
56    S P R I N G 2020  VO L . 45 , N O. 1 	 www.usenix.org

COLUMNS

Simplifying Repetitive Command Line Flags
with viper
C H R I S “ M A C ” M C E N I R Y

In “Knowing Is Half the Battle: The Cobra Command Line Library of
Go” [1], we explored using the github.com/spf13/cobra library for creat-
ing command line tools. In this article, we’re going to expand on that by

hooking in multiple ways to handle the flags to those commands by using a
sister library to cobra: github.com/spf13/viper.

How we handle command configuration changes over the lifetime of the tool. A common
evolution for handling command configuration is, in order of precedence:

 3 command line supplied flag
 3 environment variable
 3 configuration file

When you first start to use a tool, you will typically supply the flags on the command line.
This allows you to explore and iterate with the flags easily.

After you get comfortable with them, you’ll want to avoid having to reenter any common
values. For example, --user or --server become very repetitive if you have to enter them
every time you run the command. This is the perfect place for environment variables to come
into the picture. Set the environment for your shell session, and you can skip setting it on the
command line each time.

Eventually, you’re comfortable enough with the overall setup to commit those configurations
to a file to preserve them over multiple sessions. These typically end up as part of your dot-
files. You set the file and never have to configure your environment or command line again.

Yes, sometimes you skip steps so this pattern is not exclusive, but it is especially common in
tool development.

Since the tool configuration is built up this way, all three layers of configuration methods are
available throughout. There are two additional benefits that fall out of these configuration
methods:

 3 You can temporarily override the values from the environment or command line. This allows
you to test out new configurations without changing your defaults.
 3 Different runtime environments and setups prefer different formats. For example, your
Puppet setup may prefer configuration files, your Dockerfiles setup may prefer environment
variables, and your Kubernetes setup may prefer command line arguments. A flexible binary
supports multiple environments since it can support all three mechanisms. This last part is
especially apt for 12-factor applications.

We’re specifically using the viper library because it builds upon the work of the cobra library
from the previous article. This combination follows the precedence order identified above.
This only holds for flags (--flag) and not for full command arguments. Arguments are typi-
cally specific to each command invocation, and it is unusual to encode this in environment
variables or configuration files.

Chris “Mac” McEniry is a
practicing sysadmin responsible
for running a large e-commerce
and gaming service. He’s been
working and developing in

an operational capacity for 15 years. In his
free time, he builds tools and thinks about
efficiency. cmceniry@mit.edu

www.usenix.org	   S P R I N G 2020  VO L . 45 , N O. 1  57

COLUMNS
Simplifying Repetitive Command Line Flags with viper

The code for these examples can be found at https://github.com​
/cmceniry/login in the “viper” directory. Each directory cor
responds to a section below and should be executed using go
run $DIR/main.go to follow along with the article. This uses go
module support (minimum Go version 1.11), so no prep work is
required once the repository is cloned.

Default
To establish a baseline, we’re going to set a default for viper-
maintained values (this will also help to build up the scaffold
around the examples). As usual, we begin with the standard Go
intro—setting up our main and imports.

default/main.go: intro.
 package main

 import (
 "fmt"
 "github.com/spf13/cobra"
 "github.com/spf13/viper"
)

 func main() {

We’re going to be building on top of the existing cobra command.
In our Run, we’re going to just print the output of our flag. Spe-
cifically, we get the configuration value of the Flag item and we
will get it as a string (or nothing).

default/main.go: cobra.
 rootCmd := &cobra.Command{
 Run: func(c *cobra.Command, args []string) {
 fmt.Println(viper.GetString(“Flag”))
 },
 }

Setting a default in viper is a single function viper.SetDefault.

default/main.go: viper.
 viper.SetDefault("Flag", "default")

And to round it out, we execute into our cobra command.

default/main.go: execute.
 rootCmd.Execute()

With all of that together, we can run our tool and get our inter-
nally set value for Flag.

 $ go run default/main.go
 default

Command Line
Now let’s add the first pattern by pulling the value in from the
command line flag. The code here will be identical to the default
case, but we’re going to add a couple of lines just before the
Execute. These set up the command line flag (which comes from
the cobra command as in the ;login: article [1]) and then bind it to
the viper configuration.

commandline/main.go: flag.
 rootCmd.Flags().String("flag", "", "help for flag")
 viper.BindPFlag("Flag", rootCmd.Flags().Lookup("flag"))

We can demonstrate that by just adding these lines, we main-
tain our default compatibility, but we also add support for our
command line flag.

 $ go run commandline/main.go
 default
 $ go run commandline/main.go --flag cli
 cli

Environment Variable
The next step in our flag handling evolution is to set this using
an environment variable. As previously, this is done with the
addition of a few more items before our cobra execute. The first
function creates a pseudo-environment namespace so that we
don’t accidentally conflict with other applications. The second
function connects the environment variables with the viper
configuration. Make special note that viper connects them
with the convention of all uppercase with prefix, so in this case,
VF_FLAG.

 viper.SetEnvPrefix("VF")
 viper.BindEnv("Flag")

With these in place, we can now use the default, environment,
or command line.

 $ go run envvar/main.go
 default
 $ VF_FLAG=env go run envvar/main.go
 env
 $ VF_FLAG=env go run envvar/main.go --flag cli
 cli

Configuration File
viper supports a variety of configuration file formats and even
has autodetection for them. For simplicity, we’re going to go with
the TOML format:

 Flag = "configfile"

As before, we’re building on top of the previous examples by add-
ing a few lines before executing our cobra command. First, we
tell viper where to look for the configuration file. Next, we tell it
which configuration file to use (notice that the suffix is ignored
since we’re using autodetection). And, finally, we read the config
file. This is the first call that can produce an error. To support
compatibility with the other three examples, we ignore it if the
file is not found and panic otherwise.

https://github.com/cmceniry/login
https://github.com/cmceniry/login

58    S P R I N G 2020  VO L . 45 , N O. 1 	 www.usenix.org

COLUMNS
Simplifying Repetitive Command Line Flags with viper

configfile/main.go: configfile.
 viper.AddConfigPath(".")
 viper.SetConfigName("config")
 if err := viper.ReadInConfig(); err != nil {
 // Only error on errors other than file not found
 if _, ok := err.(viper.ConfigFileNotFoundError);
!ok {
 panic(err)
 }
 }

Now we run it again and get our expected output. As before, we
can test it with the environment and command line flag options
and also still receive the expected outputs. However, short of
removing the config file, we will not be able to see the default
value (but you can remove the file and try as you want).

 $ go run configfile/main.go
 configfile
 $ VF_FLAG=env go run configfile/main.go
 env
 $ VF_FLAG=env go run configfile/main.go --flag cli
 cli

Combining Multiple Configurations
In this, we used viper as a monolithic config. There are times
when you want to break this out, and that means creating a
viper.Viper struct (using New) instead of the default struct
invoked by the package static funcs as we’ve done here. This
allows you to even use it in libraries to combine configura-
tion functionality without having to support multiple formats.
To avoid conflicts, you’ll want to apply judicious use of the
SetEnvPrefix and SetConfigPath or SetConfigName functions
for each configuration.

Conclusion
With just a few lines of setup, the viper library has given us fast
configuration handling. This supports the regular model of com-
mand line flags, environment variables, and configuration files.

I hope this article has provided you with a concrete handle to the
viper library and that this helps you in your tool development.
Happy Going!

Reference
[1] ;login: vol. 43, no. 2: https://www.usenix.org/system/files​
/login/articles/login_summer18_09_mceniry.pdf.

2020 USENIX Conference on Privacy
Engineering Practice and Respect

May 11–12, 2020 • Santa Clara, CA, USA

PEPR is focused on designing and building products and systems with privacy and respect for their users
and the societies in which they operate. Our goal is to improve the state of the art and practice of building
for privacy and respect and to foster a deeply knowledgeable community of both privacy practitioners
and researchers who collaborate towards that goal.

Program Co-Chairs:
Lorrie Cranor, Carnegie Mellon University

Lea Kissner, Humu

Save the Dates!

www.usenix.org/pepr20

https://www.usenix.org/system/files/login/articles/login_summer18_09_mceniry.pdf
https://www.usenix.org/system/files/login/articles/login_summer18_09_mceniry.pdf

