
64    S P R I N G 2020  VO L . 45 , N O. 1 	 www.usenix.org

BOOKSBook Reviews
M A R K L A M O U R I N E A N D R I K F A R R O W

BPF Performance Tools: Linux System and
Application Observability
Brendan Gregg
Addison-Wesley Professional, 2019, 880 pages
ISBN 978-0-13-655482-0

Reviewed by Mark Lamourine

I haven’t finished thoroughly reading BPF Performance Tools.
I’m not sure I will ever touch and try everything that Gregg
offers in this 880-page book. Typically when I read a computer
technology book, I have some hooks into the topic to start. I
can skim through once and then choose a few sections to dive
deeply into and get a good sense of what the book is about and
how it will read for different audiences. Opening and scanning
this book felt like stepping through a door marked “Authorized
Personnel Only” into a control room for a nuclear power plant or
a SpaceX launch.

BPF and the BCC tools based on BPF provide visibility into the
operation of the Linux kernel and subsystems. Formally, the
current name is Extended Berkeley Packet Filters, but Gregg
indicates that most people just call it BPF. BPF is nominally
about the performance of apps run by a Linux kernel, but it is
not limited to tuning. As Gregg presents it, BPF is much more a
diagnostic tool.

The cover of BPF Performance Tools contains an image that
is indicative of the depth and range of the capabilities of the
tool set. The image shows dozens of targeted scripts that give
visibility into every part of the Linux environment. All of this
is made possible by the BPF virtual machine and the probes
embedded in each of the kernel components. From the user
perspective, BPF and BCC themselves are fairly simple, but the
vista they open up can be overwhelming.

Most sysadmins can go a lifetime with only a cursory under-
standing of the deep internal workings of the Linux kernel.
That’s as intended. If you needed to be able to trace the flow of
blocks of data from disk sectors or an SSD though the kernel to
a string printed out on the CLI just to write “hello world,” very
little else would get done. Occasionally, though, we see problems
or unexpected behaviors and interactions as the system runs,
and then we need to look underneath to see what the system is
actually doing.

Such a significant but generally invisible subsystem needs some
introduction. The first five chapters introduce the technology
that makes up the BPF mechanism and the suite of tools that use
it. This only makes up the first fifth of the book, but it fills 200
pages. There are two major tool sets: BCC, a set of Python scripts
that run common operations, and bpftrace, a program that can
run one-liner probes. Each gets a chapter of its own. With that
introduction done Gregg can begin showing how to use BPF to
probe each of the subsystems of a running Linux machine.

In the main body of the book, Gregg steps through the boxes in
the cover illustration. The CPU, memory, disk I/O, and network
ing chapters make up the parts of a bare metal machine, but BPF
probes don’t stop there. There are chapters on profiling programs
and scripts in various languages and on monitoring VMs and
containers. Gregg doesn’t limit himself to BPF probes either. In
each chapter, he includes first the traditional tools that already
existed. He shows what they are capable of and how they are
used and then moves on to how to use BPF probes to learn more.

The book concludes with chapters on common tips and tricks
and on reusable BPF tool one-liners and sample runs of each of
the tools with annotated output.

There is a lot here to digest and it concerns what a novice would
find to be absolute arcana. That’s not to say it’s beyond the use of
a range of sysadmins from junior to architect to forensic analyst.
I’ve often found that by skimming a topic I can learn enough so
that when a problem arises related to the topic, I remember and
can return for more depth as needed. This isn’t a cover-to-cover
book. There is no narrative progression. A reader will do best to
go straight to the topic they need and begin using it immediately.
BPF is a diagnostic tool, so each use will lead to new queries
until the user comes to understand the behavior of the system
they are examining.

BPF offers a great tool set for understanding not just broken sys-
tems but well run ones. Diagnostic profiling often depends on first
establishing a baseline of normality. A reader who wants to deeply
understand the normal operation of a Linux system could do worse
than to experiment with BPF on the systems they have, using it
as a flashlight in the dark caves underneath the shell and GUI.

www.usenix.org	   S P R I N G 2020  VO L . 45 , N O. 1  65

BOOKS

Ubuntu Unleashed 2019 Edition
Matthew Helmke
Addison-Wesley Professional, 2019, 800 pages
ISBN: 978-0-13-498546-6

Reviewed by Mark Lamourine

I’ve worked almost exclusively on Red Hat and Fedora Linux
systems for more than a decade. Prior to that I ran my home
systems on Ubuntu for several years. Recently I started work at
a place that uses RPM- and DEB-based systems side by side, and
I thought it would be good to get a refresher on modern Ubuntu.

When you include the year in the name of a book, you know it
will have a limited life, but in technology today that’s pretty
much a given. One thing I was curious about when I selected
Ubuntu Unleashed was how much would be familiar to me from
my Edgy and Feisty days. I was also interested in seeing how
much of Ubuntu was just Linux as I already knew it. It turns out
that much of what you find in an encyclopedic volume like this
ages better than you might expect.

The first edition of Ubuntu Unleashed, published in 2006, was
written by Paul and Andrew Hudson, and they still get credit
on the inside cover page. There have been near-annual updates
since then.

Ubuntu Unleashed feels like a very big, shallow wading pool. It
has a paragraph or two on nearly everything to do with a modern
Linux operating system. It’s not useful as a tutorial for a com-
pletely new user or as a reference for a master. It is very well
suited to a novice with some experience or for an expert from a
different distribution. In both of these cases, the reader will have
some context to use but will have gaps that need filling.

In each section, Helmke introduces the topic, defining terms and
giving context about why it is important and where it fits into the
OS. He only touches lightly on each point before moving on, how-
ever, and each chapter closes with a list of books and websites
for deeper study. Another way to think of a book like this is as
an annotated index to some larger compendium of knowledge.

I did find several things that raised an eyebrow. I am an Emacs
user for development work and use vi for single file edits. I
started using Emacs before there was a GUI for it. I was sur-
prised though to see even a reference to Emacs as an editor
option and even more because it was listed first. I would never
recommend Emacs to a new user. vim has become as capable
a text editor as Emacs ever was, and the community to learn
from is much larger. I would advise against ever invoking Emacs
on a single file as Helmke does. I understand wanting to avoid
getting involved in the editor wars, but I think in some things
it is acceptable for an author to have opinions. Later, the four-
page section on KVM followed by a page for VirtualBox and a

paragraph each for VMware and Xen shows that he does make
use of his editorial prerogative.

Another thing that was curious to me was the treatment of the
boot process and of init systems. It makes sense to continue
to treat legacy init systems as well as upstart and systemd,
as there will be readers who must work on older systems. The
problem here is that the discussions of the different systems is
interlaced in a way that I find confusing, and I am familiar with
all three. I would have preferred a general discussion of the boot-
strap process and then a distinct section for each boot method,
treating how the user can view and interact with it.

That said, my personal weak points are in kernel tuning and
module management. A quick pass over those sections gave me a
number of tips to follow up to start filling in the gaps, with refer-
ences to more detail when I find the time.

The table of contents of the book concludes with three bonus
chapters that are available on the publisher’s web site. These
are short topics in downloadable PDF on Perl, PHP, and Python.
Again, I’m a little surprised to see the first two, but they make
sense for completeness’ sake. There are also PDFs with updates
specific to Ubuntu versions that were released or updated after
the manuscript went to print.

Ubuntu Unleashed 2019 Edition lives up to the author’s goals to
provide a resource for “those wanting to become intermediate or
advanced users.” It is a touchstone that you can use to find direc-
tion and move on when learning about the whole range of tasks
on a modern Ubuntu system.

Programming with Types: Examples in Typescript
Vlad Riscutia
Manning Publications, 2020, 336 pages
ISBN 978-1-61-729641-3

Reviewed by Mark Lamourine

It took me a while to figure out where to put Programming with
Types on my bookshelf. The other books I have read recently tend
to fit either on the programming language or cloud technology
shelves. Initially, I thought that it would sit next to my other
Typescript and web programming books, but it became clear
quickly that Typescript was really incidental to the content.
Programming with Types is really more about technique than
technology. It would not be out of place in an undergraduate
software engineering course.

Most books about imperative programming languages focus
on syntax and logical controls: conditionals, branching, itera-
tion, recursion, and the logical structures that the language
presents to implement them. Types and structures are pre-
sented as merely a way to represent and manipulate data, but

66    S P R I N G 2020  VO L . 45 , N O. 1 	 www.usenix.org

BOOKS

are subservient to the algorithm. Riscutia inverts the emphasis,
putting the data types up front and choosing the best algorithmic
techniques to suit the data.

The author presents types and strong typing as tools to prevent
errors and make the intent of the code clear to the reader. He
goes as far as calling the use of primitive numerical types with-
out semantic typing an anti-pattern called “primitive obses-
sion.” He claims that errors such as the Mars Climate Orbiter
error that caused the spacecraft to disintegrate in the Martian
atmosphere might have been prevented if the coders had used
numeric subtypes that indicated the unit. If, instead of float, they
had used subtypes Newton seconds and pound-force seconds,
the mismatch would have been caught by the compiler and would
have highlighted the need for a conversion function to make the
two sets of routines interact properly. While I agree that more
rigor in general coding practice would be a good thing, I’m not
sure I would go as far as calling the use of bare numeric types an
anti-pattern.

It is clear that Riscutia is conversant and interested in the
theory of typing and has the mathematical and logical rigor that
good strong typing requires. Weak type systems can make for
quick efficient coding, but they are, by design, prone to and even
accepting of the kinds of errors that can result. Writing well-
designed, strongly typed systems requires the coder to consider
carefully the signature of every function and, at times, to do
extra work to account for algorithms that are identical in all
ways but that they operate on trivially different types. Generic
type constructs exist precisely to address this but can be dif-
ficult to conceptualize and define well.

The author expects the reader to be at least conversant with all
of the techniques and styles that he addresses. He doesn’t try to
teach functional or object-oriented programming, or even class
definition and structure composition. He is entirely devoted to
understanding and managing the data relationships. He dips reg-
ularly into theory but not deeply. Advanced techniques such as
closures and promises get only a paragraph of exposition before
he begins to show how to use them and how they will respond.

In each chapter, Riscutia focuses on a coding technique that you
would find in a number of other books. He doesn’t advocate one
style over another. He starts, as you would expect, with primitive
types and then goes on to cover collections like arrays and
structures. There is a chapter on object orientation and one on
functional programming. Another talks about the type constructs
and techniques of meta-programming. The emphasis is on using
appropriate data types and using them in effective ways. This
change in perspective highlights the importance of properly
modeling the data in a way that I found interesting and enlight-
ening. It is easy to let the programming language features and
the algorithms drive a design, but in the end it is the data that
defines the job.

Programming with Types is a fresh breeze for an experienced
generalist software developer like myself. It is a welcome change
and may find its place next to some of the classics on my shelf.

UNIX: A History and a Memoir
Brian Kernighan
Kindle Direct Publishing, 2020, 183 pages
ISBN 978-1-695-97855-3

Reviewed by Rik Farrow

Brian Kernighan has written or co-authored many books over
the years, but this one is different. Using a conversational style,
Brian tells the story of UNIX—not just the operating system and
its core utilities, but the environment it grew in and the people
involved.

The memoir as part of the title is accurate, as this is the view-
point of an insider at Bell Labs in Murray Hill, working sur-
rounded by the people who created not just UNIX, but C, C++,
*roff, Programmer’s Workbench and Writer’s Workbench, yacc,
lex, awk, and countless other tools. As someone who needed
to know about UNIX in 1978 but didn’t encounter UNIX for
another five years, I found myself endlessly curious about not
just the operating system but the philosophy that obviously
influenced it.

Part of that overall attitude showed in the early man pages, suc-
cinct with a hint of dry humor, when all anyone had were the man
pages and USENIX meetings, as the Internet didn’t exist and
there were no technical books other than manuals and text-
books. Brian explains that the man pages were largely the work
of Dennis Ritchie and Doug McIlroy, and it’s their personalities
that provide the style found in the UNIX man pages that is so
difficult to mimic.

Brian came to Bell Labs as a programmer, with the majority of
his focus on publishing. He explains how crucial the ability to
produce technical reports, papers, and books was to the sur-
vival of UNIX in the first decade. He has already described the
minimal capabilities of the PDP 7 when telling of the writing of
UNIX by Ken Thompson, but I think we tend to forget that every-
thing was terribly primitive at the time, including the ability to
typeset technical documents. A high-end digital printer of that
era was a line printer that was ASCII-only. The ability to typeset
equations and diagrams was an enormous advance, and one that
Brian participated in by writing eqn and pic.

I enjoyed reading Brian’s tales, learning something about the
personalities of people I mostly knew by their creations. I do
wonder how many others will be as taken as I was by the histories,
as they grew up in an era where information is a quick online
search away. But reading the first-hand accounts dispelled many
of the myths surrounding the birth of UNIX and its associated

www.usenix.org	   S P R I N G 2020  VO L . 45 , N O. 1  67

BOOKS

parts. And we can only dream of being able to work at a place like
Bell Labs back in the days when the telephone monopoly could
afford to lavish resources on pure research and hiring prodigies.

There are weaknesses in a book like this one, in that Brian’s
focus is Bell Labs in Murray Hill, New Jersey. He mentions
USENIX, but focuses on its role in expanding Netnews, some-
thing that the various Labs actually supported, via providing
dial-up long distance connections used for UUCP mail and
Netnews. Brian talks about the importance of the AT&T lawsuit
in 1989 surrounding the BSD UNIX implementation, but misses
that the lawsuit was against BSDi and the Regents of the Uni-
versity of California. I found his explanation of the UNIX file
system a better match for NTFS, but that’s merely a quibble
alongside his other revelations.

Will we ever see the day where another Bell Labs-style incubator
exists? For a while I thought that Google might be that place,
even as Murray Hill programmers wound up working there
(Thompson, Pike, and Presotto, for example). Today, I believe we
need to look elsewhere, or give up on expecting another monop-
oly corporation to behave in a manner that benefits the public
more than its shareholders.

USENIX Supporters
USENIX Patrons

Bloomberg • Facebook • Google • Microsoft • NetApp

USENIX Benefactors
Amazon • Oracle • Thinkst Canary • Two Sigma • VMware

USENIX Partners
ProPrivacy • Restore Privacy • Top10VPN

Open Access Publishing Partner
PeerJ

