, D. K. Rensin, K. Kawahara,
S. Thorne, eds., Site Reliability Engineering: How Google Runs
Production Systems (O’Reilly, 2016).

2020 USENIX Conference on
Operational Machine Learning

May 1, 2020 • Santa Clara, CA, USA

The 2020 USENIX Conference on Operational Machine Learning (OpML ’20) provides a forum for
both researchers and industry practitioners to develop and bring impactful research advances and
cutting edge solutions to the pervasive challenges of ML production lifecycle management. ML
production lifecycle is a necessity for wide-scale adoption and deployment of machine learning
and deep learning across industries and for businesses to bene� t from the core ML algorithms and
research advances.

Program Co-Chairs:
Nisha Talagala, Pyxeda AI

Joel Young, LinkedIn

Save the Date!

www.usenix.org/opml20

https://www.usenix.org/conference/srecon19emea/presentation/leveson
https://www.usenix.org/conference/srecon19emea/presentation/leveson
http://sunnyday.mit.edu/papers/therac.pdf
http://sunnyday.mit.edu/papers/therac.pdf
https://www.reddit.com/r/announcements/comments/4y0m56/why_reddit_was_down_on_aug_11/
https://www.reddit.com/r/announcements/comments/4y0m56/why_reddit_was_down_on_aug_11/
https://www.reddit.com/r/announcements/comments/4y0m56/why_reddit_was_down_on_aug_11/
https://www.usenix.org/publications/login/winter2019/nolan
https://www.usenix.org/publications/login/winter2019/nolan

