

;login:
V O L . 3 8 , N O . 3J U N E 2 0 1 3

File Systems
& Linux File System Evolution

via Patch Analysis
Lanyue Lu, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Shan Lu

& Interview with Ted Ts’o
Rik Farrow

& Ganeti: Cluster Virtualization
Manager
Guido Trotter and Tom Limoncelli

& Future Interfaces for Non-
Volatile Memory
Andy Rudoff

Columns
Practical Perl Tools: Constants
David Blank-Edelman

IPython and Notebook
David Beazley

Sampling and Monitoring
Dave Josephsen

For Good Measure: Calculating Risk
Dan Geer and Dan Conway

/dev/random: Clusters and Understanding
*nix File Permissions
Robert Ferrell

Book Reviews
Mark Lamourine and Trey Darley

Conference Reports
FAST ’13: 11th USENIX Conference on File
and Storage Technologies

F O R A C O M P L E T E L I S T O F U S E N I X A N D U S E N I X C O - S P O N S O R E D
E V E N T S , S E E W W W . U S E N I X . O R G / C O N F E R E N C E S

U P C O M I N G E V E N T S

2013 USENIX Federated Conferences Week
June 24–28, 2013, San Jose, CA, USA
www.usenix.org/conference/fcw13

USENIX ATC ’13: 2013 USENIX Annual Technical
Conference
June 26–28, 2013
www.usenix.org/conference/atc13

ICAC ’13: 10th International Conference on
Autonomic Computing
June 26–28, 2013
www.usenix.org/conference/icac13

HotPar ’13: 5th USENIX Workshop on Hot Topics in
Parallelism
June 24–25, 2013
www.usenix.org/conference/hotpar13

UCMS ’13: 2013 USENIX Configuration
Management Summit
June 24, 2013
www.usenix.org/conference/ucms13

8th International Workshop on Feedback Computing
June 25, 2013
www.usenix.org/conference/feedbackcomputing13

ESOS ’13: 2013 Workshop on Embedded
Self-Organizing Systems
June 25, 2013
www.usenix.org/conference/esos13

HotCloud ’13: 5th USENIX Workshop on
Hot Topics in Cloud Computing
June 25–26, 2013
www.usenix.org/conference/hotcloud13

WiAC ’13: 2013 USENIX Women in Advanced
Computing Summit
June 26–27, 2013
www.usenix.org/conference/wiac13

HotStorage ’13: 5th USENIX Workshop
on Hot Topics in Storage and File Systems
June 27–28, 2013
www.usenix.org/conference/hotstorage13

HotSWUp ’13: 5th Workshop on Hot Topics
in Software Upgrades
June 28, 2013
www.usenix.org/conference/hotswup13

USENIX Security ’13: 22nd USENIX Security
Symposium

August 14–16, 2013, Washington, D.C., USA
www.usenix.org/conference/usenixsecurity13

Workshops Co-located with USENIX Security ’13
EVT/WOTE ’13: 2013 Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections
August 12–13, 2013
www.usenix.org/conference/evtwote13

USENIX Journal of Election Technology
and Systems (JETS)
Published in conjunction with EVT/WOTE
www.usenix.org/jets
Submissions for Volume 1, Issue 2, due: August 6, 2013

CSET ’13: 6th Workshop on Cyber Security
Experimentation and Test
August 12, 2013
www.usenix.org/conference/cset13

HealthTech ’13: 2013 USENIX Workshop on Health
Information Technologies
Safety, Security, Privacy, and Interoperability of Health
Information Technologies
August 12, 2013
www.usenix.org/conference/healthtech13

LEET ’13: 6th USENIX Workshop on Large-Scale
Exploits and Emergent Threats
August 12, 2013
www.usenix.org/conference/leet13

FOCI ’13: 3rd USENIX Workshop on Free and Open
Communications on the Internet
August 13, 2013
www.usenix.org/conference/foci13

HotSec ’13: 2013 USENIX Summit on Hot Topics
in Security
August 13, 2013
www.usenix.org/conference/hotsec13

WOOT ’13: 7th USENIX Workshop on
Offensive Technologies
August 13, 2013
www.usenix.org/conference/woot13

LISA ’13: 27th Large Installation System
Administration Conference

November 3–8, 2013, Washington, D.C., USA
www.usenix.org/conference/lisa13

SESA ’13: 2013 USENIX Summit for Educators in
System Administration
C O - L O C AT E D W I T H L I S A ’ 1 3

November 5, 2013, Washington, D.C., USA
www.usenix.org/conference/sesa13
Submissions due: July 30, 2013

FAST ’14: 12th USENIX Conference on File and
Storage Technologies

February 17–20, 2014, Santa Clara, CA, USA
www.usenix.org/conference/fast14
Submissions due: September 26, 2013

E D I T O R
Rik Farrow
rik@usenix.org

M A N A G I N G E D I T O R
Rikki Endsley
rikki@usenix.org

C O P Y E D I T O R
Steve Gilmartin
proofshop@usenix.org

P R O D U C T I O N
Arnold Gatilao
Casey Henderson
Michele Nelson

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215,
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published bi-monthly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for a
subscription to ;login:. Subscriptions for non-
members are $90 per year. Periodicals postage
paid at Berkeley, CA, and additional offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2013 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designations
used by manufacturers and sellers to
distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those designations
appear in this publication and USENIX is aware
of a trademark claim, the designations have
been printed in caps or initial caps.

J U N E 2 0 1 3 V O L . 3 8 , N O . 3

E D I T O R I A L
2 Musings Rik Farrow

O P I N I O N
6 On Teaching Style and Maintainability Geoff Kuenning

F I L E S Y S T E M S
10 A Study of Linux File System Evolution

Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,
and Shan Lu

18 Ted Ts’o on Linux File Systems: An Interview
Rik Farrow

22 Shingled Magnetic Recording: Areal Density Increase Requires New
Data Management
Tim Feldman and Garth Gibson

C L U S T E R S
31 Ganeti: Cluster Virtualization Manager

Guido Trotter and Tom Limoncelli

37 PRObE: A Thousand-Node Experimental Cluster for Computer
Systems Research
Garth Gibson, Gary Grider, Andree Jacobson, and Wyatt Lloyd

H A R D WA R E
40 Programming Models for Emerging Non-Volatile

Memory Technologies
Andy Rudoff

C O L U M N S
46 Practical Perl Tools David Blank-Edelman

50 A PyCon Notebook David Beazley

55 iVoyeur Dave Josephsen

58 For Good Measure Dan Geer and Dan Conway

61 /dev/random Robert G. Ferrell

64 Notes

B O O K S
66 Book Reviews Mark Lamourine and Trey Darley

C O N F E R E N C E R E P O R T S
69 11th USENIX Conference on File and Storage Technologies (FAST ’13)

EDITORIAL

2  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

Musings
R I K F A R R O W

The trouble with the future is that it never arrives. For me, there is only
right now, with an imagined future some constant distance away in
the, uh, future. But things do change.

I love attending FAST, because some of my own roots are on the vendor side, and FAST
provides one of the best blends of academic and vendor research of any USENIX conference.
FAST ’13 was no exception, and when Rick Wheeler suggested I attend a particular BoF (one
I might have skipped), I discovered something interesting.

A Game Changer?
Andy Rudoff, now with Intel, once a Sun engineer, was already well into his presenta-
tion when I wandered in. Andy was enthusiastic, that was certain. But would Non-Volatile
Memory (NVM) really be the game changer that he was hinting at?

Not that Andy was really hinting at anything. His presentation, and his article in this issue,
was about adding two new interfaces for NVM. We already have two interfaces for NVM, in
the now familiar form of SSDs: a block and a file interface. What Andy was explaining relies
on there being a form of NVM that is addressable at the byte level, instead of the block level,
as with current Flash devices.

This suggestion got my attention. During HotOS 2011, Katelin Bailey presented a position
paper about systems built with NVM [1]. Imagine a system with gigabytes of byte-address-
able persistent memory. If you hibernate such a system, it can sleep using no power, but wake
up immediately with all its memory intact. You don’t need virtual memory, because you don’t
need to use disk for backing limited DRAM.

But there are also problems with this picture. For example, now we can safely assume that
rebooting a system clears memory (well, almost [2]), but if DRAM is replaced with NVM,
that assumption is no longer true; whatever got us into trouble before is still there.

Andy suggests two new interfaces to byte-addressable NVM: PM (persistent memory)
Volume Mode and PM File Mode. Although these might sound similar to the current ways we
have for accessing Flash, they are different in that they assume the CPU can perform load/
store instructions at the byte level, which is very different from the block-oriented Flash
we’ve been learning about and using for years.

In an interview [3], Intel’s Chief Technology Officer, Justin Rattner, said that new NVM will
have low latency, in the tens of nanoseconds. Just compare that to typical disk latency, which
is measured in milliseconds. Well, let’s see:

nanosecond = 10-9 vs. millisecond = 10-3

That would be quite a difference. I tried to pry more from Andy about just how much NVM
we might expect to have, but he couldn’t tell me—or if he could, I couldn’t tell you. You know,
the usual NDA conundrum. But my suspicion is that NVM could be a real game changer, if
the various technologies for creating this memory actually prove capable of being used in
cheap, reliable, fast, and dense devices.

Rik is the editor of ;login:.
rik@usenix.org

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 3

EDITORIAL
Musings

Shingles, Not on a Roof
Not that I am expecting terabytes (or tebibytes [4]) of affordable
PM anytime soon. Hard disk drives (HDDs) have managed to
grow in capacity at a rate of about 40% a year. But this growth is
going to hit a wall soon, as the ability to write sectors to ever nar-
rower tracks has become a serious problem.

HDD heads can read narrower tracks, but the magnetic field
used to record sectors disturbs nearby sectors, unless enough
space is left between the tracks. And it is this space that the
drive vendors are planning to get rid of. If you look at Figure 2 in
Tim Feldman’s article on page 22, you can at least get a feeling
for how much more space: perhaps a doubling of space per drive.
But this doubling (my guesstimate) comes with a price: sectors
will be overlapping. The overlapping sectors can be read easily
enough, but randomly writing a sector also means overwriting
overlapping sectors, and the loss of the data stored there.

Of course, losing data is not acceptable, so the plan for shingled
disks, where “shingling” refers to an overlap like we see in
shingled roofs, is to have firmware on these HDDs manage read-
ing and writing. If a random write must overwrite some sectors,
these need to be read first, so they can be rewritten. As sectors
get moved around, HDDs will need maps, like those used in the
Flash Translation Layers (FTLs) in SSDs. And this will mean
that shingled disks will behave more like SSDs in that their per-
formance will become more erratic, depending on the internal
state: Are there sectors that can be written now without having
to relocate data?

I asked Ted Ts’o, in an interview in this issue, what he, wear-
ing his file system developer and Google storage guy hat, thinks
about Shingled Magnetic Recording (SMR) disks. Ted wasn’t
very positive, likely because current SMR drives are slower than
non-SMR drives. He can foresee using these drives for archiving,
as they work well for sequential writes and later reads, but poorly
for random workloads.

The disk vendors want to get around this problem by exposing
more of the internals of SMR HDDs. Instead of having drive
firmware do all the work of relocating sectors and garbage col-
lection, their idea is to allow file system designers more control
over sector layout, even to the size of the shingled regions of
tracks, which are called bands.

Like the NVM interface, the SMR HDD interface requires some
changes to make this work, and both NVM and HDD vendors are
looking for input, as they work toward creating new standards.
Although it is more difficult for me to see SMR HDDs as being
as much as a game changer as replacing DRAM with persistent
memory, I wonder whether Ted just might be wrong about SMR.
Google File System (GFS) uses 64 megabyte files on top of ext4
with journaling disabled because it is fast, and they get their
reliability through redundant copies of data. But these files are (I

believe) write-once; if SMR drives could provide better perfor-
mance, if 64 MB bands were used instead of using ext4, I think
that Google just might be interested.

Many years ago, a friend who worked on IBM mainframes in a
bank let me look at some of their documentation. I discovered
that this mainframe allowed programmers to format sectors
to whatever size worked best with the length of the database
records their application used. Although being able to chose a
band size is not the same level of control once allowed IBM sys-
tems programmers, there is likely a real place for this.

The Lineup
We start out this issue with an article by Geoff Kuenning. After
FAST ’13, Geoff and I had lunch, and I shared some thoughts I’d
had about the keynote presentation by Kai Li, the founder of Data
Domain. Among other things, Li spoke about the importance
of being able to turn out production quality code, and I asked
Geoff what he thought about a very common occurrence during
CS research paper presentations. Often graduate students will
have completed an interesting project, but be unwilling to share
the code, for various reasons, which I found myself questioning.
Geoff agreed with me, as he believes that students need to be
taught to produce readable and maintainable code, whatever the
reason for writing it.

Geoff provides suggestions for both teaching better coding
practices, as well as writing better code. I did press Geoff for an
example of good code writing, but he was unable to find some
open source code he wanted to hold up as an exemplar. I found
that sad, as well as telling.

FAST began with a trio of papers about Linux file systems,
including the Best Paper winner. Lu et al. spent more than a year
analyzing all of the file system patches for six file systems for the
entire period of the 2.6 kernel. I found their insights fascinating,
although perhaps some should simply be expected. For example,
the most common reason for a patch was data corruption or sys-
tem crash, leaving me thinking, “Of course, how could you miss
problems like that!” But there are much more subtle issues—for
example, the large number of bugs found during error-handling
routines. By their very nature, these code paths are not executed
as often as non-error code paths, and forgetting to release
resources properly while handling errors turns out to be a big
problem, and one that anyone writing code might encounter.

I had met Ted Ts’o at LISA ’12 (he couldn’t attend FAST ’13), and
we started an email discussion that turned into an interview.
I had questions dating back to 1991 that I thought Ted could
answer, as well as questions relevant to the current state of file
systems in the Linux kernel.

I’ve already mentioned that Tim Feldman, with Garth Gib-
son, has written a lengthy article about SMR. We spent a lot of

4  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

EDITORIAL
Musings

time on this article, as the problem is difficult and as yet really
unsolved. There is one current solution, ShingledFS [5], but SMR
is really a new opportunity for file system designers.

Next up, Guido Trotter and Tom Limoncelli describe Ganeti.
Ganeti is a set of Python scripts and programs for manag-
ing VMs. Ganeti currently works with both KVM and Xen,
and based on its popularity at LISA ’12, I really pushed these
nice guys to write an article about it. Although there are other
methods for firing up, or migrating, VMs, both open source and
proprietary, I sensed that Ganeti was striking a chord with the
people who have tried it and that it was worth learning more
about.

Garth Gibson had been talking about providing real clusters
for use by CS researchers for (it seemed) years. Now, Garth and
others have access to several clusters of computers that had been
part of supercomputers used by the US Department of Energy.
The point of this program is to provide actual hardware for
testing distributed programming instead of simulations within
clouds, as clouds cannot provide consistency of performance
that can be matched from one run to the next. PRObE, however,
allows researchers to work on large, real clusters of up to 1,000
systems, complete with the appropriate supercomputer-style
network interconnect and storage.

I’ve already written about Andy Rudoff, and am happy he wrote
a clear article about potential interfaces for byte-addressable
NVM. While I can imagine other game changers to the current
von Neumann system architecture, NVM is much closer to
reality than anything I have imagined. I also welcome you to
imagine just what you might do if you could save to memory,
instead of a file.

David Blank-Edelman decided to be a bit more austere in his
approach to Perl. Well, if not austere, then Constant. David
discusses several approaches to having actual constants in Perl.
C programmers should be well aware of the benefit of being able
to define constants, and although constants are not part of Perl’s
core system, they can certainly be accommodated.

David Beazley wrote his column on his return from PyCon
2013. Dave covers IPython and Notebook, two hot topics at
the conference. IPython is a new Python shell that combines
features of common *nix shells with the Python prompt. I haven’t
gone that far into the Python world that I want to first cd then
execute some Python code on the directory’s contents, but Dave
shows how this can be done, with a little help from some addi-
tional modules. Notebook goes much further, being more like a
researcher’s notebook, à la Mathematica, with statistics, charts,
graphs, and both documentation and access to the shell.

Dave Josephsen discusses sampling from the perspective of
monitoring. Although it’s usually Elizabeth Zwicky showing
both knowledge and interest in statistics, Dave explains how

an understanding of sampling is important in monitoring,
especially when you have more data to watch than you can or
should be collecting.

Dan Geer has moved his long running column, “For Good Mea-
sure,” to ;login:, starting with this issue. He and his co-author,
Dan Conway, take a measured look at how to calculate risk. They
propose using an options trading model as providing a way to
quantify risk.

Robert Ferrell begins with a riff about clustering software, visits
high availability, then heads off wondering how best to explain
UNIX file permissions to people for whom a console window is
an alien notion.

Elizabeth Zwicky took this issue off, but we have book reviews
from Mark Lamourine and Trey Darley. Mark begins with a book
about Steampunk and the Maker culture, which really helped me
put both into perspective. Then he takes a look at Testable Java-
script, which appears to be valuable to any code writer, although
you do need familiarity with JS to get the most out of it. Finally,
Mark looks at a book on EPUB 3, one of the several formats used
today for electronic publishing.

Trey Darley begins with a book about the culture of cryptogra-
phy and the law. Not surprisingly, it turns out that the law treats
concepts like non-repudiation differently than cryptographers
think about it, or design for it. The focus of this book is on digital
signing, and Trey has good things to say about the book. Trey
briefly covers an equally lengthy book about testing physical
security in the form of lockpicking.

This issue includes the FAST ’13 reports, with much more on the
keynote by Kai Li and great summaries of paper and poster pre-
sentations. Ao Ma presented the first paper at FAST, which moti-
vated Kirk McKusick to add some of the features Ao described to
FreeBSD’s FFS that same day. Kirk wrote about this experience
in the April 2013 issue of ;login:.

Recently, I watched a feature on the PBS News Hour about
infants and children using touch-screen devices. Hanna Rosin
had written an article about children, including her own, using
touch-screen-based computer devices for The Atlantic maga-
zine [6]. While the interviewer appeared worried about children
spending too much time playing with computers, Hanna brushed
this off by saying parents need to control access when necessary.

I recalled an infant boy, perhaps two years old, playing with a
computer mouse in 1989 or so. The boy, who otherwise appeared
precocious, didn’t get the connection with moving the mouse
and the cursor moving on the screen of the Sun workstation. But
there is no disconnect when a child interacts with a touch-screen
device, like a tablet or smartphone. The child gets “natural”
results with gestures that touch or brush against the screen.

Perhaps we are living in the future. It just seems like now.

In return for being our “eyes and ears” on campus, representatives receive a complimentary membership in
 USENIX with all membership benefits (except voting rights), and a free conference registration once a year
(after one full year of service as a campus rep).

To qualify as a campus representative, you must:

n Be full-time faculty or staff at a four year accredited university

n Have been a dues-paying member of USENIX for at least one full year in the past

For more information about our Student Programs, contact
Julie Miller, Marketing Communications Manager, julie@usenix.org

www.usenix.org/students

Professors, Campus Staff, and Students—
do you have a USENIX Representative on your campus?

If not, USENIX is interested in having one!
The USENIX Campus Rep Program is a network of representatives at campuses around the world who provide
Association information to students, and encourage student involvement in USENIX. This is a volunteer program,
for which USENIX is always looking for academics to participate. The program is designed for faculty who directly
interact with students. We fund one representative from a campus at a time. In return for service as a campus
representative, we offer a complimentary membership and other benefits.

A campus rep’s responsibilities include:

n	 Maintaining a library (online and in print) of USENIX
publications at your university for student use

n Distributing calls for papers and upcoming event
brochures, and re-distributing informational emails
from USENIX

n Encouraging students to apply for travel grants to
conferences

n Providing students who wish to join USENIX with
information and applications

n Helping students to submit research papers to
 relevant USENIX conferences

n Providing USENIX with feedback and suggestions
on how the organization can better serve students

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 5

EDITORIAL
Musings

References
[1] Bailey et al., “Operating System Implications of Fast,
Cheap, Non-Volatile Memory”: http://www.usenix.org/events/
hotos11/tech/final_files/Bailey.pdf.

[2] J. Alex Halderman et al., “Lest We Remember: Cold Boot
Attacks on Encryption Keys”: http://static.usenix.org/event/
sec08/tech/full_papers/halderman/halderman_html/.

[3] Jack Clark, “Intel: Non-Volatile Memory Shift Means Chips
Need an Overhaul,” Sept 13, 2012: http://www.zdnet.com/
intel-non-volatile-memory-shift-means-chips-need-an-
overhaul-7000004221/.

[4] http://en.wikipedia.org/wiki/Tebibyte.

[5] Anand Suresh, Garth Gibson, Greg Ganger, “Shingled
Magnetic Recording for Big Data Applications,” Anand Suresh.
Garth Gibson. Greg Ganger. CMU-PDL-12-105, May 2012:
www.pdl.cmu.edu/PDL-FTP/FS/CMU-PDL-12-105.pdf.

[6] Rosin, “The Touch-Screen Generation,” The Atlantic,
March 20, 2013: http://www.theatlantic.com/magazine/
archive/2013/04/the-touch-screen-generation/309250/.

6  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

OPINIONOn Teaching Style and Maintainability
G E O F F K U E N N I N G

Geoff Kuenning spent 15 years
working as a programmer before
changing directions and joining
academia. Today he teaches
computer science at Harvey

Mudd College in Claremont, California, where
he has developed a reputation for insisting
that students must write readable software,
not just working code. When not teaching or
improving his own programs, he can often be
found trying—and usually failing—to conquer
nearby Mount Baldy on a bicycle.
geoff@cs.hmc.edu.

Computer science has existed as a separate discipline for more than 50
years, and in that time we have learned a lot about what is important
to the field and how to teach it to new entrants. We have long agreed

that every self-respecting computer scientist should have a solid grounding
in fundamental areas such as algorithms, discrete mathematics, program-
ming languages, data structures, operating systems, software engineering,
etc. But in this article, I will argue that there is a major missing component:
style and readability. I’ll try to convince you that style matters, and I will
provide suggestions for how we might encourage better style from both new
and experienced software developers.

The list of what we teach incoming students is long, and there are many critical concepts
that they need to absorb if they are to be effective in our field. Real programmers use data
structures every week, and if they don’t have a strong grounding in algorithms, they’ll make
a major blunder every month. But the essence of software engineering is in the code, and too
often we find ourselves wading through the software equivalent of this famous gem:

“In the Nuts (unground), (other than ground nuts) Order, the expression nuts shall have refer-
ence to such nuts, other than ground nuts, as would but for this amending Order not qualify
as nuts (unground) (other than ground nuts) by reason of their being nuts (unground).”

(If you know what that sentence means, please write me. I’ve been trying to figure it out for
years.)

The issue of comprehensibility is a huge hole in our current education program. Although
the 2013 draft ACM curriculum mentions “documentation and style” as a required compo-
nent of any CS education, the phrase is buried on page 147 as almost an afterthought, given
no more attention than power sets and HTTP. (Is HTTP really so fundamental that it even
deserves mention?) I claim that this neglect of style is akin to teaching English by concen-
trating on the common plot devices used in Hollywood thrillers—useful to those working in
that specific area, but not to students who need to learn the fundamentals before attempting
advanced work.

Think about it for a minute. How much of your programming time is spent writing new
code, from scratch? Be honest. Is it ten percent? Five? Less? And how much time is spent
working on existing code—trying to understand it, debugging it, adding shiny new fea-
tures? (Most of us love adding features, because that’s one of the rare times we get to write
substantial new stuff.)

The reality is that we read code every day: sometimes our own, sometimes written by some-
body else, and frequently a blend of the two. Reading code dominates our lives, and it only
makes sense that we should try to help ourselves out by making our code easy to read. Even
so, too many of us forget that fact and fall into the lazy trap of writing something that we
understand at the moment but that won’t make sense when we return to it in a year or two.

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 7

OPINION
On Teaching Style and Maintainability

For example, I found the following snippet (slightly shortened for
this article) in a program I use on a daily basis:

if (fw < 1)

 fw = 1;

if (fh < 1)

 fh = 1;

if (x + ww - fw > sw)

 x -= ww - fw;

else

 x -= fw;

if (x < 0)

 x = 0;

if (y + wh - fh > sh)

 y -= wh - fh;

else

 y -= fh;

if (y < 0)

 y = 0;

Wow. To be fair, this is windowing code, so we can assume the
meanings of the suffixes “w” and “h”. And the programmers at
least had the sense to indent properly (and in the original they
used curly braces consistently). But was it really necessary to
limit the variable names to single characters, so that the reader
must guess their purpose? Why not use max for all the limit-
setting? Why are x and y limited to 0, but fw and fh to 1? And
perhaps it would be helpful to add a comment explaining why,
if x + ww - fw exceeds sw, we subtract that quantity (effectively
adding fw), but otherwise we ignore ww and subtract fw! There’s
nothing nearby that gives a hint as to what’s going on here.

The Problem
The programmers in the above case were far from incompe-
tent. And they were clearly trying to write maintainable code;
there are signs of care throughout the program. But in the end
they produced something almost incomprehensible. What
went wrong?

I believe that the fundamental difficulty is that they weren’t
taught how to understand what a programmer unfamiliar with
the code needs. They knew what the variables were for, so single-
letter reminders were sufficient. They knew why they were
adjusting x and y in such an odd fashion, and it never occurred to
them that an explanation might be useful. So somebody else who
is trying to fix a bug in this program is left to spend hours tracing
calls and analyzing the logic, or to step through with a debugger,
or (all too often) to guess “Maybe if I change the - = to a +=, things
will start working, and it’s quicker to recompile and test than to
figure out what’s going on.” But of course that hasty approach
often introduces subtle bugs elsewhere.

And why don’t programmers understand the needs of readers?
There can be many causes, including inexperience, poor skills at
explaining things, and even arrogance (“If you don’t understand
my code, you must just be stupid”). Some of these causes are dif-
ficult to address (although the world would probably be a better
place if we could ship all the arrogant programmers to a desert
island to argue amongst themselves about who is the smartest).
But we can begin by doing a better job of teaching style.

Unfortunately, there’s a chicken-and-egg problem involved:
Relatively few academics have the background necessary to
understand how to write maintainable code. The typical career
path for a university professor is to go directly from an under-
graduate degree to graduate school, and from there straight
into a tenure-track position. Undergraduate students usually
work only on their own code, and normally only on small pro-
grams. Graduates may work a little bit on someone else’s code,
but eventually they have to develop their own as part of a dis-
sertation, and although that code may be massive (especially
in systems-related specialties), it doesn’t have to work particu-
larly well and rarely has a lifetime beyond the awarding of a
PhD. Because grad students spend 99% of their time working
on their own code, which they necessarily understand inti-
mately, they can get away with leaving things uncommented,
choosing cryptic variable names, creating disastrously tangled
logic, and even worse coding practices.

The result is that many new professors have only a vague idea
of what good, maintainable code should look like. Even if they
are committed to the concept of good style (and many are), their
inexperience makes them poor judges of quality. It is as if we
asked a literature professor to teach novel-writing when they
had written only one unpublished, un-critiqued book in their
lives; no matter how good their intentions, we would get a few
great teachers and a plethora of extremely bad ones.

In the end, students who graduate with a bachelor’s degree have
spotty educations. They may be fantastic at algorithm analysis,
but many write code so bad that their new employers must spend
months or even years retraining them before they can be trusted
to work alone. And in many cases, their bad habits lead to flawed
designs, bugs, and security holes in shipped software.

A Solution?
What can be done to improve the situation? Although it’s a tough
nut to crack, I believe there are several approaches we can take.
Much of the solution falls in the laps of colleges and universities,
which, after all, have a primary mission of teaching young people
how to succeed in our field.

First, we should make maintainability and coding style an
important part of the grade on tests and especially on homework.
Grading style is labor-intensive, so it’s easy to fall into the trap

8  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

OPINION
On Teaching Style and Maintainability

of only grading functionality (often with automated tools). But
as I tell my own students, a perfectly working spaghetti program
is worthless because it can’t be enhanced, whereas a slightly
broken but wonderfully readable program is priceless because
any half-decent programmer can fix the bugs and the result will
be useful for years to come. So it’s worth hiring extra TAs and
training them to recognize good coding practices. (You will have
to train them at first, because they’ve come up through the same
style-doesn’t-matter ranks.)

Second, find ways to encourage students to read code. One of the
best ways to learn English writing is to read the great authors,
and the same holds true for software. Professors should provide
their students with large sample programs and require them to
be read and understood. Reading good code has a double benefit:
the code provides examples of how things should be done, and
it develops a skill that is essential for anyone embarking on a
career in computing. (Exceptionally demanding—or downright
mean—professors might also assign students to work with some
astoundingly bad code, which in my experience quickly con-
vinces students that readability matters. The Daily WTF (http://
thedailywtf.com/Series/CodeSOD.aspx) is a good source of brief
examples of bad programming, although many of the articles are
more concerned with weak logic than unreadability.)

Third, we need to recognize the importance of industrial experi-
ence for our faculty. When universities hire professors, they
should give preference to people who have worked on real pro-
duction code rather than to those who charged straight through
to a PhD without ever taking their eye off the ball. It doesn’t take
much; even a year or two in the trenches will do wonders to open
a young student’s eyes. (And the wise researcher will choose stu-
dents who have a bit of industrial background; not only will they
eventually become better faculty candidates, their own research
projects will go more smoothly.)

Fourth, encourage pair programming in school settings. Work-
ing with a partner is a great way to learn how to explain your
code to others and how to write in a more readable fashion.
Many colleges and universities have already introduced pair
programming in CS courses, so this recommendation is easy to
implement.

Fifth, when bringing new grad students onto a project, assign
them to maintain and enhance existing code. For example,
when I joined a research group as a new grad student, we were
just starting a push to turn our researchware into a robust
system that we could use internally without endless crashes.
In addition to working on my own research, I spent most of a
year fixing bugs, which gave me an education in the system
that couldn’t have been duplicated any other way. The end
result was that we had working software and all of the students
involved had a practical understanding of maintainable code.

Additionally, the original author got useful feedback on the
quality of what he or she had written.

Sixth, we should make it clear to our students that “functionality
first” is not an acceptable design paradigm. As part of that, we
should discourage participation in functionality-only program-
ming competitions and work to develop maintainability-focused
ones. (See below for how industry can help with this goal.)

Finally, I believe that all schools should require a software
engineering course as part of the standard curriculum, and
that the course should teach style and maintainability.

Industry’s Contribution
Although our post-secondary educational system carries the
primary burden of developing new computer scientists, industry
can do some things to help change the current situation.

First, when interviewing job candidates, especially new gradu-
ates, find ways to discover whether they can write good code.
Famous puzzles may tell you how someone approaches a tricky
problem, but they will do little to reveal whether their solu-
tion will be something your company can live with for the next
decade. How much of your code base was written by a whiz kid
who left an unmaintainable mess behind? Wouldn’t it have been
better to hire someone who worked slightly slower, but produced
solid, readable code with a simple API? If you test on style, you
might just find that jewel of an employee. And I can promise you
that if you regularly test new graduates on the quality of their
code, word will get back to their younger peers, who will then
develop a strong interest in learning how to pass those tests.

Second, encourage professors to get more industry experience,
ideally experience working on existing code. One way to do this
is to reach out to faculty—especially young faculty—to offer them
sabbatical positions or consulting opportunities. Many profes-
sors enjoy coding, are unable to do it on a daily basis, and would
welcome the chance to get their hands dirty from time to time.
There is nothing like experience with existing code—especially
poor code—to teach the importance of style.

Third, think about ways to promote style as a first-order factor.
Academia and industry sponsor lots of exciting programs for
young students, such as the Google Summer of Code, the ACM
Programming Competition, and the Netf lix Prize. Unfortu-
nately, the usual emphasis is on “Does it work?” rather than
“Can we make this work for a decade?” A contest that required
maintainability as well as innovation would be harder to judge,
but it would do wonders to make students think about the long-
term characteristics of their work, especially if a monetary
reward were involved.

Fourth, if you don’t already do code reviews, institute them.
Programmers hate code reviews because they’re embarrass-

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 9

OPINION
On Teaching Style and Maintainability

ing—which is precisely why they’re needed. Even the best coders
can benefit from an outside eye, and if the code is good, we can
all learn from it. This is one of the reasons pair programming
has become so popular; it offers an instant, built-in code review
process. But even in a pair-programming shop, separate code
reviews can further improve quality.

What Can You Do?
Not all of us are in a position to make the changes suggested
above. But we can still change ourselves and try to produce bet-
ter code. First, read a good book on style. I’m fond of Kernighan
and Plauger’s dated but still relevant classic, The Elements of
Programming Style, but there are many alternatives.

Second, learn from the programs you work with. Has the author
made your life easy or difficult? Can you figure out what a func-
tion does without digging deep into the call tree? Is the informa-
tion you want buried in a maze of macros, function pointers and
virtual function calls, global variables, and messy data struc-
tures? Or is everything laid out so elegantly that you wish you
could take credit?

Third, when you return to one of your own programs from
several years ago, do the same analysis, and be ruthless. Can you
figure out what you did, and why you did it? Is there a simpler
and clearer way to do things? Has your code grown and changed
over time, so that some code paths are obsolete?

Fourth, show some of your code to a colleague and ask for hon-
est feedback. Do you have enough comments? Are your variable
names open to misinterpretation? Does it take ten minutes to
figure out that clever for loop you were so proud of, the one with
the null body and the tricky use of the side effects of ++? I got
slapped down for that last one just a couple of weeks ago, and
justifiably so. There’s always room for learning.

Is It Hopeless?
As I said above, I don’t think we are facing an easy task. When
the ACM contest was first announced, I wrote a letter (I believe
to the ACM Transactions on Computer Systems; unfortunately
the ACM Digital Library doesn’t seem to archive letters) sug-
gesting that encouraging students to write hacked-up throw-
away code was unwise, and perhaps the contest should instead
reward what real programmers do. The suggestion was disdain-
fully dismissed, and 35 years later we are still lionizing under-
graduates for solving toy puzzles with incomprehensible code
that will be discarded the next day, never to be seen again. Is this
really what we want to encourage? Are these the people you want
to hire?

Nevertheless, I think progress can be made. Some of my sug-
gestions above are easy to implement; none are impossible. We
should start with baby steps, changing the world one discarded

goto at a time. In fact, we have already started; the worst ideas of
my youth are long gone, and no modern programmer would dare
write unindented code (though, sadly, inconsistency is still ram-
pant). So let us go forth from here and set an example by insist-
ing that our students will learn to code well, our own code will
be exemplary, and our new hires will earn their jobs by showing
that what they write will outlast their careers.

xkcd

xkcd.com

10  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

FILE SYSTEMSA Study of Linux File System Evolution
L A N Y U E L U , A N D R E A C . A R P A C I - D U S S E A U , R E M Z I H . A R P A C I - D U S S E A U ,
A N D S H A N L U

Lanyue Lu is a PhD student
in Computer Sciences at the
University of Wisconsin—
Madison. His research interests
include file systems, storage

systems, and cloud computing.
ll@cs.wisc.edu

Andrea Arpaci-Dusseau is
a Professor and Associate
Chair of Computer Sciences at
the University of Wisconsin-
Madison. Andrea co-leads

a research group with her husband, Remzi
Arpaci-Dusseau, and has advised 13 students
through their PhD dissertations. She is currently
a UW-Madison Vilas Associate and received
the Carolyn Rosner “Excellent Educator” award;
she has served on the NSF CISE Advisory
Committee and as faculty Co-director of the
Women in Science and Engineering (WISE)
Residential Learning Community. 
dusseau@cs.wisc.edu

Remzi Arpaci-Dusseau is a
Professor in the Computer
Sciences Department at the
University of Wisconsin—
Madison. He received his BS in

Computer Engineering summa cum laude from
the University of Michigan, Ann Arbor, and
MS and PhD in Computer Science from the
University of California, Berkeley, under advisor
David Patterson. Remzi co-leads a research
group with his wife, Andrea Arpaci-Dusseau.
Remzi also cares deeply about education and
has won the SACM Student Choice Professor
of the Year award four times and the Carolyn
Rosner “Excellent Educator” award once for his
efforts in teaching operating systems.
remzi@cs.wisc.edu

Shan Lu is an Assistant Professor in the Computer Sciences Department at the University
of Wisconsin—Madison. Her research interests include software reliability and computer
systems. shanlu@cs.wisc.edu

We conducted a comprehensive study of Linux file system evolu-
tion by analyzing eight years of changes across 5,079 patches,
deriving numerous new (and sometimes surprising) insights into

the file-system development process. Our observations should be useful to
file-system developers, systems researchers, and tool builders. Careful study
of these results should bring about a new generation of more robust, reliable,
and performant file systems.

A file system is not a static entity. Its code base constantly evolves through the addition of
new features, repair of uncovered bugs, and improvement of performance and reliability.
For young file systems, code sizes increase significantly over time. For example, ext4 nearly
doubled its code size from Linux 2.6.19 (when it was introduced) to Linux 2.6.39. Even for
ext3 (a stable file system), size increased more than 30% within eight years in Linux 2.6.

Patches describe how one version transforms to the next version and, thus, precisely rep-
resent the evolution of a file system code base. For open source file systems, every patch is
available online, enabling us carefully to analyze in great detail how file systems change over
time. A new type of “system archeology” is thus possible.

A comprehensive study of file system evolution can quantitatively answer many important
questions. For example, where does the complexity of such systems lie? What types of bugs
are dominant? Which performance techniques are utilized? Which reliability features exist?
Is there any similarity across different file systems?

Such a study is valuable for different communities. For file system developers, they can learn
from previous bug patterns to avoid repeating mistakes. They can improve existing designs
by borrowing popular performance and reliability techniques. For system researchers, this
study can help them identify real problems that plague existing systems, and match their
research to reality. For tool builders, our study provides thousands of bug patterns, bug con-
sequences, and performance and reliability techniques. These large-scale statistics can be
leveraged to build various useful tools.

We studied six major file systems of Linux, including XFS, ext4, Btrfs, ext3, ReiserFS,
and JFS. Readers may wonder why we only studied local file systems when distributed
file systems are becoming increasingly important. We note that local file systems remain
a critical component in modern storage, given that many recent distributed file systems,
such as Google GFS and Hadoop DFS, all replicate data objects (and associated metadata)
across local file systems. On smartphones and personal computers, most user data is also
managed by a local file system; for example, Google Android phones use ext4 and Apple’s
iOS devices use HFSX.

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 11

FILE SYSTEMS
A Study of Linux File System Evolution

Our study is based on manual patch inspection. We analyzed all
patches of six file systems in Linux 2.6 multiple times. We have
turned our manual analysis into an annotated data set, which
enables us quantitatively to evaluate and study file systems in
various aspects. We easily can analyze what types of patches
exist, what the most common bug patterns are, how file systems
reduce synchronization overhead, how file systems check for
metadata corruption, and other interesting properties.

We make the following major observations:

◆◆ Bugs are prevalent in both young and mature file systems.

◆◆ Among these bugs, semantic bugs dominate.

◆◆ Over time, the number of bugs does not diminish, but rather
remains a constant in a file system’s lifetime.

◆◆ Data corruption and system crashes are the most common bug
consequences.

◆◆ Metadata management has high bug density.

◆◆ Failure paths are particularly error-prone.

◆◆ The same performance techniques are used across file systems,
whereas reliability techniques are included in a more ad hoc
manner.

More results and analysis are discussed in our FAST ’13 paper
[3]. Another outcome of our work is an annotated data set of file-
system patches, which we make publicly available for further
study (at http://www.cs.wisc.edu/adsl/Traces/fs-patch).

Methodology
We chose a diverse set of file systems: XFS, ext4, Btrfs, ext3,
ReiserFS, and JFS. These file systems are developed by different
groups of people, use various techniques, and even represent a
range of maturity. For each file system, we conducted a com-
prehensive study of its evolution by examining all patches from
Linux 2.6.0 (Dec ’03) to 2.6.39 (May ’11). We manually analyzed
each patch to understand its purpose and functionality, examin-
ing 5,079 patches in total.

Each patch contains a patch header, a description body, and
source-code changes. The patch header is a high-level sum-
mary of the functionality of the patch (e.g., fixing a bug). The
body contains more detail, such as steps to reproduce the bug,
system configuration information, proposed solutions, and so
forth. Given these details and our knowledge of file systems,
we categorize each patch along a number of different axes, as
described later.

Listing 1 shows a real ext3 patch. We can infer from the header
that this patch fixes a null-pointer dereference bug. The body
explains the cause of the null-pointer dereference and the loca-
tion within the code. The patch also indicates that the bug was
detected with Coverity [1].

[PATCH] fix possible NULL pointer in fs/ext3/super.c.

In fs/ext3/super.c::ext3_get_journal() at line 1675

`journal’ can be NULL, but it is not handled right

(detect by Coverity’s checker).

- /fs/ext3/super.c

+++ /fs/ext3/super.c

@@ -1675,6 +1675,7 @@ journal_t *ext3_get_journal()

1 if (!journal){

2 printk(KERN_ERR “EXT3: Could not load ... “);

3 iput(journal_inode);

4 + return NULL;

5 }

6 journal->j_private = sb;

Listing 1: An ext3 patch

This patch is classified as a bug (type=bug). The size is 1
(size=1), as one line of code is added. From the related source
file (super.c), we infer the bug belongs to ext3’s superblock
management (data-structure=super). A null-pointer access is a
memory bug (pattern=memory,nullptr) and can lead to a crash
(consequence=crash).

Limitations: Our study is limited by the file systems we chose,
which may not reflect the characteristics of other file systems.
We only examined kernel patches included in Linux 2.6 mainline
versions, thus omitting patches for ext3, JFS, ReiserFS, and XFS
from Linux 2.4. As for bug representativeness, we only studied
the bugs reported and fixed in patches, which is a biased subset;
there may be (many) other bugs not yet reported.

Major Results
In this section, we present our major study results of bug and
performance patches. Our results are illustrated around several
key questions in the following sections.

What Do Patches Do?
We classified patches into five categories: bug fixes (bug), per-
formance improvements (performance), reliability enhance-
ments (reliability), new features (feature), and maintenance
and refactoring (maintenance). Each patch usually belongs to a
single category.

Figure 1(a) shows the number and relative percentages of patch
types for each file system. Note that even though file systems
exhibit significantly different levels of patch activity (shown
by the total number of patches), the percentage breakdowns of
patch types are relatively similar.

12  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

FILE SYSTEMS
A Study of Linux File System Evolution

Maintenance patches are the largest group across
all file systems (except Btrfs, a recent and not-yet-
stable file system). These patches include changes to
improve readability, simplify structure, and uti-
lize cleaner abstractions; in general, these patches
represent the necessary costs of keeping a complex
open-source system well-maintained. Because main-
tenance patches are relatively uninteresting, we do
not examine them further.

Bug patches have a significant presence, comprising
nearly 40% of patches across file systems. Not sur-
prisingly, Btrfs has a larger percentage of bug patches
than others; however, stable and mature file systems
(such as ext3) also have a sizable percentage of bug
patches, indicating that bug fixing is a constant in a
file system’s lifetime (see “Do Bugs Diminish Over
Time?” below).

Both performance and reliability patches occur as
well, although with less frequency than maintenance
and bug patches. They reveal a variety of the same
techniques used by different file systems. Finally,
feature patches account for a small percentage of total
patches; but, most of feature patches contain more lines
of code than other patches.

What Do Bugs Look Like?
We partitioned file-system bugs into four categories
based on their root causes. The four major categories
are incorrect design or implementation (semantic),
incorrect concurrent behaviors (concurrency), in-
correct handling of memory objects (memory), and
missing or wrong error code handling (error code).
The detailed classification is shown in Table 1. Fig-
ure 1(b) shows the total number and percentage of
each type of bug across file systems. There are about
1,800 bugs, providing a great opportunity to explore
bug patterns at scale.

Semantic bugs dominate other types (except for
ReiserFS). Most semantic bugs require file-system
domain knowledge to understand, detect, and fix;
generic bug-finding tools (e.g., Coverity [1]) may have
a hard time finding these bugs. An example of a logic
bug is shown in S1 of Table 2: find_group_other()
tries to find a block group for inode allocation, but
does not check all candidate groups; the result is a
possible ENOSPC error even when the file system has
free inodes.

Concurrency bugs account for about 20% of bugs on
average across file systems (except for ReiserFS),
providing a stark contrast to user-level software in

Figure 1: This figure shows the distribution of patch types and bug patterns. The
total number of patches is on top of each bar.

Table 1: Bug Pattern Classification. This table shows the classification and definition
of file-system bugs.

Patch Type (a) Bug Pattern (b)

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 13

FILE SYSTEMS
A Study of Linux File System Evolution

which fewer than 3% of bugs are concurrency-related [2]. Rei-
serFS stands out along these measures because of its transition,
in Linux 2.6.33, away from the Big Kernel Lock (BKL), which
introduced a large number of concurrency bugs. An example of
an atomicity violation bug in ext4 is shown in C1 of Table 2. For
this bug, when two CPUs simultaneously allocate blocks, there is
no protection for the i_cached_extent structure; this atomicity
violation could thus cause the wrong location on disk to be read
or written. A simple spin-lock resolves the bug.

There are also a fair number of memory-related bugs in all file
systems; their percentages are lower than that reported in user-
level software [2]. Many research and commercial tools have
been developed to detect memory bugs [1, 5], and some of them
are used to detect file-system bugs. An example of a null-pointer
dereference bug is shown in M1 of Table 2; a return statement is
missing, leading to a null-pointer dereference.

Error code bugs account for only 10% of total bugs. A missing
error code example is shown in E1 of Table 2. The routine posix_

acl_from_disk() could return an error code (line 2); however,
without error checking, acl is accessed and thus the kernel
crashes (line 3).

Do Bugs Diminish Over Time?
File systems mature from the initial development stage to the
stable stage over time, by applying bug-fixing and performance
and reliability patches. Various bug detection and testing tools
are also proposed to improve file-system stability. A natural

question arises: Do file-system bug patterns change over time
and, if so, in what way?

Overall, our results (Figure 2) show that the number of bugs does
not die down over time (even for stable file systems), but rather
ebbs and flows. A great example is XFS, which under constant

Figure 2: Bug Pattern Evolution. This figure shows the bug pattern evolu-
tion for each file system over all versions.

Table 2: Code Examples. This table shows the code examples of bug and performance patches.

14  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

FILE SYSTEMS
A Study of Linux File System Evolution

development goes through various cycles of higher and lower
numbers of bugs. A similar trend applies to ext3. For ext3, a
new block reservation algorithm was added at Linux 2.6.10, and
extended attributes in inodes were added at Linux 2.6.11. There-
fore, a surge of bug patches are related to these new features.
Similar things happened at 2.6.17, where a new multiple block
allocation algorithm was introduced. Then, many related bug
patches followed. At Linux 2.6.38, the spike is because ext3 fixed
multiple error-handling bugs.

New file systems, such as ext4 and Btrfs, have a high number of
bugs at the beginning of their lifetime. JFS and ReiserFS both
have relatively small developer and user bases compared to the
more active file systems XFS, ext4, and Btrfs. JFS does experi-
ence a decline in bug patches.

Within bugs, the relative percentage of semantic, concurrency,
memory, and error code bugs varies over time but does not con-
verge. Interesting exceptions occasionally arise (e.g., the BKL
removal from ReiserFS led to a large increase in concurrency
bugs in 2.6.33).

What Consequences Do Bugs Have?
As shown in Figure 1(b), there are a significant number of bugs
in file systems. But how serious are these file-system bugs?
We now categorize each bug by impact; such bug consequences

include severe ones (data corruption, system
crashes, unexpected errors, deadlocks, system
hangs, and resource leaks) and other wrong
behaviors.

Figure 3(a) shows the per-system break-
downs. If the patch mentions that the crash
also causes corruption, then we classify this
bug with multiple consequences. Data cor-
ruption is the most predominant consequence
(40%), even for well-tested and mature file
systems. Crashes account for the second larg-
est percentage (20%); most crashes are caused
by explicit calls to BUG() or Assert() as well as
null-pointer dereferences. Unexpected errors
and deadlocks occur quite frequently (just
below 10% each on average), whereas other bug
consequences arise less often. For example,
exhibiting the wrong behavior without more
serious consequences accounts for only 5-10%
of consequences in file systems, whereas it is
dominant in user applications [2].

Where Does Complexity Lie?
The code complexity of file systems is grow-
ing. The original FFS had only 1,200 lines of

code; modern systems are notably larger, including ext4 (29K
LOC), Btrfs (47K LOC), and XFS (64K LOC). Several funda-
mental questions are germane: How are the code and bugs
distributed? Does each logical component have an equal degree
of complexity?

File systems generally have similar logical components, such as
inodes, superblocks, and journals. To enable fair comparison,
we partition each file system into nine logical components: data
block allocation (balloc), directory management (dir), extent
mapping (extent), file read and write operations (file), inode
metadata (inode), transactional support (trans), superblock
metadata (super), generic tree procedures (e.g., insert an entry)
(tree) and other supporting components (other).

Figure 4 shows the percentage of bugs versus the percentage of
code for each of the logical components across all file systems
and versions. Within a plot, if a point is above the y = x line, it
means that a logical component (e.g., inodes) has more than its
expected share of bugs, hinting at its complexity; a point below
said line indicates a component (e.g., a tree) with relatively
few bugs per line of code, thus hinting at its relative ease of
implementation.

We make the following observations. First, for all file systems,
the file, inode, and super components have a high bug density.
The file component is high in bug density either due to bugs on

Figure 3: This figure displays the breakdown of bug consequences and performance patches. The
total number of consequences and patches is shown on top of each bar. A single bug may cause
multiple consequences; thus, the number of consequences instances is slightly higher than that of
bugs in Figure 1(b).

Bug Consequences (a) Performance Patches (b)

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 15

FILE SYSTEMS
A Study of Linux File System Evolution

the fsync path (ext3) or custom file I/O routines added for higher
performance (XFS, ext4, ReiserFS, JFS), particularly so for
XFS, which has a custom buffer cache and I/O manager for scal-
ability. The inode and superblock are core metadata structures
with rich and important information for files and file systems,
which are widely accessed and updated; thus, it is perhaps
unsurprising that a large number of bugs arise therein (e.g.,
forgetting to update a time field in an inode, or not properly using
a superblock configuration flag).

Second, transactional code represents a substantial percentage
of each code base (as shown by the relatively high x-axis values)
and, for most file systems, has a proportional amount of bugs.
This relationship holds for ext3 as well, even though ext3 uses
a separate journaling module (JBD); ext4 (with JBD2, adding a
transaction checksum to JBD) has a slightly lower percentage
of bugs because it was built upon a more stable JBD from Linux
2.6.19. In summary, transactions continue to be a double-edged
sword in file systems; whereas transactions improve data con-
sistency in the presence of crashes, they often add many bugs
due to their large code bases.

Third, the percentage of bugs in tree components of XFS, Btrfs,
ReiserFS, and JFS is surprisingly small compared to code size.

One reason may be the care taken to implement such trees (e.g.,
the tree code is the only portion of ReiserFS filled with asser-
tions). File systems should be encouraged to use appropriate data
structures, even if they are complex, because they do not induce
an inordinate amount of bugs.

Do Bugs Occur on Failure Paths?
Many bugs we found arose not in common-case code paths
but rather in more unusual fault-handling cases. File systems
need to handle a wide range of failures, including resource
allocation, I/O operations, silent data corruption, and even
incorrect system states. These failure paths have a unique code
style. Goto statements are frequently used. Error codes are
also propagated to indicate various failures detected. We now
quantify bug occurrences on failure paths; Table 3 presents our
accumulated results.

As we can see from the Table 3a, roughly a third of bugs are
introduced on failure paths across all file systems. Even mature
file systems such as ext3 and XFS make a significant number of
mistakes on these rarer code paths.

When we break it down by bug type in Table 3b, we see that
roughly a quarter of semantic bugs occur on failure paths. Once
a failure happens (e.g., an I/O fails), the file system needs to free
allocated disk resources and update related metadata properly;
however, it is easy to forget these updates, or to perform them
incorrectly. An example of a semantic bug on failure path is
shown in F1 of Table 2. When ext4 detects multiple resizers run
at the same time, it forgets to stop the journal to prevent poten-
tial data corruption.

A quarter of concurrency bugs arise on failure paths. Sometimes,
file systems forget to unlock locks, resulting in deadlock. More-
over, when file systems output errors to users, they sometimes
forget to unlock before calling blocking error-output functions
(deadlock). These types of mistakes rarely arise in user-level
code [4].

For memory bugs, most resource-leak bugs stem from forget-
ting to release allocated resources when I/O or other failures
happen. There are also numerous null-pointer dereference bugs
that incorrectly assume certain pointers are still valid after a

Figure 4: File System Code and Bug Correlation. This figure shows the
correlation between code and bugs. The x-axis shows the average per-
centage of code of each component (over all versions); the y-axis shows
the percentage of bugs of each component (over all versions).

Table 3: Failure Related Bugs. This table shows the number and percent-
age of the bugs related to failures in file systems.

16  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

FILE SYSTEMS
A Study of Linux File System Evolution

failure. An example of a memory bug on failure path is shown
in F2 of Table 2. When ext4 detects a corrupted inode, it forgets
to release the allocated buffer head. Finally (and obviously), all
error code bugs occur on failure paths (by definition).

Testing failure-handling paths to find all types of bugs is diffi-
cult. Most previous work has focused on memory resource leaks
and missing unlock and error codes; however, existing work can
only detect a small portion of failure-handling errors, especially
omitting a large amount of semantic bugs on failure paths. Our
results provide strong motivation for improving the quality of
failure-handling code in file systems.

What Performance Techniques Are Used?
Performance is critical for all file systems. Performance patches
are proposed to improve existing designs or implementations.
We partition these patches into six categories: inefficient usage
of synchronization methods (sync), smarter access strategies
(access), I/O scheduling improvement (sched), scale on-disk and
in-memory data structures (scale), data block allocation opti-
mization (locality), and other performance techniques (other).
Figure 3(b) shows the breakdown.

Synchronization-based performance improvements account
for more than a quarter of all performance patches across file
systems. Typical solutions used include removing a pair of
unnecessary locks, using finer-grained locking, and replacing
write locks with read/write locks. A sync patch is shown in P1
of Table 2; ext4_fiemap() uses write instead of read sema-
phores, limiting concurrency.

Access patches use smarter strategies to optimize performance,
including caching and work avoidance. For example, ext3 caches
metadata stats in memory, avoiding I/O. Figure 3(b) shows
access patches are popular. An example Btrfs access patch is
shown in P2 of Table 2; before searching for free blocks, the
patch first checks whether there is enough free space, avoiding
unnecessary work.

Sched patches improve I/O scheduling for better performance,
such as batching of writes, opportunistic readahead, and
avoiding unnecessary synchrony in I/O. As can be seen, sched
has a similar percentage compared to sync and access. Scale
patches utilize scalable on-disk and in-memory data struc-
tures, such as hash tables, trees, and per block-group struc-
tures. XFS has a large number of scale patches, as scalability
was always its priority.

Lessons Learned
Beyond the results, we also want to share several lessons we
learned from this project. First, a large-scale study of file sys-
tems is feasible and valuable. Finishing this study took us one
and half years. Even though the work is time-consuming, it is

still manageable. A similar study may be interesting for other OS
components, such as the virtual memory system.

Second, details matter. We found many interesting and impor-
tant details, which may inspire new research opportunities. For
example, once you know how file systems leak resources, you can
build a specialized tool to detect leaks more efficiently. Once you
know how file systems crash, you can improve current systems
to tolerate crashes more effectively.

Third, research should match reality. New tools are highly
desired for semantic bugs. More attention may be required to
make failure paths correct.

Finally, history repeats itself. We observed that similar mistakes
recur, both within a single file system and across different file
systems. We also observed that similar (but old) performance
and reliability techniques were utilized in new file systems. We
should pay more attention to system history, learn from it, and
use this knowledge to help build a correct, high-performance,
and robust next-generation file system from the beginning.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under the following grants: CNS-1218405,
CCF-0937959, CSR-1017518, CCF-1016924, as well as generous
support from NetApp, EMC, and Google.

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF or other institutions.

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 17

FILE SYSTEMS
A Study of Linux File System Evolution

References
[1] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Ful-
ton, Seth Hallem, Charles Henri-Gros, Asya Kamsky, Scott
McPeak, and Dawson Engler, “A Few Billion Lines of Code
Later: Using Static Analysis to Find Bugs in the Real World,”
Communications of the ACM, February 2010.

[2] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan
Zhou, and Chengxiang Zhai, “Have Things Changed Now?—
An Empirical Study of Bug Characteristics in Modern Open
Source Software,” Workshop on Architectural and System
Support for Improving Software Dependability (ASID ’06),
San Jose, California, October 2006.

[3] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, and Shan Lu, “A Study of Linux File System Evolu-
tion,” Proceedings of the 11th USENIX Symposium on File
and Storage Technologies (FAST ’13), San Jose, California,
February 2013.

[4] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou,
“Learning from Mistakes—A Comprehensive Study on Real
World Concurrency Bug Characteristics,” Proceedings of the
13th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
XIII), Seattle, Washington, March 2008.

[5] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and
Gilles Muller, “Documenting and Automating Collateral Evo-
lutions in Linux Device Drivers,” Proceedings of the EuroSys
Conference (EuroSys ’08), Glasgow, Scotland UK, March
2008.

SAVE THE DATE!
FEB. 17–20, 2014 • SANTA CLARA, CA

12th USENIX Conference
on File and Storage
Technologies

FAST ’14 brings together storage-system researchers and practitioners to explore new directions
in the design, implementation, evaluation, and deployment of storage systems. The conference will
consist of technical presentations, including refereed papers, Work-in-Progress (WiP) reports, poster
sessions, and tutorials.

Interested in participating? Check out the Call for Papers!

www.usenix.org/conference/fast14/cfp

18  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

Ted Ts’o on Linux File Systems
An Interview

R I K F A R R O W

Rik Farrow is the Editor of ;login:.
rik@usenix.org

Theodore Ts’o is the first
North American Linux
Kernel Developer, having
started working with Linux
in September 1991. He also

served as the tech lead for the MIT Kerberos
V5 development team, and was the architect
at IBM in charge of bringing real-time Linux
in support of real-time Java to the US Navy.
He previously served as CTO for the Linux
Foundation and is currently employed at
Google. Theodore is a Debian Developer and
is the maintainer of the ext4 file system in the
Linux kernel. He is the maintainer and original
author of the e2fsprogs userspace utilities for
the ext2, ext3, and ext4 file systems.
tytso@mit.edu

I ran into Ted Ts’o during a tutorial luncheon at LISA ’12, and that later
sparked an email discussion. I started by asking Ted questions that had
puzzled me about the early history of ext2 having to do with the perfor-

mance of ext2 compared to the BSD Fast File System (FFS).

I had met Rob Kolstad, then president of BSDi, because of my interest in the AT&T lawsuit
against the University of California and BSDi. BSDi was being sued for, among other things,
having a phone number that could be spelled 800-ITS-UNIX. I thought that it was important
for the future of open source operating systems that AT&T lose that lawsuit.

That said, when I compared the performance of early versions of Linux to the current version
of BSDi, I found that they were closely matched, with one glaring exception. Unpacking tar
archives using Linux (likely .9) was blazingly fast compared to BSDi. I asked Rob, and he
explained that the issue had to do with synchronous writes, finally clearing up a mystery for me.

Now I had a chance to ask Ted about the story from the Linux side, as well as other questions
about file systems.

Rik: After graduating from MIT, you stayed on, working in the Kerberos project. But you
also wrote the e2fsprogs, which include e2fsck for ext2, at about the same time. Can you tell
me how you got involved with writing key file-system utilities for the newly created Linux
operating system?

Ted: I originally got started with file systems because I got tired of how long it took for ext2’s
fsck to run. Originally, e2fsck was an adaption of the fsck for MINIX, which Linus Torvalds
had written. It was very inefficient, and read inodes in from disks multiple times.

So I got started with file systems by deciding to create a new fsck for ext2 from scratch. I did
this by creating a library called libext2fs that allowed programs to easily manipulate the
file system data structures. This library was originally designed for use by e2fsck, but I
anticipated that it would also be useful for other applications, including dump/restore,
 ext2fuse, etc.

I also made a point of creating a very robust set of regression tests for fsck, consisting of
small file system images with specific file system corruptions, which I could use to make
sure e2fsck would be able to handle those file system corruptions correctly. As far as I know,
it is one of the only file system checkers (even today) that has a regression test suite.

For the design of how to check the file system, and the order of the file system scans, I took
most of my inspirations from the Bina and Emrath paper “A Faster fsck for BSD Unix” [3].
This paper described improvements to the BSD fsck for the Fast File System. As far as I
know, its ideas were never adopted into BSD 4.x’s fsck, probably because the changes it sug-
gested were too disruptive. Since I was doing a reimplementation from scratch, though, it
was a lot easier for me to use their ideas in e2fsprogs.

So that’s how I got involved with file-system development. I started by creating the e2fsprogs
utilities, and then I gradually switched the focus of my kernel development efforts from the
tty layer and serial driver to the ext2 and later the ext4 file system code.

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 19

FILE SYSTEMS
Ted Ts’o on Linux File Systems

Rik: The difference between sync and async had mystified me
since I first read the Lions code [1]. Later, I read the source code
to BSD fsck, as well as the paper, and still didn’t get it. Both
express the idea that certain types of damage to the file system
will not happen, and when others do, assumptions can be made
about how this damage occurred. I later learned that they were
talking about what would be called “ordered writes.” How did
Linux avoid these issues in ext2?

Ted: So the concern behind asynchronous FFS, and what BSD
folks constantly would say was inherently dangerous with
ext2fs, is what would happen with a power failure. Various BSD
folks swore up and down that after a power failure or a kernel
crash, ext2 users would surely lose data. To avoid that, with the
synchronous FFS, metadata updates were written in a very care-
ful order so that fsck could always figure out how to either roll
back or complete a metadata operation.

I was never all that persuaded by this argument, since if you
didn’t use fsync(), the data blocks weren’t getting forced to disk,
so who cares if the metadata blocks were written in a very care-
ful order? Furthermore, in practice, all modern disks (especially
those engineered to get the best WinBench scores) work with
writeback caching enabled, and in fact are optimized assuming
that writeback caching is enabled, and this defeats the careful
write ordering of FFS synchronous mode (or soft updates). You
can disable writeback caching, of course, but on modern disks,
this will very badly trash write performance.

For more information on soft updates and why we aren’t all that
impressed with it as a technology, please see Val Henson’s LWN
piece [2]. The one amplification I’ll add to it is that soft updates
are so complicated, I very much doubt there are many BSD devel-
opers beyond Greg Ganger and Kirk McKusick who understand
it well enough to add new file system features. As a result, UFS
didn’t get extended attributes or ACL support until Kirk person-
ally added it himself, and as far as I know, it still doesn’t have
online file-system resizing, while ext3/4 have had online resiz-
ing since 2004.

Rik: Ext2 had been in use for years when the decision was made
to create ext3. Can you talk about the decision-making process,
about what changes were needed to justify a newer version of the
venerable ext2?

Ted: As hard drives started getting bigger (which back in 2000
to 2001 meant drives with 40 GB to 80 GB), the time to run fsck
got larger and larger. As a result, there was a strong desire to
have file systems that did not require running fsck after a power
failure. So there wasn’t an explicit decision-making process, as
much as there was a cry from the user community demanding
this feature.

Between 2010 and 2011, there were multiple efforts launched
to add a journaling file system to Linux: ReiserFS, ext3, and
JFS. ReiserFS actually got merged into the Linux kernel first,
in version 2.4.1; however, it wasn’t fully stable when it hit the
mainline. Stephen Tweedie didn’t submit ext3 for merging until
2.4.15, in November 2011, and at that time ext3 and ReiserFS
were roughly at the same level of stability. JFS was merged into
the mainline a bit later, in version 2.4.18, although like ext3, it
was available in preview releases before it was deemed ready to
be submitted to Linus.

For a while, ReiserFS was favored by SUSE (it had helped to
fund the development of ReiserFS by Namesys) while ext3 was
favored by Red Hat (since Stephen Tweedie, the primary author
of the journaling feature, worked for Red Hat). JFS was donated
by IBM, and at least initially it actually had somewhat better
performance and scalability than the other two file systems;
however, the only people who understood it were IBM employ-
ees, whereas ext3 had a much wider developer pool. As a result,
it evolved faster than its siblings, and eventually became the de
facto default file system for Linux.

Rik: You were involved in the decision-making process to go
ahead with the design and implementation of Btrfs [4]. Can you
tell us a bit about that process and your part in it?

Ted:At the time, Sun’s ZFS was receiving a lot of attention due
to a large marketing push from Sun Microsystems. So a group of
Linux file system engineers, representing multiple file sys-
tems and working at many different companies, got together in
November 2007 to design the requirements for a “next genera-
tion file system” with the goal of convincing the management
from multiple companies to work together to make a new file
system possible.

The consensus of the engineers who attended this workshop was
that adding simple extensions to ext3 (to create ext4) was the
fastest way to improve the capabilities of Linux’s file system;
however, in the long term, it would be necessary to create a
new file system to provide support for more advanced features
such as file system-level snapshots, and metadata and data
checksumming. A number of potential file system technologies
were considered for the latter, including the Digital Equipment
Corporation’s Advanced File System (AdvFS, which HP/Com-
paq had offered to make available under an open source license).
Ultimately, though, Chris Mason’s Btrfs was thought to have the
best long-term prospects.

I warned people at the workshop that from surveying the past
experience from other file system development efforts, creat-
ing an enterprise-ready, production file system would prob-
ably require 50–200 person years of efforts, and five years of
calendar time. For example, the development of ZFS started
in 2001, but it was not shipped as part of Solaris 10 until 2006;

20  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

FILE SYSTEMS
Ted Ts’o on Linux File Systems

however, there was concern that companies would not fund it
if we stated that it would take that long, so many folks tried to
claim that Btrfs would be ready in only 2–3 years. As it turns out,
distributions have only been willing to support Btrfs as ready
for consumer use in fall of 2012, which was indeed about five
years—and it will probably be at least another two years before
most system administrators will be willing to start using it on
mission-critical systems.

People tend to underestimate how long it takes to get a file
system ready for production use; finding and fixing all of the
potential problems, and then doing performance and scalability
tuning, takes a long time.

Rik: I’ve heard that while Google uses ext4, the extent-based
version of ext3, for cluster file systems like GFS, you disable
journaling. Could you explain the reasoning behind that?

Ted: It’s a question of costs versus benefits. Journaling requires
extra disk writes, and worse, journal commits require atomic
writes, which are extremely expensive. To give an extreme
example, consider a benchmark where 10K files are written with
an fsync() after each file is written. Regardless of whether ext3,
ext4, XFS, or ReiserFS is used, only about 30 files per second can
be written; that’s because the bottleneck is the CACHE FLUSH
command. With journaling disabled, 575 files can be written per
second. I used the following fs_mark [5] line for testing:

fs_mark -s 10240 -n 1000 -d /mnt

Against these costs, what are the benefits? First, journaling
allows a machine to reboot after a crash much more quickly,
since the need to run fsck on all of the file systems can be
avoided. Secondly, journaling provides a guarantee that any
files written after an fsync() will not be lost after a crash. Mail
servers rely on this guarantee quite heavily to ensure that email
won’t be lost; however, cluster file systems need to survive far
more than a crash of a single machine. When there are hundreds
or thousands of servers, the likelihood that a hard drive dies,
or a power supply fails, or a network switch servicing a rack
of servers quits, is quite high. To deal with this, Google File
System (GFS) stores redundant copies of each 64 MB chunk
across multiple servers, distributed in such a way so that a single
failure—whether of a hard drive, an entire server, or the loss of a
network switch—will not cause any interruption of service. The
GFS chunkserver also maintains checksums of each 64K block;
if any data corruption is found, GFS will automatically fetch the
chunk from another chunkserver.

Given that GFS has all of this redundancy to protect against
higher level failures, the benefits of journaling at the local disk
file system level are redundant. And so, if we don’t need the
benefits of journaling, why pay the costs of journaling? It is for
this reason that Google used ext2 and never bothered switch-
ing to ext3. The ext4 file system has extent-mapped files, which

are more efficient than the files mapped using indirect blocks.
This is more efficient both for reading and writing files, as well
as when running the file system checker (fsck). An ext2 or ext3
file system that requires 45 minutes to fsck might only require
4 or 5 minutes if the same set of files is stored on the same disk
using ext4 instead.

Rik: HDD vendors are preparing to launch Shingled Magnetic
Recording (SMR) drives, which have increased capacities but
may perform best when the file system understands the issue of
working with SMR. Do you know of any plans to support these
drives in host- or coop-managed mode in Linux?

Ted: There is a saying: “Those who try to use f lash as a fast
disk, generally tend to be very happy. Those who try to use f lash
as slow memory, tend to be very frustrated.” I suspect the same
will be true with shingled drives. Specifically, people who use
SMR drives as very fast tape drives will be very happy; how-
ever, people who try to use shingled drives as slow disk drives
will be very frustrated.

For many applications, we are no longer constrained by hard
drive capacity, but by seek speeds. Essentially, a 7200 RPM hard
drive is capable of delivering approximately 100 seeks per sec-
ond, and this has not changed in more than 10 years, even as disk
capacity has been doubling every 18–24 months. In fact, if you
have a big data application which required a half a petabyte of
storage, what had previously required 1024 disk drives when we
were using 500 GB drives, now that 3 TB disks are available, only
171 disk drives are needed. So a storage array capable of storing
half a petabyte is now capable of 80% fewer seeks.

SMR drives make this problem far, far worse. As a result, so far,
I’m not aware of a lot of work with shingled drives in the Linux
development community. There are some research groups that
are experimenting with SMR drives, but at the moment, there
has been much more interest in trying to use flash devices—
either very high speed, PCIe-attached flash, or dealing with the
limitations of extremely inexpensive MMC flash found in mobile
or consumer electronics devices.

Rik: Finally, why are there so many file systems?

Ted: There are lots of different reasons. Sometimes we have file
systems for interoperability / data exchange. That explains file
systems such as FAT/VFAT/MS-DOS, iso9660, HFS, NTFS,
MINIX FS, FreeVXFS, BFS, QNX4, QNX6, etc. When you take a
look at the list of file systems, there are more of those than most
people might first suspect.

Then there are all of the various network file systems, and the
reason why we have so many is because of interoperability
requirements. So that explains NFS, NFS4, CIFS, AFS, 9P, etc.
And the various cluster file systems: GFS2, OCFS2, and Ceph.
There probably isn’t much excuse for the existence of both GFS2

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 21

FILE SYSTEMS
Ted Ts’o on Linux File Systems

and OCFS2 since they fill essentially the same niche, but that’s
more about an accident of timing—the same reason why we have
both Git and Mercurial.

There are also a number of pseudo file systems where the file
system abstraction is really useful: hugetlbfs, ramfs, debugfs,
sysfs, dlm, etc.

And, of course, there are the file systems used essentially for
specialized bootup applications: cramfs, SquashFS, romfs.

Finally, we have file systems that are highly specialized for a
specific use case, such as file systems that are designed to work
on raw flash interfaces (MTD), or a file system designed to work
on object-based storage devices (EXOFS).

Basically, “it’s complicated,” and there are a lot of different
reasons.

References
[1] Lions’ Commentary on UNIX 6th Edition, with Source
Code: http://en.wikipedia.org/wiki/Lions%27_Commentary
_on_UNIX_6th_Edition,_with_Source_Code.

[2] Val Aurora (Henson), “Soft Updates, Hard Problems”:
http://lwn.net/Articles/339337/.

[3] E. Bina and P. Emrath, “A Faster fsck for BSD Unix,”
 Proceedings of the USENIX Winter Conference, January
1989.

[4] Josef Bacik, “Btrfs: The Swiss Army Knife of Storage,”
;login:, February 2012: https://www.usenix.org/publications/
login/february-2012/btrfs-swiss-army-knife-storage.

[5] fs_mark: http://sourceforge.net/projects/fsmark/.

Do you know about the USENIX Open Access Policy?

USENIX is the first computing association to offer free and open access
to all of our conferences proceedings and videos. We stand by our mis-
sion to foster excellence and innovation while supporting research with
a practical bias. Your membership fees play a major role in making this
endeavor successful.

www.usenix.org/membership

Please help us support open access.
Renew your USENIX membership

and ask your colleagues to join or renew today!

22  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

Shingled Magnetic Recording
Areal Density Increase Requires New Data Management

T I M F E L D M A N A N D G A R T H G I B S O N

Tim Feldman works on
drive design at the Seagate
Technology Design Center
in Longmont, Colorado. His
current work focuses on object

storage. He also spends time randonneuring,
Nordic skiing, and logging.
timothy.r.feldman@seagate.com

Garth Gibson is Professor of
Computer Science at Carnegie
Mellon University and the
co-founder and Chief Scientist
at Panasas Inc. He has an MS

and PhD from the University of California at
Berkeley and a BMath from the University
of Waterloo in Canada. Garth’s research is
centered on scalable storage systems, and he
has had his hands in the creation of the RAID
taxonomy, the SCSI command set for object
storage (OSD), the PanFS scale-out parallel
file system, the IETF NFS v4.1 parallel NFS
extensions, and the USENIX Conference on
File and Storage Technologies.
garth@cs.cmu.edu

Shingled Magnetic Recording (SMR) is the next technology being
deployed to increase areal density in hard disk drives (HDDs). The
technology will provide the capacity growth spurt for the teens of the

21st century. SMR drives get that increased density by writing overlapping
sectors, which means sectors cannot be written randomly without destroy-
ing the data in adjacent sectors. SMR drives can either maintain the current
model for HDDs by performing data retention behind the scenes, or expose
the underlying sector layout, so that file system developers can develop SMR-
aware file systems.

The hard disk drive industry has followed its own version of Moore’s Law, known as Kryder’s
Law [1], for decades. While gate density has increased for integrated circuits, bit density has
increased at a similar compound annual growth rate of about 40% through the application of
a sequence of technologies from inductive to magneto-resistive to perpendicular recording.
Technologies that are still in development include Heat-Assisted Magnetic Recording and
bit-patterned media, each of which has its own innovative method of packing bits even more
closely together. Preceding those technologies, however, the industry is faced with the chal-
lenge of increasing areal density of perpendicular recording.

Conventional recording, shown schematically in Figure 1, uses a track pitch that is sized
to match the writer gap width such that tracks do not overlap, and the reader gap width is
sized such that the signal from only one track is read. Conventional recording has scaled by
decreasing both the reader and writer gap sizes, which allows bits to be packed more densely
in the down track direction as well as the track pitch in the cross track direction. Further
decrease of the writer gap size is extremely difficult. Small write gaps do not produce enough
flux density to record the magnetic domains effectively on the disk surface. But reader gap
widths can continue to be scaled to narrower dimensions.

SMR, shown schematically in Figure 2 with less than one track of overlap, enables higher
areal density by recording at a track pitch appropriate for the as-narrow-as-possible reader.
Recording a sector at this track pitch with an as-wide-as-necessary writer means that
neighboring sectors are affected. SMR records in a strict sequence and with overlap in only
one direction, leaving previously recorded data in the other direction in a readable state.
This overlapping is like the placement of shingles on a roof, hence the name Shingled Mag-
netic Recording.

Figure 1: Schematic of conventional magnetic recording

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 23

FILE SYSTEMS
Shingled Magnetic Recording

SMR Data Management Challenge
Historically, magnetic recording has used isolated areas of
media for each sector such that sectors can be updated without
overwriting neighboring sectors. Down track each sector is
spaced sufficiently to accommodate spin speed fluctuation, and
cross track they are spaced so that writes do not affect neigh-
boring tracks. This is a match with the random block access
model of the interface to disk drives. SMR breaks this model of
independently writable sectors.

SMR mandates that tracks be written in the shingled direc-
tion. Sectors are still the atomic unit of media access, but SMR
requires that the overlapped sectors on downstream tracks that
get overwritten do not contain data of interest to the system.
Either drive firmware, host software, or a combination of the
two must take on the data management challenge of dealing with
the data in the overlapped sectors.

Data management for SMR poses an emerging challenge
for storage systems and drive design. This article covers the
challenge of data placement in disk drive design, the range of
solutions, and some of their issues. There are two major solu-
tion spaces. Drive-managed SMR retains the current random
block write model where the most recently written data for
every logical sector is retained regardless of accesses to any
other sector. This is referred to as data retention in this article.
Host-managed SMR, in contrast, shifts data retention respon-
sibility to the host. This article further introduces a third SMR
data management type that attempts to blend some drive- and
host-managed characteristics, an approach we call cooperatively
managed SMR.

Contribute to the Discussion
Host and cooperatively managed SMR are still in definition.
This article serves as a notice to the systems community on the
various ways SMR may impact storage design.

The industry will be defining standards for interfaces to SMR
disk drives in the traditional committees: T10—SCSI Storage
Interfaces and T13—ATA Storage Interface of the International
Committee for Information Technology Standards (INCITS). A
T10 SMR Study Group exists as a forum for discussion.

The Disk Physical Layout Model
Hard disk drive media is organized as a set of surfaces, each
having at least one read/write head and each consisting of a set

of tracks. The tracks are organized in concentric circles. Each
track is a set of non-overlapping sectors. The sector constitutes
the atomic unit of access; partial sector reads and writes are
not supported.

The sectors of a track are accessed consecutively as the disk
rotates with respect to the head. One sector on each track is
designated as being logically the first sector of the track, with
subsequent sectors in turn being logically the next.

Often SMR is organized as sets of tracks that overlap each other;
these are physically isolated from other sets of tracks by a gap so
that there is no overlap between sets. Such a set of tracks is often
called a “band.” We will use this nomenclature in this article.
Figure 3 shows this schematically.

Within a band the shingling happens in a single direction. Thus,
the tracks of a band are overlapped much like the overlapping
shingles on a roof.

Logical to Physical Mapping
Modern block command sets, notably ATA and SCSI command
sets used by SATA and SAS, use a linear sector address space
in which each addressable sector has an address called a logical
block address, or LBA. This obfuscates the physical, three-
dimensional characteristics of the drive: number of surfaces,
tracks per surface, and sectors per track. It allows drives to
manage defects without perturbing the host using the drive.
Decoupling of logical and physical mapping has allowed drives to
evolve without being synchronized to changes in host software.

A particular expectation needs to be acknowledged: LBA x and
LBA x+1 are related in such a way that if LBA x is accessed, then
accessing LBA x+1 is very fast. This is not an absolute require-
ment, and is not true 100% of the time, but it is generally the case
for conventional drives.

Static Mapping
The conventional approach to mapping LBAs to physical sectors
is to map the lowest LBA to the first sector on the outermost
track and follows the sector progression—leaving known defec-
tive sectors unused in the mapping—and then follows the track

Figure 2: Schematic of Shingled Magnetic Recording

Figure 3: Schematic of Shingled Magnetic Recording with two 3-track
bands

24  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

FILE SYSTEMS
Shingled Magnetic Recording

progression to map all of the rest of the LBAs. A rotational offset
from the last sector on one track to the first sector of the next
track is called “track skew” and allows a seek to complete in the
rotational time so as to optimize sequential throughput. This
mapping does not change dynamically, say in response to a new
write command. There are rare exceptions to the static nature of
this mapping in conventional disk drives such as when a grown
defect is discovered and the LBAs for the affected sectors are
remapped to spare sectors that are part of a small over-provi-
sioning of the media for the purposes of defect management.

Figure 4 shows an example of static mapping for a drive with
three tracks of 12, three tracks of 11, and three tracks of 10
sectors per track. In this example the track skew is one sector.
For simplicity, this example is a single surface and has no
skipped defects.

Static mapping on an SMR drive has some critical implications.
The first is that an arbitrary LBA cannot be updated without
affecting the data retention of the LBAs assigned to sectors over-
lapped by the sector to which the LBA to be updated is mapped.
Accommodating this means making either a significant change
in the disk’s data retention model, because writing one sector
modifies the data in one or more other sectors, or a significant
change to write performance, because firmware must pre-
read all the collaterally impacted sectors and rewrite them in
downstream order. Caches and other techniques can be used to
moderate either or both of these effects.

Note that with static mapping, each LBA has a couple of key
characteristics determined by the set of LBAs that it overlaps.
One characteristic is the distance from the written LBA to the
largest overlapped LBA. We refer to this as the Isolation Dis-
tance as it describes the minimum number of unused LBAs that
will isolate the written LBA from all LBAs further away. The
magnitude of this distance depends on the downtrack overlap of
the write, number of sectors per track, track skew, and skipped
defects. Another characteristic is that for each written LBA
there is an extent of contiguous LBAs that it does not overlap,

ending at the largest higher LBA that the LBA does overlap.
We refer to the size of this extent as the No Overlap Range as it
describes a range within which writes do not affect other LBAs.
The size again depends on the number of sectors per track, track
skew, and skipped defects. These distances can be used by the
data management scheme as is described later in the section on
Caveat Scriptor.

Figure 5 repeats the layout example of Figure 4, with a writer
overlap of two neighboring tracks and with LBAs increasing in
the downstream direction. This means, for example, that LBA 0
overlaps LBAs 23 and 34; thus, its Isolation Distance is 34. The
extent following LBA 0 that is not overlapped extends to LBA 11;
thus, its No Overlap Range is 12. In contrast, LBA 68 overlaps
LBAs 76, 77, 85, and 86 for a Isolation Distance of 18. The extent
following LBA 68 that is not overlapped goes through LBA 75 for
a No Overlap Range of 8.

Figure 5 shows that for static mapping, maintaining the data in
every LBA requires all downstream LBAs to be read and then
rewritten. For instance, a write to LBA 68 not only requires
LBAs 76, 77, 85, and 86 to be read and then rewritten, but also
LBAs 94 and 95 because writes to LBAs 76 and 85 overlap LBA
94, and writes to LBAs 77 and 86 overlap LBA 95. A simpler data
retention algorithm is to read and then rewrite all higher LBAs
to the end of the band; thus, a random write may, on average,
cause half of its band to be read and rewritten. Alternatively,
if data retention is not required, then LBAs can be updated in
place. A simple model is that writing an LBA can cause loss of
data retention in all higher LBAs to the end of the band.

Dynamic Mapping
An alternative to static mapping is to allow LBAs to be mapped
to physical sectors dynamically by drive firmware. This is analo-
gous to the Flash Translation Layer (FTL) model for solid state
drives (SSD).

Specifically, an SMR drive can employ dynamic mapping in
which it maintains a logical to physical map, sometimes called a

Figure 4: An example of a static mapping layout with tracks shown as rows of sectors labeled with their LBA

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 25

FILE SYSTEMS
Shingled Magnetic Recording

forward map in SSD, and assign the LBAs for write commands
based on the drive’s internal mapping policies. The forward map
must then be referenced to satisfy read requests to determine
which sectors are currently assigned to the requested LBAs.

Any and all of the techniques in an SSD FTL can be leveraged
on an SMR drive with dynamic mapping. This includes policies
for write performance so that new data can be placed in sectors
that do not overlap data that must be retained, policies for read
performance so that a minimum number of media accesses are
required, and garbage collection so that data requiring retention
can be relocated before media is reused.

Data Management for SMR
Handling data accesses, their performance, power, data reten-
tion impact, and restrictions on access patterns collectively are
the data management done by a drive. This section covers the
solution space for SMR.

Choices in SMR Data Management
SMR data management makes specific choices in data retention,
restrictions on data accesses, the physical sector layout, and the
logical to physical mapping. Specific examples of data manage-
ment choices are described later in the sections on drive- and
host-managed SMR.

Conventional drives deliver complete data retention for all LBAs
at all times to a specified error rate, such as 1 nonrecoverable
read error per 1015 bits read. SMR drives can deliver the same
data retention model, or explicitly embrace a different model
in which LBAs may not have data retention depending on the
sequence of writes to other LBAs.

Conventional drives allow an LBA to be accessed at any time,
either read or write accesses. SMR drives can deliver the same
data access model, or explicitly embrace a different model in
which only specific LBAs may be written and specific LBAs may
be read depending on the state of the drive. The pertinent state is
expected to be dependent on the sequence of writes and, possibly,
temporal separation between the writes.

SMR data management often makes use of many mutually iso-
lated bands of tracks. The bands may be constant in the number
of tracks, or might be constant in the number of sectors. The
specifics of where band boundaries are in the physical sector
layout are a choice of SMR data management.

SMR data management has choices of what logical to physical
mapping to employ. Static or dynamic mapping can be used.
Dynamic mapping has a wide range of choices that include
examples from Flash Translation Layers and other innovations [2].

Drive-Managed SMR
In drive-managed SMR, the drive autonomously delivers the
conventional data retention model of maintaining the data of
every LBA without any restrictions on the host access patterns.
No changes are needed to the interface for drive-managed
SMR. Choices of layout and mapping do not need explicitly to
be exposed externally, but the choices do impact the perfor-
mance and power profiles. Drive-managed SMR is respon-
sible for garbage collection if the mapping choice can leave
unmapped data in physical sectors. Drive-managed SMR is
likely to be stateful in that the performance may be dependent
on the state of the drive as determined by the usage history.
Provisioning of additional memory and storage resources typi-
cally provides a choice of better performance at the cost of the
expense of those resources.

Drive-managed SMR is a data management approach that can
most directly leverage the technologies developed for SSD and
FTLs. This includes over-provisioning of media. For instance,
sometimes an SSD is populated with N gibibytes of Flash media
but delivers N billion bytes of usable host capacity, in which case
the SSD has the approximately 7% difference between 230 and
109 as over-provisioning. Similar over-provisioning is possible in
an SMR drive.

Drive-managed SMR allows an SMR drive to be used in any
existing storage stack, albeit with a different performance and
power profile compared to conventional drives.

Figure 5: The static mapping layout example with shading indicating selected no overlap ranges and arrows indicating selected overlaps for a two-track
overlap width

26  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

FILE SYSTEMS
Shingled Magnetic Recording

Host-Managed SMR
The term “host-managed SMR” is defined to mean an SMR
drive that does not autonomously deliver data retention for every
LBA or restricts host accesses. Changes to the interface may be
needed for host-managed SMR.

Strictly Append is a type of host-managed SMR that restricts
host writes to occur only at the append point of a band. The
append point is the ending position of the last write to the
band; that is, an appending write implicitly moves the append
point. Strictly Append also restricts reads to occur only before
the append point of a band. That is, only written LBAs can be
read. In its simplest implementation, Strictly Append presents
a single band, and the drive may be written once in strictly
sequential LBA order. ShingledFS [3] is a file system for Hadoop
that uses this model. More complexity and versatility can be
added by supporting multiple bands and thus multiple append
points, and by allowing reuse of a band after an explicit event
that moves the append point.

Exposed SMR is a different type of host-managed SMR where
the host is aware of the layout and mapping. By specification or
query through the interface, the host knows the details of the
location of bands. Static mapping is the obvious choice such that
each band is a consecutive set of LBAs. With this information, a
host can know that writing an LBA obviates the data retention of
all subsequent LBAs to the end of the band. Exposed SMR does
not restrict host accesses, but instead moves the ownership of
the data retention model to the host. This has further impact on
defect management and other reliability constraints that are
beyond the scope of this article. A specific Exposed SMR pro-
posal, Caveat Scriptor, is described in a later section.

The logical to physical mapping for host-managed SMR does not
have to be static; however, within a band, LBAs must be mapped
to sectors that do not overlap sectors mapped to lower LBAs.
This blurs the distinction between logical blocks and physical
sectors. Nonetheless, the LBA is retained as the address seman-
tic, which, for instance, allows dynamic mapping of defects.

Host-managed SMR can include a small fraction of unshingled
space, some unshingled bands, for random writes.

Cooperatively Managed SMR
Cooperatively managed SMR is a type of SMR data management
that is not purely drive or host managed, but has characteristics
of each. For instance, bands may have append points but perhaps
not require all writes to be at the append point. Band locations
may be exposed to the host and explicit methods may need to be
invoked to move the append point. A specific cooperatively man-
aged SMR proposal, Coop, is described in a later section.

Alignment of Drive-Managed SMR to Applications
Drive-managed SMR delivers drives that have performance pro-
files that are notably different from conventional drives. Write
performance is commonly sensitive to the availability of safe-to-
write sectors, which in turn can be a function of the number and
location of stale sectors. A drive that does internal garbage col-
lection may sometimes be ready to accept a burst of new writes,
or may have to proceed in its garbage collection to service new
writes. This is the scope of a file system problem brought into the
domain of the disk drive.

Read performance is sensitive to data layout. If dynamic map-
ping is part of the drive-managed SMR policies, LBA x and
LBA x+1 can frequently not be proximate to each other, caus-
ing the read of a single LBA extent to require multiple disk
media accesses. This read fragmentation issue is the typical
file fragmentation problem brought into the domain of the disk
drive. Drive-managed SMR includes the memory and storage
resources and the embedded computing costs for over-provision-
ing and the FTL-like firmware.

Despite the performance differences with respect to conven-
tional drives, drive-managed SMR is well aligned to many
applications. Not only can it be deployed without modifications
to the host, it is also a good match to the requirements in a lot of
markets. This section describes the alignment of selected use
cases to drive-managed SMR.

Personal External Drives, Backup Storage and
Archive
External drives for personal use and backup or archival storage
are suitable applications for drive-managed SMR. The ingress
of data is very bursty and sequential enough that the drive can
handle writes efficiently. Long idle times between writes and
reads allow the drive to defragment appropriately and prepare
for subsequent write workloads. Low duty cycle and low perfor-
mance requirements help the introduction of new technology,
too. A paper on deduplication of desktop VMs [4] discovered that
as much as 85% of desktop data collected from Microsoft devel-
opers disk traces is write-once.

Log-Structured Files Systems and Copy-on-Write
With log-structure file systems (LFS) and copy-on-write (COW)
policies in databases, file systems and other applications create
a drive workload that is purposefully dominated by sequential
writing. Drive-managed SMR can be optimized to handle a
sequential write stream efficiently, making these applications a
good match.

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 27

FILE SYSTEMS
Shingled Magnetic Recording

Applications with Writes Primarily Small or
Spatially Dense
Natural workloads always have some spatial locality. Sufficient
spatial locality makes a limited amount of over-provisioning
useful for drive-managed SMR just as it does for SSD. Many
workloads are dominated by relatively small random writes of 4
KiB or so. Databases, online transaction processing, and many
other applications commonly exhibit these traits. Such work-
loads are a good match for FTL-style technologies, and in fact
can lead to drive-managed SMR performance that is superior to
conventional drives—if the writes are small enough and/or the
spatial density is high enough.

Applications Dominated by Reads
Drive-managed SMR that bounds the read fragmentation can
have read performance that is at or near parity with conven-
tional drives. Applications such as content distribution, Web
servers, and reference material hosting such as wikis are domi-
nated by reads. These applications are a good match for drive-
managed SMR.

Legacy and Installed Base
The most important quality of drive-managed SMR is that it
conforms to the same protocol and data retention model as
conventional drives, albeit with a different performance profile.
Drive-managed SMR allows the areal density increase of SMR
to be employed in a legacy application and serves the entire
installed base of disk-based storage.

Alignment of Host and Cooperatively Managed
SMR to Applications
Acknowledging that drive-managed SMR has different perfor-
mance means that some applications, if unmodified for SMR,
will have performance sensitivities for which drive-managed
SMR is not always an optimal match. This is the main motiva-
tion for considering host and cooperatively managed SMR and
its attendant impact to host implementations.

Sequential Write Workloads
While drive-managed SMR can be optimized for sequential
writes, it does not always deliver conventional drive perfor-
mance. In particular, if a sequential write does not go all the way
from LBA 0 to LBA max, and in natural workloads sequential
writes never span the whole capacity of the drive, there is a start
and end to each sequential write. When the start and end do not
align with band boundaries for the logical to physical mapping of
the drive, there is work required in the drive to “mend” the data
at the edges of the write. Host and cooperatively managed SMR
provide the context in which sequential writes can be restricted
to start and end at band boundaries. These schemes addition-
ally deliver read performance with fragmentation only at band

boundaries, which closely approximates conventional read
performance.

Log-Structured Files Systems and Copy-on-Write
While the LFS and COW are generally a good match for drive-
managed SMR, they eventually have a garbage collection
requirement so that space can be reused. Garbage collection on
an undifferentiated LBA space is likely to produce the same sort
of performance challenges just described for sequential write
workloads in general. Host and cooperatively managed SMR are
an opportunity for garbage collection that is optimized for SMR.

High Performance Storage
Lastly, given the opportunity to purpose-build a storage sys-
tem for SMR, host and cooperatively managed SMR enable the
system to be optimized for performance. Such systems may
further optimize the over-provisioning and other attributes that
contribute to cost, power, and reliability.

Caveat Scriptor: An Exposed SMR Proposal
Caveat Scriptor is Latin for “let the writer beware” and is used
here as a name for a more specific proposal for Exposed SMR.
The layout model for Caveat Scriptor is static mapping with
critical drive parameters exposed.

Drive Parameters
As described in the section on static mapping, above, each LBA
has two notable parameters: No Overlap Range and Isolation
Distance.

Remember that No Overlap Range is the minimum distance of
contiguous, non-overlapping LBAs that follow each written LBA,
and Isolation Distance is the maximum LBA distance in which
some LBA might be overlapped. An Exposed SMR drive could
simply make these parameters available to the host for every
LBA. A Caveat Scriptor drive instead exposes a single No Over-
lap Range and Isolation Distance value that apply to every LBA.
It determines the possible drive parameters as follows:

◆◆ Drive No Overlap Range <= minimum (No Overlap Range for
all LBAs)

◆◆ Drive Isolation Distance >= maximum (Isolation Distance for
all LBAs)

For a given model of Caveat Scriptor drives, all will have the
same DNOR and DID values. That is, Caveat Scriptor selects
a Drive No Overlap Range (DNOR) to be small enough for all
drives of the model, and a Drive Isolation Distance (DID) to be
large enough for all drives of its model. This allows software to
be specialized to a model and not to individual drives.

For example, for a model of drives in which all layouts are
described by Figure 5, the minimum No Overlap Range is at LBA
68 where the following no overlap extent goes through LBA 75,

28  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

FILE SYSTEMS
Shingled Magnetic Recording

so DNOR is 8, and the maximum Isolation Distance is at LBA 0
as described previously, so DID is 34.

Host Band Construction
With the DNOR and DID parameters, the determination of
band boundaries is left up to the host. Leaving at least DID
LBAs unused between bands is sufficient to provide isolation.
In the example of Figure 3, 34 LBAs is the amount of unused
space required to isolate bands; LBAs 0 to 29 could constitute
a 30-sector band, LBAs 64 to 98 a second 35-track band, with
LBAs 30 to 63 as the 34 unused sectors that isolate the two.

Three specific uses cases are described:

1. Random write band: Making a band no bigger than DNOR
LBAs creates a random write band if the range is sufficiently
isolated by DID LBAs on both ends. A band of this size has the
attribute that no LBA in the band is overlapped by any in-use
LBA—that is, LBAs that are used as part of the band isola-
tion. Such a band is one whose LBAs can be randomly written
without obviating the data retention of any in-use LBA. In the
example of Figure 3, 8 LBAs is the maximum random write
band size; LBAs 50 to 57, inclusive, can be a random write band.
Note that DID will typically be much larger than DNOR, so
random write bands are inefficient in their ratio of in-use to
not-in-use LBAs.

2. Sequential write band: A band of any size that is sufficiently
isolated by DID LBAs can be used as a sequential write band in
which data is retained for LBAs that precede the most recent
write. Such a band has no LBAs that are overlapped by LBAs
in a different band, and no LBAs overlap any LBA in a different
band.

3. Circular buffer band: A band can be managed as a circular
buffer if a sufficient distance is maintained between the end
and the start. The minimum required distance is DID. Thus the
effective size of a circular buffer is less than its band by at least

DID. A circular buffer could be used, for instance, to have intra-
band garbage collection in which non-stale data is shuttled
from the start to the end. In this instance, when stale data is
present at the sta rt of the buffer the start position can traverse
forward without a concomitant copying of data to the end, thus
increasing the distance from the end to the start and allowing
new data to be added to the buffer.

4. In the example of Figure 3, if all 99 sectors are used as a single
circular buffer band and the end of the band is, say, at LBA 40,
then the start must not be in the LBA range 41 to 74, inclusive.
Figure 6 shows this state. Before data can be added at LBA 41,
LBA 75 must become unused or stale to comply with the spac-
ing requirement of DID = 34.

Value Proposition
The Caveat Scriptor Exposed SMR proposal delivers the follow-
ing value propositions.

◆◆ Performant: Fast, static mapping can be used with all accesses
going straight to media.

◆◆ Predictable: There is a low probability of internal drive man-
agement operations causing response times that the host does
not expect.

◆◆ Versatile: Circular buffers can be deployed as well as random
and sequential bands.

◆◆ Efficient: Isolation occurs only where the host needs LBA
extents to be isolated.

◆◆ Flexible: Hosts can construct bands of any size.

◆◆ Host-owned data retention: The data retention of logical blocks
is determined by the host, matching the usage model of the
storage stack.

Figure 6: The static mapping layout example deployed as a circular buffer with its start at LBA 40 and its end at LBA 95. The shading shows 34 LBAs that
are unused between the start and end of the circular buffer.

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 29

FILE SYSTEMS
Shingled Magnetic Recording

Coop: A Cooperatively Managed SMR Proposal
Coop is a specific proposal for cooperatively managed SMR. It
blends some characteristics of drive-managed SMR with some
of host-managed SMR. Coop has the data retention model of
drive-managed SMR and the performance characteristics of
host-managed SMR when the host conforms to a constrained
band reuse model.

Coop is targeted to applications that are dominated by sequential
writes through large LBA extents, optionally with a small set of
randomly written extents. Coop additionally targets applications
where there may be infrequent exceptions to the sequential write
behavior even outside the randomly written extents.

Band Life Cycle
Coop bands go through a cycle of state transitions from empty to
filling to full and back to empty. The full to empty state transi-
tion occurs due to an explicit host command such as Trim that
unmaps the entire LBA extent of a band. This command can also
be issued to a band in the filling state, moving it to the empty
state.

Well-Known Bands and High Water Marks
Coop is built on a layout model of same-sized bands and regu-
larly placed band boundaries. Band boundaries are at strict
integer multiples of the band size. Each band has a High Water
Mark that represents the highest address written since the most
recent empty state. The High Water Mark is the optimum write
location, but is not an enforced append point.

It is proposed that the band size is standardized to either 256
MiB or 1 GiB. These power-of-two sizes are sufficiently large to
allow for a minimum of space to be devoted to band isolation.

Host Policies
The host write behavior on a Coop drive should be dominated by
writes at the High Water Mark of the respective band. Writes at
the High Water Mark can be serviced by conventional policies
since higher LBAs are “trimmed” and do not require data reten-
tion. Writes not at the High Water Mark, at either lower or higher
LBAs, are allowed and impact the drive policies as described in
the next subsection.

Host read behavior is not restricted. Hosts may read trimmed
LBAs.

Before reusing a band, it is incumbent on the host to issue the
appropriate command to unmap the whole band. Before issu-
ing this command the host must first copy any non-stale data
to some other band. Garbage collection in a Coop drive is the
responsibility of the host.

Drive Policies
Writes not at the High Water Mark may need to be serviced with
drive-managed-style data management techniques. Note that
writes not at the High Water Mark but within the No Overlap
Range can potentially be optimized with policies that are similar
to conventional data management.

Support for a small set of randomly written extents is also pro-
vided through drive-managed-style data management, possibly
with an appropriate amount of over-provisioning. The amount of
over-provisioning is likely to determine the amount of randomly
written space that can be handled with higher performance.

Reads comply with the full data retention model of Coop. Reads
of mapped sectors return the most recently written data. Reads
of unmapped sectors return the appropriate unmapped-sector
data pattern, possibly all zeros. For bands that have been written
in strict sequential order, reads of LBAs below the High Water
Mark of the respective band return the most recently written
data, and reads above the High Water Mark return the appropri-
ate unmapped-sector pattern.

Value Proposition
The Coop proposal for cooperatively managed SMR delivers the
following value propositions:

◆◆ Performant: Fast, static mapping can be used for bands that are
sequentially written with sequential writes and all reads below
the High Water Mark serviced directly from media. Drive
performance for sequential writes at the respective High Water
Mark will be like that of a conventional drive.

◆◆ Tolerant: Not all random writes have to be eliminated, just
minimized. Software can be deployed without 100% removal of
random writes.

◆◆ Versatile: The targeted applications represent a diverse set of
common use cases.

◆◆ Efficient: The amount of over-provisioning can be bounded by
the amount of randomly written space and the frequency of
writes that are not at a High Water Mark.

◆◆ Low barriers to adoption: The conventional data retention
model and standard commands allow straightforward adoption.

◆◆ Flexible: Random write extent locations can be anywhere in
LBA space and can be non-stationary.

◆◆ Standardized: Current standard command sets continue to be
used, albeit likely with a few additional queries for discovery of
parameters and High Water Mark values.

30  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

FILE SYSTEMS
Shingled Magnetic Recording

Further Work
Areal Density Gains
Shingled Magnetic Recording offers the opportunity for disk
drives to continue to deliver increasing areal density. The
recording subsystem and the head, disk, and channel designs
need to evolve to take maximum advantage of SMR.

Harvesting the areal density requires more than recording
subsystem work. Storage systems need to prepare file systems,
application software, and utilities to be well suited to SMR data
management at the drive.

Call to Action
Caveat Scriptor and Coop are two proposals for SMR interfaces.
These proposals and others will be discussed at the T10 SMR
Study Group, the open forum where changes to the SCSI stan-
dard are being discussed. Now is the time to add your voice to
help move the technology in the best possible direction.

References
[1] C. Walter, “Kryder’s Law,” Scientific American, July 25,
2005: http://www.scientificamerican.com/article
.cfm?id=kryders-law.

[2] Tim Feldman, Seagate, US Patent Application
20070174582.

[3] Anand Suresh, Garth Gibson, Greg Ganger, “Shingled
Magnetic Recording for Big Data Applications,” Carnegie
Mellon University, Parallel Data Laboratory, May 2012: http://
www.pdl.cmu.edu/PDL-FTP/FS/CMU-PDL-12-105.pdf.

[4] Dutch T. Meyer, William J. Bolosky, “A Study of Practical
Deduplication”: http://www.usenix.org/event/fast11/tech/
full_papers/Meyer.pdf.

Tell Us What You Think
Please watch your inboxes and the ;login: Web site at www.usenix.org/publications/login/
for a link to a ;login: readership survey. We’d like to hear what you think about:

•	 The types of articles and authors we’ve been featuring
•	 Our current columnists
•	 The recently refreshed magazine design
•	 ;login: logout, our new electronic supplement
•	 And more

Thanks for your assistance in making
;login: even more valuable to you, our readers.

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 31

CLUSTERSGaneti: Cluster Virtualization Manager
G U I D O T R O T T E R A N D T O M L I M O N C E L L I

Guido is a Senior Engineer
at Google Munich, where
he leads the development
of Ganeti, an open source
cluster virtualization manager.

His interests and speaking topics are in
virtualization, distributed systems, and
advanced networking for Linux. He has
presented Ganeti and taught classes about
it at LISA, Fosdem, KVM Forum, LinuxCon,
and many more gatherings. He is also a
Debian developer and active member of
the community. His activities can mostly
be seen through the Ganeti lists
(ganeti@googlegroups.com and ganeti-devel
@googlegroups.com). gt@google.com

Tom is an internationally
recognized author, speaker,
and system administrator. His
best known books include
Time Management for System

Administrators (O’Reilly) and The Practice of
System and Network Administration (Addison-
Wesley). In 2005 he received the USENIX
SAGE Outstanding Achievement Award.
He blogs at http://EverythingSysadmin.com.
tal@everythingsysadmin.com

Ganeti is a software stack that allows easily managing a collection of
physical machines (nodes) to host virtualized machines (instances).
This article explains its background, principles, usage, and direction.

Virtualization and the Cloud
Virtualization is an important building block in today’s computer infrastructures. Whether
you’re running a small lab or a huge datacenter, the decoupling of the physical hardware
from the services that run on it is key for increasing uptime, resource utilization, and
maintainability.

Many solutions exist both in the open source world and in the proprietary one for virtual-
izing workloads. Some of these solutions are stand-alone, whereas others require many
different components in order to work. All of them are based on the same basic necessary
components: (1) a hypervisor, which provides the basic layer on which the virtualized system
runs; (2) a storage backend that hosts VMs’ data; and (3) a network infrastructure that allows
VMs to send and receive traffic. Optionally, extra software can be used to run and manage
these systems, and provide abstractions on top of them. Ganeti is software that fulfills this
role, and it can be used to manage the previously listed components.

Why Ganeti?
People choose Ganeti to run their virtualized infrastructure for many reasons. Most of them
are captured by the low barrier to entry at which they can get started on Ganeti; they don’t
need to configure a huge system if all they need is to build a small infrastructure while, at the
same time, retaining the option to scale easily to thousands of nodes.

Other reasons include its architecture (see below), which they can easily plug in to and
extend, and the friendly community. Ganeti also has a good test and QA suite, which hope-
fully reflect in high-quality releases.

Of course, like anything, Ganeti doesn’t suit all needs, but we’d like you to try it and see if it
serves your organization. We’re interested in getting feedback about your experience, what
does or doesn’t work for you. Ganeti is an enterprise production-ready system, used at Google
and in many other organizations, which might help you build part of your infrastructure.

Building Blocks
As mentioned above, virtualization hosting needs many different building blocks in order
to work. We’ll now go through the most important ones, focusing on technologies that are
supported by Ganeti. In each section we’ll show how we can mix and match the underlying
technology to get a virtualized environment that is customized to our needs, while being
managed in a common way.

Note that the ability to “mix and match” is a key feature of Ganeti often not found in other
environments, which tend to pick all the technologies that one must use; this makes Ganeti a
powerful “building block” rather than a prebuilt “one-size-fits-all” system.

32  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

CLUSTERS
Ganeti: Cluster Virtualization Manager

Hypervisor
The following hypervisors are supported by Ganeti:

◆◆ Xen is a microkernel style stand-alone hypervisor that runs
“under” its guest systems and provides them resources with
the help of one or more trusted VMs (e.g., dom0). Xen can run
different types of virtualized environments depending on the
guests’ support.

◆◆ KVM is a system to run a hardware-aided virtualization envi-
ronment on top of a standard Linux system.

◆◆ LXC (experimental support) is a way of running independent
containers on top of the same kernel. The virtualization level
is provided by giving the processes running in each container
a different “view” of the system by insulating its namespaces
(user, network, process, etc.).

Xen and KVM are two of the most adopted open source hyper-
visors available today, especially in the server world. Using
them, you can easily configure one machine to run virtualized
workloads. The two have a different architecture and approach
to virtualizing machines.

Naturally, they are not the only options, and research is needed
to see which virtualization system is a better fit for your infra-
structure and workload.

Storage
Possible storage solutions for Ganeti virtualized environments
include:

◆◆ Simple files residing on the host machine

◆◆ Local volumes on the host machines (e.g., physical block de-
vices or LVM ones)

◆◆ Local data with over-the-network replication (e.g., using
DRBD)

◆◆ Volumes (or files) hosted on an external dedicated hardware
(SAN)

◆◆ Volumes hosted on a distributed object store (e.g., RADOS)

Ganeti will automatically manage disks and create/delete them
as needed for its instances. Stand-alone management of disks is
not supported yet but is considered in the roadmap.

Networking
Ganeti allows running VMs with any number of virtual network
interfaces. Each of them can be connected to a Linux kernel
bridge, an Open vSwitch, or have its traffic routed by the host
system.

Currently, all “connection” systems (bridges, Open vSwitches,
routing) must be configured on the nodes, but dynamic connec-
tion/disconnection of them is in the product roadmap.

“The Cloud”
Although the cloud is a vague term, in the virtualization context
it is usually used to mean “Infrastructure as a Service” (IaaS).
This is usually implemented as a collection of software provid-
ing an API that can be used to provide the resources described
above. Ganeti can be used as a basic building block to provide
such a service and effectively run a “private cloud.”

Other Choices
Of course it might happen that your favorite technology is not
yet working well with Ganeti. Although we couldn’t implement
all possible choices, we tried to keep our APIs standard; as such,
perhaps it will be possible with some development work to design
and support your architecture and make it part of the Ganeti
ecosystem. After all, most of these choices were added during
the product lifetime, rather than being born into it, and as such
we hope to be able to accommodate more in the future, as the
product and the technology space develops.

Ganeti’s Principles
Ganeti is built on the following ideas:

◆◆ Extremely simple to install and use: We strive to make Ganeti
as simple as possible, not requiring hand configuration of many
different components, at least for a basic usage.

◆◆ Usable as a basic infrastructure building block: A Ganeti
cluster must be able to host your DNS, DHCP, and many other
basic services. As such, Ganeti itself will not depend on them at
startup time, allowing you to cold-power-on a cluster without
those services. Some of them may still be needed during normal
run, for example, to add new nodes or instances.

◆◆ Multi platform: We want Ganeti to run on and with your
favorite distribution of Linux, hypervisor, backend storage, and
networking system. We try to make sure it exports a customiz-
able interface that you can use to plug in your customizations.

◆◆ Simple software dependencies: We try not to depend on too
new libraries and languages, to make the system easy to build
and deploy. To be extremely conservative, we chose Debian
stable (plus, occasionally, backports.org) as our reference for
choosing library dependencies.

◆◆ Minimal hardware/platform/system dependencies: We avoid
depending on any component or infrastructure choice that we
feel is not strictly necessary. We are happy to support extra
features when those are present, but we don’t want to impose
them on everybody’s installation.

◆◆ Good open source citizen: We discuss designs and code on the
public development list before committing to it. We make sure
our entire development process is transparent, and we don’t do
“code dumps” at release time. This allows for ease of coopera-
tion between members of the community.

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 33

CLUSTERS
Ganeti: Cluster Virtualization Manager

We encourage external contributions and designs, and are happy
to cooperate on the direction of this software platform. Issues
as well as designs that we’re working on are publicly visible, as
is each code change and the related discussion before it gets
merged. Patches from team members, other Google teams, or
external contributors go through exactly the same review pro-
cess in order to become part of the tree.

Quick Ganeti Example
Ganeti administration is done through command-line tools or
the Ganeti Remote API (RAPI). Web-based admin tools have

also been created, such as the Ganeti Web Manager project at
Oregon State University Open Source Lab (http://ganeti-web-
mgr.readthedocs.org/en/latest/); however, this being ;login:, we
will present some command-line examples.

Ganeti commands all start with gnt- and require a subcom-
mand. For example gnt-instance info foo outputs information
about an instance named foo.

Initializing the Cluster
This is the first step for setting up Ganeti and requires an unused host name for the cluster,
associated with an unused IP address. Ganeti will set up the IP address automatically on the
master node:

gnt-cluster init [-s secondary_ip] cluster.example.com

Note that the basic initialization has many default assumptions. You may want to configure your
enabled hypervisors, their parameters, and much more. See gnt-cluster modify for more informa-
tion. The -s parameter configures the cluster with a separate replication network. If it is set, all
nodes will also need to be added specifying the -s option, and their secondary IP.

Creating an Instance
Creating an instance can be simple if cluster-wide defaults have been set; it can be as simple as
specifying an operating system image name, and amount of RAM to allocate to the VM, size of
the virtual disk to be created, the storage type, and the instance’s name:

gnt-instance add -o ubuntu_std -B memory=1024M -s 100G -t drbd inst1.example.com

Thu Mar 21 14:16:04 2013 * creating instance disks...

Thu Mar 21 14:16:08 2013 adding instance inst1.example.com to cluster config

Thu Mar 21 14:16:08 2013 * wiping instance disks...

Thu Mar 21 14:16:09 2013 - INFO: * Wiping disk 0

Thu Mar 21 14:16:20 2013 - INFO: - done: 1.0% ETA: 18m 44s

Thu Mar 21 14:17:26 2013 - INFO: - done: 7.0% ETA: 17m 4s

[...]

Thu Mar 21 14:34:18 2013 - INFO: - done: 91.0% ETA: 1m 48s

Thu Mar 21 14:35:21 2013 - INFO: - done: 96.0% ETA: 48s

Thu Mar 21 14:36:12 2013 - INFO: Waiting for instance inst1.example.com to sync disks.

Thu Mar 21 14:36:12 2013 - INFO: Instance inst1.example.com’s disks are in sync.

Ganeti will use its allocation algorithm to find nodes that have room and create the instance.
The default allocation algorithm can be overridden by specifying the exact nodes the instance
should live on (primary:secondary) with -n node1:node2. Other instance parameters can
be specified, such as configuring the virtual NIC to have a specific MAC address: e.g., --net

0:mac=aa:00:00:fa:3a:3f

34  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

CLUSTERS
Ganeti: Cluster Virtualization Manager

Listing Instances
Here is an example that shows a list of instances:

gnt-instance list

Instance Hypervisor OS Primary_node Status Memory

george.example.com xen-pvm ubuntu_std node3.example.com running 4.0G

inst1.example.com xen-pvm ubuntu_std node2.example.com running 512M

john.example.com xen-pvm ubuntu_std node2.example.com ADMIN_down 4.0G

paul.example.com xen-pvm ubuntu_std node4.example.com running 2.0G

ringo.example.com xen-pvm ubuntu_std node1.example.com running 2.0G

Listing Nodes
Here is an example of listing all the nodes. Note that node5 is offline for repairs and therefore not
all information about it can be displayed. Before sending it to repairs, the instances were migrated
to other nodes; thus, the Pinst/Sinst values (number of primary and secondary instances) are 0.

gnt-node list

Node Dtotal Dfree Mtotal Mnode Mfree Pinst Sinst

node1.example.com 671.9G 83.1G 16.0G 1023M 5.8G 4 3

node2.example.com 671.9G 99.1G 16.0G 1023M 8.3G 4 3

node3.example.com 671.9G 212.9G 16.0G 1023M 6.8G 3 5

node4.example.com 671.9G 268.9G 16.0G 1023M 6.3G 4 4

node5.example.com * * * * * 0 0

Adding a New Node
Adding a new node to the cluster is surprisingly easy. Once the software is installed and stor-
age/network configurations are complete, the command to add the node only requires specify-
ing the two things Ganeti cannot determine on its own: the nodes name and the IP address of its
replication NIC.

gnt-node add -s 192.168.20.2 node6.example.com

-- WARNING --

Performing this operation is going to replace the ssh daemon keypair on the target machine

(node6.example.com) with the ones of the current one and grant full intra-cluster ssh root

access to/from it

Sat Mar 16 14:53:04 2013 - INFO: Node will be a master candidate executed successfully

Verifying Consistency
In our final example, we run the Ganeti cluster command to check the system health and warn of
any issues. In this case, we see a warning about an expired certificate used to authenticate RAPI
requests. The command also checks for connectivity problems between the master and each node,
storage problems, and much more:

gnt-cluster verify

Submitted jobs 74499, 74500

Waiting for job 74499 ...

Thu Mar 21 14:33:23 2013 * Verifying cluster config

Thu Mar 21 14:33:23 2013 * Verifying cluster certificate files

Thu Mar 21 14:33:23 2013 - ERROR: cluster: While verifying

 /var/lib/ganeti/rapi.pem: Certificate is expired

 (valid from 2011-12-09 07:01:06 to 2012-12-09 07:11:06)

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 35

CLUSTERS
Ganeti: Cluster Virtualization Manager

Thu Mar 21 14:33:23 2013 * Verifying hypervisor parameters

Thu Mar 21 14:33:23 2013 * Verifying all nodes belong to an existing group

Waiting for job 74500 ...

Thu Mar 21 14:33:23 2013 * Verifying group ‘GROUP1’

Thu Mar 21 14:33:23 2013 * Gathering data (2 nodes)

Thu Mar 21 14:33:26 2013 * Gathering disk information (2 nodes)

Thu Mar 21 14:33:26 2013 * Verifying configuration file consistency

Thu Mar 21 14:33:26 2013 * Verifying node status

Thu Mar 21 14:33:26 2013 * Verifying instance status

Thu Mar 21 14:33:26 2013 * Verifying orphan volumes

Thu Mar 21 14:33:26 2013 * Verifying N+1 Memory redundancy

Thu Mar 21 14:33:26 2013 * Other Notes

Thu Mar 21 14:33:26 2013 * Hooks Results

The Ganeti commands are extensively documented with detailed man pages plus help summaries
when the --help flag is given.

Running Ganeti in Production
Besides Ganeti itself, we recommend the use of other tools in
order to have a scalable enterprise level environment:

◆◆ Self-installing nodes: These can be achieved from any automat-
ed installer, coupled with a good configuration management
system.

◆◆ Monitoring: Various products can be configured to do black-box
and white-box monitoring of Ganeti nodes, its storage devices,
and its instances.

◆◆ Self-healing products: Ganeti can be coupled with Linux-HA
or your monitoring system can be instrumented to perform
cluster self-healing operations, and not require manual inter-
vention on node downtime or other hardware errors. If this is
coupled with white-box monitoring, nodes can be evacuated
when they start to show problems but before they fail, thus
avoiding any downtime.

◆◆ Administration interfaces: These allow users to self-service
create/delete and modify their instances, and to access the
instance console.

Ganeti Internals
The Ganeti platform is a collection of daemons and command
line utilities written in Python and Haskell. The platform’s main
components are:

◆◆ The CLI scripts, which take user commands and transmit them
to the master daemon via the LUXI protocol.

◆◆ The RAPI daemon, which accepts Ganeti operations over
https and transmits them to the master daemon via the LUXI
protocol.

◆◆ The Master daemon, which performs most Ganeti operations
(opcodes) by executing logical units of code. Opcodes are

units of Ganeti work, and do things such as starting instances,
creating new ones, and so on. They can be serialized together
in jobs, or submitted separately to allow the master daemon to
run them concurrently in safety, without conflicting with each
other. Jobs (consisting of one or more opcodes) are accepted
via a JSON-on-UNIX-sockets protocol, and are sent mostly by
the CLI utilities, the RAPI daemon, or our extra tools.

◆◆ The Node daemon runs on all nodes and performs the sub-
units of actual work needed to implement the logical units. It
performs minimal self-standing operations on each target node
(e.g., creating a block device, writing a file to disk, executing a
command), and it is controlled by the master daemon by an
RPC system.

◆◆ htools are Ganeti’s “cluster optimizations” suite. They include
tools to rebalance the cluster’s load (hbal), to allocate instances
automatically in the best possible place (hail), to calculate how
many more instances a cluster can accommodate (hspace),
or to calculate how to best run maintenances on a cluster
(hroller).

Other less crucial, and sometimes optional, Ganeti components
are:

◆◆ The confd daemon, which has read-only access to the cluster
config, and uses it to answer config queries.

◆◆ The monitoring agent daemon (mond, which provides real-
time per-node information via http+json, and can be queried
by a monitoring system to perform white-box monitoring on
the cluster.

How to Reach the Community
Ganeti is discussed at the ganeti@googlegroups.com list. There
you can ask questions, get help debugging issues, or just discuss
your setup.

36  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

CLUSTERS
Ganeti: Cluster Virtualization Manager

Development happens at ganeti-devel@googlegroups.com in the
format of patches (which can be sent via git format-patch plus
git send-email) and design docs. Contributing requires signing
the Google Code Contributor License Agreement (CLA) by the
copyright owner (either the individual or the company, depend-
ing), who retains copyright to his or her contributions.

The Ganeti project can be found at https://code.google.com/p/
ganeti, the source code is at http://git.ganeti.org/, and docu-
mentation is built from the git tree and exported in real-time at
http://docs.ganeti.org/.

Ganeti Roadmap
We have many ideas about Ganeti, which will be tackled as time
and priority allow. In the near-to-medium future, we want to
focus on:

1. better storage alternatives, and promoting disks from second-
class citizens to first-class ones, which can be managed without
being just part of a virtual machine;

2. dynamic networking, to make the datacenter networking
architecture more efficient, scalable, and not dependent on
preconfiguring; and

3. better integration with other clouds, harnessing the private/
public cloud interconnection.

But the first idea we work on could be your idea. Just install
Ganeti, and if you find something missing, let’s discuss a design.
We’ll be happy to help you get up to speed and upstream your
features, for the benefit of your installation and the entire
community.

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 37

PRObE: A Thousand-Node Experimental
Cluster for Computer Systems Research
G A R T H G I B S O N , G A R Y G R I D E R , A N D R E E J A C O B S O N , A N D W Y A T T L L O Y D

Garth Gibson is a Professor of
Computer Science at Carnegie
Mellon University and the
co-founder and Chief Scientist
at Panasas, Inc. He has an MS

and PhD from the University of California at
Berkeley and a BMath from the University
of Waterloo in Canada. Garth’s research is
centered on scalable storage systems, and he
has had his hands in the creation of the RAID
taxonomy, the SCSI command set for object
storage (OSD), the PanFS scale-out parallel
file system, the IETF NFS v4.1 parallel NFS
extensions, and the USENIX Conference on File
and Storage Technologies.
garth@cs.cmu.edu

Gary Grider is the Acting
Division Leader of the High
Performance Computing (HPC)
Division at Los Alamos National
Laboratory. Gary is responsible

for all aspects of high performance computing
technologies and deployment at Los Alamos.
Gary is also the US Department of Energy
Exascale Storage, I/O, and Data Management
National Co-coordinator. ggrider@lanl.gov

Andree Jacobson joined the
New Mexico Consortium
(NMC) in August 2010 as the
Computer and Information
Systems Manager and the

project manager for the $10M NSF-sponsored
PRObE project. Prior to NMC, he spent five
years as a Computer Science Senior Lecturer
at the University of New Mexico (UNM).
During his time at UNM, he also spent his
summers teaching the highly successful
Computer Systems, Clusters, and Networking
Summer Institute, now run as a part of the
PRObE project.
andree@newmexicoconsortium.org

Wyatt Lloyd is a PhD candidate in Computer Science at Princeton University. His research
interests include the distributed systems and networking problems that underlie the
architecture of large-scale Web sites, cloud computing, and big data. He received his master’s
degree in Computer Science from Princeton University, and a bachelor’s degree in Computer
Science from Penn State University. wyatt.lloyd@gmail.com

If you have ever aspired to create a software system that can harness a
thousand computers and perform some impressive feat, you know the
dismal prospects of finding such a cluster ready and waiting for you to

make magic with it. Today, however, if you are a systems researcher and your
promised feat is impressive enough, there is such a resource available online:
PRObE. This article is an introduction to and call for proposals for use of the
PRObE facilities.

Server computing is increasingly done on clusters containing thousands of computers,
each containing dozens of traditional cores, and the exascale supercomputers expected
at the end of this decade are anticipated to have more than 100 thousand nodes and more
than 100 million cores in total [1, 2]. Unfortunately, most academic researchers have only
dozens of nodes with a handful of cores each. One of the best responses today is to rent a
virtual datacenter from a cloud provider, such as Amazon or Google. We expect increasing
numbers of papers to report experiments run on these virtual datacenters, but virtualiza-
tion makes some experiments more difficult. Performance repeatability, network topology,
and fault injection, for example, are not as well controlled on virtual datacenters as they

Figure 1: About one quarter of a Los Alamos National Laboratory supercomputer recently decommissioned
and, probably, destroyed

38  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

CLUSTERS
PRObE: A Thousand-Node Cluster for Systems Research

are on physical datacenters. Moreover, debugging performance
at scale is hard enough when all the hardware and software is
known and controllable; learning from and perfecting innova-
tive systems software in virtual datacenters is even harder.
The systems research community needs access to larger-scale
physical clusters, especially for the training of the next genera-
tion of computer systems scientists.

PRObE (Parallel Reconfigurable Observational Environment) is
a systems research community resource for providing physical
access to a thousand-node cluster. Made available by National
Science Foundation operating support, equipment donations
from the Los Alamos National Laboratory, and the facilities of
the New Mexico Consortium, PRObE offers multiple clusters
totaling more than 1,500 computers, with one cluster of more
than 1,000 computers. The equipment in PRObE comes from
computers at Los Alamos National Laboratory, such as shown
in Figure 1, which have been decommissioned to make room for
faster, more cost- and energy-efficient replacement computers.
Researchers using PRObE have complete remote control of the
hardware and software while running experiments and can
inject both hardware and software failures as they see fit. Any
operating system can be deployed on the systems using Emulab
for physical cluster allocation [3].

PRObE is operational today. One of the first uses of PRObE’s
largest cluster was published in the 2013 Networked Systems
Design and Implementation (NSDI ’13) conference in a paper
that validated the scalability of a geo-replicated storage system
with causal consistency called Eiger [4]. Eiger’s predecessor,
called COPS, had been validated on only 16 nodes, whereas
Eiger’s use of PRObE allowed validation on up to 128 nodes
(which, through replication, actually used 384 machines).
Because a key contribution of Eiger is to scale to a large number
of nodes per datacenter, while providing causal consistency
and low latency with a rich data model and write-only transac-
tions, having a large testbed was essential to the experiment.
To quote the paper, “This experiment was run on PRObE’s
Kodiak testbed [results shown in Figure 2], which provides an
Emulab with exclusive access to hundreds of machines. Each
machine has 2 AMD Opteron 252 CPUS, 8GB RAM, and an
InfiniBand high-speed interface.” The Eiger paper is a fine
example of the purpose of PRObE: enabling innovative sys-
tems to be tested at scale after they have been developed and
explored on smaller private facilities.

To become a user of PRObE resources, follow these steps. First,
all users of PRObE agree to publish, or otherwise make public,
the results of PRObE use and give credit to the funders and pro-
viders of PRObE. Second, PRObE is an NSF-funded facility, so
the organizations that request its use must be eligible to receive
NSF funding. These constraints are explained in a user agree-
ment on the PRObE Web site [5].

A new PRObE user is also an Emulab user. Emulab has been
providing physical machine allocation and management in
smaller clusters for more than a decade, and much of the systems
research community already has experience with it. A new user
logs in to a head node, launches a single node experiment with
an existing base OS image, logs in to that node to customize the
OS image as needed, instructs Emulab to record the custom-
ized image, then launches a multi-node allocation naming the
customized image. Storage on the nodes is replaced with every
launch but is fully available for experiments. Shared storage for
images, inputs, and logging/monitoring results is available from
Emulab head nodes and an NFS service.

PRObE’s largest cluster, Kodiak, is intended to be allocated in
its entirety to one project for days to weeks. New users should
first log in to one of the smaller (~100 nodes) staging clusters,
Denali or Marmot, to port their systems and demonstrate suc-
cess on a small-scale experiment. Users then propose to use the

Figure 2: This figure shows the normalized throughput of multiple N-server
clusters running the Facebook TAO workload [4]. Throughput approaches
linear for up to 128 machines per cluster, using a total of 384 machines on
PRObE’s Kodiak cluster.

Figure 3: Block diagram of PRObE’s Kodiak cluster

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 39

CLUSTERS
PRObE: A Thousand-Node Cluster for Systems Research

large cluster, with evidence of their readiness to be effective and
an explanation of their project’s goals and anticipated results.
PRObE leadership and a community selection committee, when
needed, will prioritize and arbitrate the use of the largest cluster.

The Parallel Reconfigurable Observational Environment
(PRObE) is a collaboration between the National Science Foun-
dation (NSF), under awards CNS-1042537 and CNS-1042543,
New Mexico Consortium (NMC), Los Alamos National Labo-
ratory (LANL), Carnegie Mellon University (CMU), and the
University of Utah (Utah). PRObE facilities are available now
and will be available for at least two years. For more information,
visit the PRObE Web site at www.nmc-probe.org.

References
[1] Peter Kogge, Keren Bergman, Shekhar Borkar, Dan
Campbell, William Carlson, William Dally, Monty Den-
neau, Paul Franzon, William Harrod, Kerry Hill, Jon Hiller,
Sherman Karp, Stephen Keckler, Dean Klein, Robert Lucas,
Mark Richards, Al Scarpelli, Steven Scott, Allan Snavely,
Thomas Sterling, R. Stanley Williams, Katherine Yelick,
“ExaScale Computing Study: Technology Challenges
in Achieving Exascale Systems,” DARPA IPTO AFRL
FA8650-07-C-7724, 2008: citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.165.6676.

[2] John Shalf, “Exascale Computing Hardware Challenges,”
keynote talk at 5th Petascale Data Storage Workshop, New
Orleans, LA, November 2010: slides available at http://
www.pdsw.org/pdsw10/resources/slides/PDSW_SC2010
_ExascaleChallenges-Shalf.pdf.

[3] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci,
Shashi Guruprasad, Mac Newbold, Mike Hibler, Chad Barb,
Abhijeet Joglekar, “An Integrated Experimental Environ-
ment for Distributed Systems and Networks,” USENIX Sym-
posium on Operating Systems Design and Implementation
(OSDI ’02), Dec. 2002: https://www.cs.utah.edu/flux/papers/
netbed-osdi02.pdf.

[4] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky,
David G. Andersen, “Stronger Semantics for Low-Latency
Geo-Replicated Storage,” Proceedings of the 10th USENIX
Symposium on Networked Systems Design and Implemen-
tation (NSDI ’13), Lombard, IL, April 2013: https://www
.usenix.org/conference/nsdi13.

[5] PRObE User Agreement version 1, Feb. 1, 2013: www
.nmc-probe.org/policies/user-agreement.

Machine Nodes Cores Memory/node Disk/node Network/node

Marmot 128 256 16 GB 1 x 2 TB GE, SDR Infiniband

Denali 64+ 128+ 8 GB 2 x 1 TB GE, SDR Infiniband

Kodiak 1024 2048 8 GB 2 x 1 TB GE, SDR Infiniband
Table 1: Currently available PRObE cluster capabilities

40  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

HARDWAREProgramming Models for Emerging
Non-Volatile Memory Technologies
A N D Y R U D O F F

Andy Rudoff is an Enterprise
Storage Architect at Intel.
He has more than 25 years
of experience in operating
systems internals, file systems,

and networking. Andy is co-author of the
popular UNIX Network Programming book.
More recently, he has focused on programming
models and algorithms for Non-Volatile
Memory usage. andy.rudoff@intel.com

Upcoming advances in Non-Volatile Memory (NVM) technologies
will blur the line between storage and memory, creating a disruptive
change to the way software is written. Just as NAND (Flash) has led

to the addition of new operations such as TRIM, next generation NVM will
support load/store operations and require new APIs. In this article, I describe
some of the issues related to NVM programming, how they are currently
being resolved, and how you can learn more about the emerging interfaces.

The needs of these emerging technologies will outgrow the traditional UNIX storage soft-
ware stack. Instead of basic read/write interfaces to block storage devices, NVM devices
will offer more advanced operations to software components higher up in the stack.
Instead of applications issuing reads and writes on files, converted into block I/O on SCSI
devices, applications will turn to new programming models offering direct access to per-
sistent memory (PM). The resulting programming models allow applications to leverage
the benefits of technological advances in NVM.

The immediate success of these advances and next generation NVM technologies will rely
on the availability of useful and familiar interfaces for application software as well as kernel
components. Such interfaces are most successful when key operating system vendors and
software vendors agree on an approach, terminology, and a strategy for widespread adoption.
I will describe some of the more interesting changes on the horizon for NVM programming
and outline new solutions to address these changes. Finally, I’ll explain how the industry is
driving commonality for these interfaces using a Technical Work Group (TWG) recently
formed by the Storage Networking Industry Association (SNIA).

NVM Programming Models
Although there are surely countless possible programming models for using NVM, I’ll
focus on the four most relevant models. The first two represent the most common stor-
age interfaces in use for many decades, which I will call NVM Block Mode and NVM File
Mode. The remaining two models, which I will call PM Volume Mode and PM File Mode,
specifically target the emergence of persistent memory.

NVM Block Mode
The diagram in Figure 1 represents a portion of a common software stack, where the dashed
red line represents the interface providing the NVM Block Mode programming model.

There are many variations on the exact details of the software stack both above and below
the dashed red line in Figure 1. The point of the diagram is to illustrate how the interface
works, not to focus on a specific set of software components using it. As shown, the NVM
Block Mode programming model provides the traditional block read/write interface to ker-
nel modules such as file systems and, in some cases, to applications wanting to use the block
device directly (for example, by opening /dev/sda1 on a Linux system).

Why is this decades-old interface interesting for a discussion of NVM Programming?
Advances in NVM technology make it interesting by motivating change to an interface that

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 41

HARDWARE
Programming Models for Emerging Non-Volatile Memory Technologies

has otherwise barely changed in many years. A fairly recent but
widely adopted example is the addition of software support for
the TRIM command on the modern solid state drive (SSD). The
TRIM command allows file systems to inform an SSD which
blocks of data are no longer in use. Although useful for virtual
arrays that support thin provisioning, this information was not
necessary at the basic drive level until the emergence of Flash
drives, where the wear-leveling management required by the
drive can benefit from it [1].

Just as the simple block read/write interface to the driver
required extensions to support TRIM, other emerging NVM
features, such as support for atomic operations, will require
similar broadening of the interfaces [2]. Additionally, simply
exposing certain attributes of an NVM device to applications
may prove just as useful. Applications can optimize I/O for
performance using information on optimal I/O sizes, sup-
ported granularity of I/O, and attributes such as powerfail
write atomicity. By arriving at common definitions for these
extended operations and attributes, the NVM industry can pro-
vide a more effective ecosystem for software writers to develop
NVM-aware applications that better leverage NVM features
across multiple system types. Exactly how this ecosystem is
created is covered later in this article.

NVM File Mode
Figure 2 illustrates the NVM File Mode programming model.
Again, the red dashed line depicts the interface of interest, and
the rest of the diagram is simply one possible layout of software
components to show how the interface is used.

In this mode, a common file system such as ext4 on Linux uses
a block-capable driver in the usual fashion. As with NVM Block
Mode, this long-standing programming model will gain some
incremental additions to the standard file API to allow applica-
tions to take advantage of advances in NVM.

For an example of how the NVM File Mode can evolve to benefit
applications, consider the double write technique used by the
MySQL database. This technique is used to protect database
tables from corruption due to system interruption, such as a
power failure. These tables are typically stored in files, and the
double write technique is used to protect MySQL from partial
page writes, that is, the write of a page of data that is torn by a
system interruption. If the MySQL application were able to dis-
cover that writes of up to a certain size (the database page size)
are guaranteed untearable by a system interruption, the double
writes could be avoided [3]. Providing an interface for applica-
tions to request the powerfail write atomicity of the underly-
ing NVM allows applications like MySQL to discover these
attributes automatically and modify their behavior accordingly.
Without this interface system, administrators must determine
obscure attributes of the storage stack and edit MySQL configu-
ration files to inform the application of these attributes.

PM Volume Mode
In Figure 3, the block diagram looks similar to NVM Block
Mode, but here the device is not just NVM, but PM-Capable
NVM. To be PM-capable means the NVM is usable directly via
the processor load and store instructions. Although one might
argue that any storage element might be connected to the system
in a way the processor can load directly from it, the practicality
of stalling a CPU while waiting for a load from technology such
as NAND Flash prevents such a direct connection. But more
advanced NVM technology, as well as innovative caching tech-
niques, is allowing a generation of PM devices to emerge.

PM Volume Mode, as shown in the diagram, allows a kernel com-
ponent to gain access to the persistence directly. The diagram
shows a PM-Aware Kernel Module communicating with the
NVM driver. This interface allows the kernel module to fetch
the physical address ranges where the PM is accessed. Once the

Figure 1: The NVM Block Mode interface, depicted by the red dashed line Figure 2: The NVM File Mode interface, providing the usual file operations
enhanced with additional NVM operations

42  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

HARDWARE
Programming Models for Emerging Non-Volatile Memory Technologies

Why a file system? Why does this programming model center
around the file APIs? This will be explained in the next section
where I focus on persistent memory.

Persistent Memory
Now that all four NVM programming models have been
described, I’ll turn to the details of persistent memory. PM
deserves special attention because, unlike the incremental
improvements occurring with the NVM Block and NVM File
modes, PM offers a much more disruptive change. Just as the
ecosystem reacted to the change from faster clock rates on single
CPUs to higher core counts (forcing performance-sensitive
applications to revise their algorithms to be multithreaded),
PM will cause the ecosystem to rethink how data structures are
stored persistently. PM offers a combination of persistence and
the ability to access the data structures without first performing
block I/O and then converting the blocks of data into memory-
based structures. As with any new technology, the benefits of
PM come with a set of new and interesting challenges.

Allocation of Persistent Memory
Every C programmer is familiar with the standard malloc inter-
face for dynamically allocating memory:

ptr = malloc(len);

Given a length in bytes, an area of RAM is returned to the
calling process. This well-worn interface is simple and easy to
use, although one could argue it is also easy to misuse, causing
hours of debugging memory leak and memory corruption issues.
But with so many decades of use and millions of lines of C code
depending on malloc, a natural way to expose PM seems to be
simply adding another version of malloc:

ptr = pm_malloc(len); /* the naïve solution */

kernel has that information, it need not ever call back into the
NVM driver, instead accessing the PM directly as shown by the
blue arrow in the diagram connecting the PM-Aware Kernel
Module directly with the persistence in the NVM device. This
fairly raw access to the PM allows the kernel module to add its
own structure to the ranges of persistence and use it however
it chooses. Examples include using the PM as a powerfail-safe
RAID cache, a persistent swap space, or, as we’ll discuss next, a
PM- Aware File System.

A product providing PM may also provide NVM Block Mode,
or any of the other modes; these programming models are not
mutually exclusive, I am simply describing them separately
because they are independent of each other.

PM File Mode
Our fourth NVM programming model is shown in Figure 4. PM
File Mode is similar to the NVM File Mode we described ear-
lier, but in this case the file system is specifically a PM-Aware
File System.

Notice the interfaces associated with this programming model
(the red dashed line again). The PM-Aware File System typi-
cally provides all the same file APIs as a traditional file system.
In fact, a PM-Aware File System is likely created by enhancing
an existing file system to be PM-aware. The key difference is
in what happens when an application memory maps a file. As
shown by the far right blue arrow in the diagram, memory map-
ping a file allows the application direct load/store access to the
PM. Once the mapping is set up, accesses to the PM bypass any
kernel code entirely since the MMU mappings allow the applica-
tion physical access. This diverges from a traditional file system
where memory mapped files are paged in and out of a page cache.

Figure 3: The PM Volume Mode interface, allowing a PM-Aware Kernel
Module to look up the physical addresses in the volume

Figure 4: The PM File Mode interface, depicted by the red dashed line,
providing the standard file operations but with memory mapped files
going directly to NVM

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 43

HARDWARE
Programming Models for Emerging Non-Volatile Memory Technologies

This simple solution gives the application programmer a choice
between allocating RAM (using malloc) and PM (using pm_mal-
loc), which seems like a fine solution on the surface but quickly
falls short on further examination. Presumably the application
was allocating PM in order to store something in it persistently,
since that’s the whole point. So the application will need a way to
get back to that range of PM each time it is run, as well as each
time the system is rebooted or power cycled. To allow this, the
PM must be given a name that the application can provide to
reconnect with it.

Many naming schemes for PM are possible, from some sort
of numeric object ID to URL-like strings. But once the PM is
named, the next issue immediately comes up: How to deter-
mine if an application has permission to connect to an area of
PM? Like naming, many permission schemes are possible, but
as you delve into the management of PM, you start to find even
more issues, such as how does the system administrator change
the permissions on PM? How are old areas of PM removed or
renamed? Even more importantly, how are areas of PM backed
up to protect against hardware failure? For traditional storage,
the file system semantics provide answers to all these questions,
so even though PM is much more like system memory, exposing
it like files provides a convenient solution. The file API provides
a natural namespace for PM ranges—ways to create, delete,
resize, rename the ranges—and many off-the-shelf backup tools
will simply work. The net effect of this approach is that if an
application wants volatile memory, it calls malloc, and if it wants
PM, it opens (or creates) a file on a PM-Aware File System and
uses the mmap API to map it into its address space.

Making Changes to Persistent Memory Durable
With volatile memory, there’s no need to worry about the
durability of stores because all memory-resident information is
assumed lost when the application or system shuts down. But
with storage, that data stored is often cached and must be com-
mitted to durable media using some sort of synchronization
API. For memory mapped files, that API is msync [4]. Although
a strict interpretation of the traditional msync call is that it
f lushes pages of data from a page cache, with PM the applica-
tion has direct load/store access without involving the page
cache. The msync call for PM is instead tasked with f lushing
the processor caches, or any other intermediate steps required
to make sure the changes are committed to the point of being
powerfail safe.

Position-Independent Data Structures
With PM available to applications, for those applications to store
data structures such as arrays, trees, heaps, etc. is convenient.
On start-up, the application can use the file APIs described
above to memory map PM and immediately access those data

structures; however, there’s an issue around position-indepen-
dence of the data structures as shown in Figure 5.

On the left side of the diagram, the typical address space
layout of a process on a UNIX system is shown. Because PM is
accessed as memory mapped files, it gets mapped into the area
with the other memory mapped files, such as shared libraries
(growing downwards). The striped areas on many systems are
the spaces between ranges, such as stack and memory mapped
files, and the exact sizes of the striped areas are often ran-
dom. This is a security feature designed to make some types
of attacks more difficult [5]. For data structures stored in PM,
the result is that any pointers, like the one depicted on the right
side of the diagram, will be invalid between any two runs of
the application. Of course, this isn’t a new problem; storing
absolute pointers in a memory mapped file has always been
problematic, but the emergence of PM means this is expected to
be a much more common problem to solve.

The obvious solution, to only store relative pointers in PM,
can be somewhat error prone. Every pointer dereference must
account for the fact that the pointer is relative and add in some
sort of base offset. Higher-level languages with runtime virtual
machines, such as Java, or languages without explicit pointers,
may be able to handle this transparently, which is an area of
research, but the first goal is to expose PM in the basic low-level
system call and C environment. One potential answer is the
idea of based pointers, a feature available in some C compilers,
such as Microsoft’s C++ compiler [6]. With this feature, a new
keyword, __based, is added to the language so that declarations
such as this linked list example are possible:

Figure 5: Typical process address space layout, with slightly different
positions each run due to the randomly sized areas

44  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

HARDWARE
Programming Models for Emerging Non-Volatile Memory Technologies

void *myPM;

struct element {

 …

 struct element __based (myPM) *next;

}

The result is that when the PM file is memory mapped, the
location of the PM area is stored in the pointer myPM, and due to
the __based declaration, every time the next field is derefer-
enced, the compiler generates code to adjust it by the value of
myPM, creating a convenient position-independent pointer for
the programmer.

So far I’ve described only one of the many issues around posi-
tion-independent data structures and the storing of data struc-
tures in PM. Fortunately, there is quite a bit of research going on
in academia on this topic, and two bodies of work demand spe-
cial mention here. The NV-Heaps work [7] and the Mnemosyne
project [8] both attack the issue described here in different and
innovative ways. These works also look into language extensions
and other runtime solutions to these problems and are recom-
mended reading for anyone interested in PM.

Error Handling
The main memory of a computer system is typically protected
against errors by mechanisms such as error correcting codes
(ECC). When that memory is used by applications, such as
memory allocated by calling malloc, applications do not typically
deal with the error handling. Correctable errors are silently cor-
rected—silently as far as the application is concerned (the errors
are often logged for the administrator). Uncorrectable errors in
which application memory contents are corrupted may be fixed
by the OS if possible (for example, by re-reading the data from
disk if the memory contents were not modified), but ultimately
there are always cases in which the program state is known to be
corrupted and it is not safe to allow the program to continue to
run. On most UNIX systems, the affected applications are killed
in such cases, the UNIX signal SIGBUS most often being used.

Error handling for PM starts off looking like memory error
handling. Using Linux running on the Intel architecture as an
example, memory errors are reported using Intel’s Machine
Check Architecture (MCA) [9]. When the OS enables this fea-
ture, the error flow on an uncorrectable error is shown by the
solid red arrow in Figure 6, which depicts the mcheck module
getting notified when the bad location in PM is accessed.

As mentioned above, sending the application a SIGBUS allows
the application to decide what to do; however, in this case,
remember that the PM-Aware File System manages the PM
and that the location being accessed is part of a file on that file
system. So even if the application gets a signal preventing it from

using corrupted data, a method for recovering from this situation
must be provided. A system administrator may try to back up the
rest of the data in the file system before replacing the faulty PM,
but with the error mechanism we’ve described so far, the backup
application would be sent a SIGBUS every time it touched the
bad location. In this case, the PM-Aware File System needs a
way to be notified of the error so that it can isolate the affected
PM locations and then continue to provide access to the rest
of the PM file system. The dashed arrows in Figure 6 show the
necessary modification to the machine check code in Linux. On
start-up, the PM-Aware File System registers with the machine
code to show it has responsibility for certain ranges of PM. Later,
when the error occurs, the PM-Aware File System gets called
back by the mcheck module and has a chance to handle the error.

Here I’ve provided an abbreviated version of the error-handling
story for PM. This is still a developing area and I expect the
error-handling primitives to continue to evolve.

Creating an Ecosystem
The rapid success of PM and other emerging NVM technologies
depends on creating an effective ecosystem around new capabili-
ties as they become available. If each operating system vendor
and hardware vendor creates its own divergent API for using
these features, the ability of software vendors, kernel program-
mers, and researchers to exploit these features becomes limited.
To avoid this, a group of industry leaders has worked with SNIA
to create the NVM Programming Technical Work Group. Here is
how the TWG describes itself:

The NVM Programming TWG was created for the purpose of
accelerating availability of software enabling NVM (Non-Volatile
Memory) hardware. The TWG creates specifications, which pro-
vide guidance to operating system, device driver, and application
developers. These specifications are vendor agnostic and support
all the NVM technologies of member companies. [10]

Figure 6: The machine check error flow in Linux with some proposed new
interfaces depicted by dashed arrows

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 45

HARDWARE
Programming Models for Emerging Non-Volatile Memory Technologies

The TWG is currently working on a specification describing the
four NVM programming models I covered in this article. The
specification will cover the common terminology and concepts
of NVM, including PM, and it will describe the semantics of the
new actions and attributes exposed by emerging NVM tech-
nology. But the TWG intentionally stops short of defining the
APIs themselves. This approach of providing the semantics but
not the syntax is done to allow the operating systems vendors
to produce APIs that make the most sense for their environ-
ments. The TWG membership includes several operating system
vendors that are actively participating in the definition of the
programming models. In fact, in the few months that the TWG
has existed, a remarkable number of companies have joined. As
of this writing, the membership list is: Calypso Systems, Cisco,
Dell, EMC, FalconStor, Fujitsu, Fusion-io, Hewlett-Packard,
Hitachi, Huawei, IBM, Inphi, Integrated Device Technology,
Intel, LSI, Marvell, Micron, Microsoft, NetApp, Oracle, PMC-
Sierra, QLogic, Samsung, SanDisk, Seagate, Symantec, Tata
Consultancy Services, Toshiba, Virident, and VMware. (This
list illustrates the scale of the collaboration and will surely be
out-of-date by the time this article is published.)

Summary
A software engineer will see countless incremental improve-
ments in hardware performance, storage capacity, etc. through a
long career. That same career will witness high impact, game-
changing developments only a few times. The transition of NVM
from something that looks like storage into something that
looks more like memory is one such disruptive event. By pulling
the industry together to define common ground, we can enable
software to rapidly and fully exploit these new technologies. The
SNIA NVM Programming Technical Work Group is our effort to
make this happen, and it has gained considerable industry trac-
tion in just a few months.

References
[1] Intel, Intel High Performance Solid-State Drive—Advan-
tages of TRIM: http://www.intel.com/support/ssdc/hpssd/
sb/CS-031846.htm.

[2] X. Ouyang, D. Nellans, R. Wipfel, D. Flynn, D.K. Panda,
“Beyond Block I/O: Rethinking Traditional Storage Primi-
tives,” 17th IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA-17), February 2011,
San Antonio, Texas.

[3] Peter Zaitsev, “Innodb Double Write,” MySQL Perfor-
mance Blog (Percona): http://www.mysqlperformanceblog
.com/2006/08/04/innodb-double-write/.

[4] The Open Group Base Specifications Issue 6, IEEE Std
1003.1, 2004 edition—msync: http://pubs.opengroup.org/
onlinepubs/009695399/functions/msync.html.

[5] Shacham et al., “On the Effectiveness of Address-Space
Randomization,” Proceedings of the 11th ACM Conference
on Computer and Communications Security, 2004,
pp. 298-307.

[6] Microsoft Developer Network, Based Pointers (C++):
http://msdn.microsoft.com/en-us/library/57a97k4e(v=vs.80)
.aspx.

[7] J. Coburn et al., “NV-Heaps: Making Persistent Objects
Fast and Safe with Next-Generation, Non-Volatile Memo-
ries,” The 16th ACM Conference on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS ’11), March 2011, Newport Beach, California.

[8] Haris Volos, Andres Jaan Tack, Michael M. Swift,
“Mnemosyne: Lightweight Persistent Memory,” The 16th
ACM Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’11), March
2011, Newport Beach, California.

[9] Intel, Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3B, Chapter 15, March 2013: http://
download.intel.com/products/processor/manual/325462
.pdf.

[10] Storage Networking Industry Association, Technical
Work Groups: http://www.snia.org/tech_activities/work/
twgs.

46  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

COLUMNSPractical Perl Tools
Constant as the Northern $*

D A V I D N . B L A N K - E D E L M A N

David N. Blank-Edelman is the
Director of Technology at the
Northeastern University College
of Computer and Information

Science and the author of the O’Reilly book
Automating System Administration with Perl (the
second edition of the Otter book), available
at purveyors of fine dead trees everywhere.
He has spent the past 24+ years as a system/
network administrator in large multi-platform
environments, including Brandeis University,
Cambridge Technology Group, and the MIT
Media Laboratory. He was the program chair
of the LISA ‘05 conference and one of the LISA
‘06 Invited Talks co-chairs. David is honored
to have been the recipient of the 2009 SAGE
Outstanding Achievement Award and to serve
on the USENIX Board of Directors beginning in
June of 2010. dnb@ccs.neu.edu

The bad Perl wordplay in the title can mean only one thing: We have
another column about programming in the Perl language underway.
This issue’s column is inspired and derived from an article I stum-

bled on by Neil Bowers. Back in 2012 he wrote an article on 21 different mod-
ules for defining constants in Perl. The original is at http://neilb.org/reviews/
constants.html. If reading my take on his research gets you interested in
the subject, do be sure to seek out his article. One other thing I should men-
tion before we discuss his work: He’s clearly cooler than I will ever be. When
he encountered some bugs in one of the modules he reviewed, he “took over
maintenance of the module and released a new version which addresses all
known issues.” Now that’s thorough!

For this article I’m not going to discuss all of the 21 modules he reviewed. Rather, I thought
it would be good to talk about why modules like this are not only a best practice sort of
thing but downright handy, and then dive into some of the more accessible/interesting
modules from Bowers’ list.

What and Why
This may be fairly basic programming language terminology, but to make sure we’re on the
same page let me share one pragmatic view of what constants are and why you want to use
them. Constants come into play when you want to write code that uses variables that don’t
change for the life of the program.

I realize that sounds a little strange—after all, why use a variable if it isn’t going to change?
Why not just use a value? It all comes down to code readability and maintainability. Let’s
say you are writing code that logs information using syslog and you want to specify which
priority to log at. If we look at the C include file on the machine I’m typing on, we can see the
following is defined:

#define LOG_EMERG 0 /* system is unusable */

#define LOG_ALERT 1 /* action must be taken immediately */

#define LOG_CRIT 2 /* critical conditions */

#define LOG_ERR 3 /* error conditions */

#define LOG_WARNING 4 /* warning conditions */

#define LOG_NOTICE 5 /* normal but significant condition */

#define LOG_INFO 6 /* informational */

#define LOG_DEBUG 7 /* debug-level messages */

This means I could write code that looks like:

log(‘It is getting kind of hot in here’, 4);

or

if ($log_level == 4) { do_something_with_the_warning };

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 47

COLUMNS
Practical Perl Tools

but unless I knew about /usr/include/sys/syslog.h, I’d still be
shaking my head when I came back to this code in a year. You
can just imagine the internal dialogue that would start with “’4’,
what the heck does ‘4’ mean?”

A better version of those lines of code might be:

our $LOG_EMERG = 0; # system is unusable

our $LOG_ALERT = 1; # action must be taken immediately

our $LOG_CRIT = 2; # critical conditions

our $LOG_ERR = 3; # error conditions

our $LOG_WARNING = 4; # warning conditions

our $LOG_NOTICE = 5; # normal but significant condition

our $LOG_INFO = 6; # informational

our $LOG_DEBUG = 7; # debug-level messages

which lets you then write lines that are considerably easier to
read, like:

log(‘It is getting kind of hot in here’, $LOG_EMERG);

 or

if ($log_level == $LOG_EMERG) { do_something_with_the_warning };

So this is all well and good until a little while later when your
code base gets passed to a colleague who isn’t as familiar with
it and she’s asked to make some “minor changes.” While mak-
ing these changes, she notices the use of $LOG_INFO sprinkled
throughout the code and thinks, “Great, that’s where I should
store my log messages before they get sent out.” She adds this to
the code:

$LOG_INFO = “Everything is peachy.”; # set the log message

and lo and behold things start failing in a weird way (immedi-
ately if you are lucky, months later when no one remembers that
changes were made if you are not). Here’s a case in which you
really want to use variables, but you want them to be immutable.
Once you set a variable like this, you want it to stay at that value
and scream bloody murder (or at least deny the request) if there
are any attempts to change it from that point on.

There’s no special variable type (as in scalar, list, hash) built
into the Perl language to make this happen, so that’s where the
modules we’ll be discussing come into play.

Behind the Scenes
Before we actually see any of these modules, I think it is useful to
have in the back of your head a rough idea of how they work. As
Bowers points out in his article, there are essentially two differ-
ent ways to cast this particular spell.

First, you can use a mechanism already built into the lan-
guage to associate some code with a variable. This code denies
attempts to do anything but retrieve the value. Associating code
with a variable is exactly what the tie() function does. There
have been a number of columns here in which I’ve talked about

the white and black magic associated with tie() so check out the
archives if this notion intrigues you.

The other way some modules make variables read-only is
to reach into the guts of the Perl core and use what is essen-
tially an undocumented but well-known function called
Internals::SvREADONLY. As Bowers notes in his article, the
source code for the Perl interpreter has this to say where the
function is defined:

XS(XS_Internals_SvREADONLY) /* This is dangerous stuff. */

{

 dVAR;

 dXSARGS;

 ...

I realize this is a little scary. The conclusion I’ve come to after
looking into this is SvREADONLY is well known enough and has
been used in enough modules that I don’t think I would be con-
cerned about actually making use of it (indirectly via a module).

There are definitely pluses and minuses to each technique. Bow-
ers does an excellent job of summarizing them toward the end of
his article, so rather than rehashing them there, I’d recommend
you look at his Comparison section.

Let’s Do It
Okay, let’s actually look at a number of the more straightforward
modules out there. The first that should get mentioned is the
one that has shipped with Perl since Perl 5.004 and is actually
a pragma (a pre-processor directive). The constant pragma (to
quote the doc) “allows you to declare constants at compile-time.”
What this means is the constant gets created before the actual
program begins running (i.e., during the compilation phase when
Perl is reading in the program and deciding how to execute it). I’ll
show you why that detail matters in just a second.

To use the pragma, you can write code like:

 # define a number of constants in one fell swoop

 use constant {

 LOG_EMERG => 0,

 LOG_ALERT => 1,

 LOG_CRIT => 2,

 LOG_ERR => 3,

 LOG_WARNING => 4,

 LOG_NOTICE => 5,

 LOG_INFO => 6,

 LOG_DEBUG => 7,

 }
 # ... or we could do this one at a time like this:

 # use constant LOG_EMERG => 0;

 # use constant LOG_ALERT => 1; ... etc.

48  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

COLUMNS	
Practical Perl Tools

 # now let’s use it

 log(‘Here is a notice’, LOG_NOTICE);

To prove the immutability of what we’ve defined, if we wrote

 LOG_NOTICE = “some other value”;

it would immediately fail with an error message like

 Can’t modify constant item in scalar assignment

Before we look at another module, let me explain the importance
of the compile-time detail. To use an example modified from the
docs, if I were to create a constant like

 use constant DEBUG => 0;

and use it in code like

 if (DEBUG) {

 # lots of debugging related code

 # yes, lots of it

 # ...

 }

 }

Perl will be smart enough to optimize that entire chunk of code
out of the program before it runs because the value of DEBUG is
false.

The second module I’d like to show you has actually made an
appearance in this column before because it is the one recom-
mended in Damian Conway’s most excellent book Perl Best Prac-
tices. Conway recommends using the Readonly module because
it allows you to do things like variable interpolation.

Quick aside: when you install Readonly, you may also want to
install Readonly::XS. Readonly::XS is never called directly, but
it lets Readonly use the Internals::SvREADONLY method for
scalar constants (thus making it much faster than its usual
use of tie()). Note: if you do want to use Readonly::XS, there is
a long outstanding bug in Readonly that requires you to use
Readonly::Scalar explicitly.

Here’s the way Readonly gets used:

use Readonly;

Readonly my $LOG_EMERG => 0;

Readonly my $LOG_ALERT => 1;

Readonly my $LOG_CRIT => 2;

Readonly my $LOG_ERR => 3;

Readonly my $LOG_WARNING => 4;

Readonly my $LOG_NOTICE => 5;

Readonly my $LOG_INFO => 6;

Readonly my $LOG_DEBUG => 7;

Then we do the usual:

 # note it is $LOG_NOTICE, not LOG_NOTICE

 log(‘Here is a notice’, $LOG_NOTICE);

One difference between the constant pragma and Readonly is
with Readonly we could write this:

 print “The value for the current log level is $LOG_NOTICE\n”;

because string interpolation works. Readonly can also be used to
make entire lists and hashes read-only if desired (though it does
so using the slower tie() interface).

Although Readonly appears to be the most popular module of its
ilk, possibly because of the Conway stamp of approval, it really
hasn’t seen much love in a while. The latest version on CPAN as
of this writing is from April 2004 (though Readonly::XS did see a
release in February of 2009). In his article, Bowers gives the nod
to Const::Fast as one potentially worthy successor to Readonly.
The doc for Const::Fast does indeed say it was written to work
around some of Readonly’s issues and actually says, “The
implementation is inspired by doing everything the opposite way
Readonly does it.”

Like Readonly, it also lets you create read-only scalars, arrays,
and hashes using Readonly-esque syntax as the example code in
the doc demonstrates:

 use Const::Fast;

 const my $foo => ‘a scalar value’;

 const my @bar => qw/a list value/;

 const my %buz => (a => ‘hash’, of => ‘something’);

Off the Beaten Path
Up until now we’ve looked at modules that have the same basic
form and function. Before we end our time together in this
column, I thought it might be interesting to look at a few modules
that take this basic concept and extend it in some way.

The first module in this category is Config::Constants.
Config::Constants encourages a potentially good development
practice where the configuration for your program is (1) repre-
sented as constants and (2) stored in a separate file from the rest
of the code. That separate file is in either XML or Perl data struc-
ture format. An example XML config file might look like this:

 <config>

 <module name “MyConstants”>

 <constant name=’LOG_EMERG’ value=’0’ />

 <constant name=’LOG_ALERT’ value=’1’ />

 <constant name=’LOG_CRIT’ value=’2’ />

 <constant name=’LOG_ERR’ value=’3’ />

 <constant name=’LOG_WARNING’ value=’4’ />

 <constant name=’LOG_NOTICE’ value=’5’ />

 <constant name=’LOG_INFO’ value=’6’ />

 <constant name=’LOG_DEBUG’ value=’7’ />

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 49

COLUMNS
Practical Perl Tools

 </module>

 </config>

with the equivalent Perl data structure version looking like this:

 {

 ‘MyConstants’ => {

 LOG_EMERG => 0,

 LOG_ALERT => 1,

 LOG_CRIT => 2,

 LOG_ERR => 3,

 LOG_WARNING => 4,

 LOG_NOTICE => 5,

 LOG_INFO => 6,

 LOG_DEBUG => 7,

 }

 }

We’d typically create a module responsible for exporting con-
stants to the rest of our program, as in:

 package MyConstants;

 use Config::Constants qw/LOG_EMERG LOG_ALERT LOG_CRIT

 LOG_ERR LOG_WARNING LOG_NOTICE

 LOG_INFO LOG_DEBUG/;

 # define some functions that use these constants

 sub emerg_log {

 $message = shift;

 log($message, LOG_EMERG);

 }

 1;

To use this module, our main program would look like this:

 use Config::Constants xml => ‘config.xml’;

 # or perl => ‘config.pl’;

 use MyConstants;

 emerg_log(‘Houston, we have a problem’);

Another module that also deals with the question of where
the constants are defined is Constant::FromGlobal. With
Constant::FromGlobal you’d write something like this:

 use Constant::FromGlobal LOG_LEVEL =>

 { env => 1,

 default => 0, };

and it will attempt to create a constant called LOG_LEVEL and
set it to a value retrieved from a hierarchy:

◆◆ First it will see if there is a global variable $LOG_LEVEL set in
the package, but if there is no global variable set...

◆◆ it will look for an environment variable called
$MAIN_LOG_LEVEL, but if there is no environment variable
set...

◆◆ it is given the default value (0).

In case you are curious about the name of the environment vari-
able given in the second step above, Constant::FromGlobal wants
the name of the current namespace prepended to variable name.
By default, everything runs in the “main” namespace, although if
we were using this in a module definition, we might write:

 package Usenix;

 use Constant::FromGlobal LOG_LEVEL =>

 { env => 1,

 default => 0, };

and instead the module would look for an environment variable
of USENIX_LOG_LEVEL instead.

Okay, last module of the day and then we can all go home.
Constant::Generate module sets itself apart by being able
to create values for you on the fly. Let’s say you didn’t care
what the values were for constants, just that they had some.
Constant::Generate lets you write:

use Constant::Generate [qw(LOG_EMERG LOG_ALERT LOG_CRIT

 LOG_ERR LOG_WARNING LOG_NOTICE

 LOG_INFO LOG_DEBUG)];

and the constants get integer values starting at 0 (which coinci-
dentally are the same values we’ve been setting by hand previ-
ously). For a slightly cooler self-assignment, we could instead say:

 use Constant::Generate [qw(EMERG ALERT CRIT

 ERR WARNING NOTICE

 INFO DEBUG/)],

 prefix => ‘LOG_’,

 dualvar => 1;

and not only do we get the LOG_something constants from
before, but they act differently depending on the context they are
used in, for example:

 my $log_level = LOG_DEBUG;

 print “Current log level: $log_level\n”;

 print “Yes, debug\n” if $log_level eq ‘LOG_DEBUG’;

 print “Definitely debug\n” if $log_level == LOG_DEBUG;

In the first two print lines, the LOG_DEBUG constant is used in
a string context. The constant appears to represent a string value
that is identical to its name; however, in the third print statement
we’re making a numeric comparison and that still works fine. And
with that little bit of magic, we’ll stop here. Take care and I’ll see
you next time.

50  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

A PyCon Notebook
D A V I D B E A Z L E Y

David Beazley is an open source
developer and author of the
Python Essential Reference (4th
Edition, Addison-Wesley, 2009)

and Python Cookbook (3rd Edition, O’Reilly &
Associates, 2013). He is also known as the
creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com/ply/
index.html). Beazley is based in Chicago, where
he also teaches a variety of Python courses. 
dave@dabeaz.com

A s I begin to write this, I’m returning on the plane from PyCon 2013,
held March 13-17 in Santa Clara, California. When I started using
Python some 16 years ago, the Python conference was an intimate

affair involving around a hundred people. This year’s conference featured
more than 2,500 attendees and 167 sponsors—bigger than ever for an event
that’s still organized by the community (full disclaimer, I was also one of the
sponsors). If you couldn’t attend, video and slidedecks for virtually every talk
and tutorial can be found online at http://pyvideo.org and https://speaker-
deck.com/pyconslides.

There are any number of notable things I could discuss about the conference, such as the fact
that everyone received a Raspberry Pi computer, there were programming labs for kids, or
the record-setting conference attendance by women; however, in this article I’m primarily
going to focus on the one project that seems to be taking over the Python universe—namely,
the IPython Notebook project.

If you attend any Python conference these days, you’ll quickly notice the widespread use of
the IPython Notebook (http://ipython.org) for teaching, demonstrations, and day-to-day pro-
gramming. What is the notebook and why are so many people using it, you ask? Let’s dive in.

The IPython Shell
Before getting to the notebook, knowing about the more general IPython project that has
evolved over the past ten years will help. In a nutshell, IPython is an alternative interactive
shell for Python that provides a broad range of enhancements, such as better help features,
tab completion of methods and file names, the ability to perform shell commands easily,
better command history support, and more. Originally developed to support scientists and
engineers, IPython is intended to provide a useful environment for exploring data and per-
forming experiments. Think of it as a combination of the UNIX shell and interactive Python
interpreter on steroids.

To provide a small taste of what IPython looks like, here is a sample session that mixes
Python and shell commands together to determine how much disk space is used by different
types of files in the current working directory:

bash-3.2$ ipython

Python 2.7.3 (default, Dec 10 2012, 06:24:09)

Type “copyright”, “credits” or “license” for more information.

IPython 0.13.1 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython’s features.

%quickref -> Quick reference.

help -> Python’s own help system.

object? -> Details about ‘object’, use ‘object??’ for extra details.

In [1]: cd ~

/Users/beazley

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 51

COLUMNS
A PyCon Notebook

In [2]: ls

Desktop/ Junk/ Music/ Public/ Tools/

Documents/ Library/ Pictures/ Sites/

Downloads/ Movies/ Projects/ Teaching/

In [3]: cd Pictures

/Users/beazley/Pictures

In [4]: import collections

In [5]: import os

In [6]: size_by_type = collections.Counter()

In [7]: for path, dirs, files in os.walk(‘.’):

 ...: for filename in files:

 ...: fullname = os.path.join(path, filename)

 ...: if os.path.exists(fullname):

 ...: _, ext = os.path.splitext(filename)

 ...: sz = os.path.getsize(fullname)

 ...: size_by_type[ext.upper()] += sz

 ...:

In [8]: for ext, sz in size_by_type.most_common(5):

 ...: print ext, sz

 ...:

.JPG 50389086278

.MOV 38328837384

.AVI 9740373284

.APDB 733642752

.DATA 518045719

In [9]:

As you can see, a mix of UNIX shell commands and Python
statements appear. The “In [n]:” prompt is the interpreter prompt
at which you type commands. This prompt serves an important
purpose in maintaining a history of your work. For example, if
you wanted to redo a previous sequence of commands, you could
use rerun to specify a range of previous operations like this:

In [9]: cd ../Music

/Users/beazley/Music

In [10]: rerun 6-8

=== Executing: ===

size_by_type = collections.Counter()

for path, dirs, files in os.walk(‘.’):

 for filename in files:

 fullname = os.path.join(path, filename)

 if os.path.exists(fullname):

 _, ext = os.path.splitext(filename)

 sz = os.path.getsize(fullname)

 size_by_type[ext.upper()] += sz

for ext, sz in size_by_type.most_common(5):

 print ext, sz

=== Output: ===

.M4A 9704243754

.MP3 2849783536

.M4P 2841844039

.M4V 744062510

.MP4 573729448

In [11]:

Or, if you wanted to save your commands to a file for later edit-
ing, you could use the save command like this:

In [11]: cd ~

/Users/beazley

In [12]: save usage.py 4-8

The following commands were written to file `usage.py :̀

import collections

import os

size_by_type = collections.Counter()

for path, dirs, files in os.walk(‘.’):

 for filename in files:

 fullname = os.path.join(path, filename)

 if os.path.exists(fullname):

 _, ext = os.path.splitext(filename)

 sz = os.path.getsize(fullname)

 size_by_type[ext.upper()] += sz

for ext, sz in size_by_type.most_common(5):

 print ext, sz

In [13]:

Should you be inclined to carry out more sophisticated shell
operations, you can usually execute arbitrary commands by
prefixing them with the exclamation point and refer to Python
variables using $ variable substitutions. For example:

You can capture the output of a shell command by simply
assigning it to a variable:

In [15]: out = !lsof -p$pid -F n

In [16]: out

Out[16]:

[‘p8686’,

 ‘n/Users/beazley/Desktop/UsenixLogin/beazley_jun_13’,

In [13]: pid = os.getpid()

In [14]: !lsof -p$pid

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

Python 8686 beazley cwd DIR 14,2 238 2805734 /Users/...

Python 8686 beazley txt REG 14,2 12396 2514070 /Library/...

...

In [15]:

52  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

COLUMNS
A PyCon Notebook

 ‘n/Library/Frameworks/Python.framework/Versions/7.3/Python’,

 ...

]

In [17]:

This session gives you a small glimpse of what IPython is about
and why you might use it; however, this is not the IPython
Notebook.

From the Shell to the Notebook
Imagine, if you will, the idea of taking the above shell session and
turning it into a kind of interactive document featuring execut-
able code cells, documentation, inline plots, and arbitrary Web
content (images, maps, videos, etc.). Think of the document as
the kind of content you might see written down in a scientist’s
lab notebook. Well, that is basically the idea of the IPython
Notebook project. Conveying the spectacle it provides in print is

a little hard, so a good place to start might be some of the videos
at http://pyvideo.org.

To get started with the IPython notebook yourself, you’ll need
to spend a fair bit of time fiddling with your Python installa-
tion. There are a number of required dependencies, including
pyzmq (https://pypi.python.org/pypi/pyzmq/) and Tornado
(https://pypi.python.org/pypi/tornado). Additionally, to real-
ize all of the IPython notebook benefits, you’ll need to install a
variety of scientific packages, including NumPy (http://numpy.
org) and matplotlib (http://matplotlib.org). Frankly, working
with a Python distribution in which it’s already included, such
as EPDFree (http://www.enthought.com/products/epd_free.
php) or Anaconda CE (http://continuum.io/anacondace.html), is
probably easier. If you’re on Linux, you might be able to install the
required packages using the system package manager, although
your mileage might vary.

Figure 1: Notebook works with IPython, and at first appears not that different from using IPython alone

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 53

COLUMNS
A PyCon Notebook

Assuming you have everything installed, you can launch the
notebook from the shell. Go to the directory in which you want to
do your work and type “ipython notebook”. For example:

bash $ ipython notebook

[NotebookApp] Using existing profile dir: u’/Users/beazley/.

ipython/profile_default’

[NotebookApp] Serving notebooks from /Users/beazley/Work

[NotebookApp] The IPython Notebook is running at:

http://127.0.0.1:8888/

[NotebookApp] Use Control-C to stop this server and shut down

all kernels.

Unlike a normal session, the Notebook runs entirely as a server
that needs to be accessed through a browser. As soon as you
launch it, a browser window like the one in Figure 1 should appear.

If you click on the link to create a new notebook, you’ll be taken
to a page on which you can start typing the usual IPython com-
mands, as in Figure 1.

At this point, the notebook doesn’t seem much different from the
shell; however, the benefits start to appear once you start edit-
ing the document. For example, unlike the shell, you can move
around and edit any of the previous cells (e.g., change the code,
re-execute, delete, copy, and move around within the document).
You can also start to insert documentation at any point in the
form of Markdown. Figure 2 shows the above session annotated
with some documentation.

Assuming you’ve installed matplotlib and NumPy, you can also
start making inline plots and charts. For example, Figure 3
shows what it looks like to take the file-usage data and make a
pie chart.

Needless to say, the idea of having your work captured inside a
kind of executable document opens up a wide range of possibili-
ties limited only by your imagination. Once you realize that
these notebooks can be saved, modified, and shared with others,
why the notebook project is quickly taking over the Python uni-
verse starts to become clear. In that vein, I’ve shared the above

Figure 2: Notebook includes the ability to document what appears in a notebook, using Markdown (https://pypi.python.org/pypi/Markdown)

54  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

COLUMNS
A PyCon Notebook

notebook at http://nbviewer.ipython.org/5244469. You can go
there to view it in more detail.

Other Notable PyCon Developments
Although this article has primarily focused on IPython, a few
other notable developments were featured at the recent con-
ference. First, there seems to be a general consensus that the
mechanism currently used to install third-party packages (the
procedure of typing python setup.py install) should probably
die. How that actually happens is not so clear, but the topic of
packaging is definitely on a lot of people’s minds. Somewhat
recently, a new binary packaging format known as a “wheel file”
appeared and is described in PEP-427 (http://www.python.org/
dev/peps/pep-0427/). Although I have yet to encounter wheels in
the wild, it’s something that you might encounter down the road,
especially if you’re the one maintaining a Python Installation.

Also worthy of note is the fact that Python seems to be gaining a
standard event loop. Over the past several years, there has been

growing interest in asynchronous and event-driven I/O librar-
ies (e.g., Twisted, Tornado, GEvent, Eventlet, etc.) for network
programming. One of the benefits of such libraries is that they
are able to handle a large number of client connections, without
relying on threads or separate processes. Although the standard
library has long included the asyncore library for asynchronous
I/O, nobody has ever been all that satisfied with it; in fact, most
people seem to avoid it.

Guido van Rossum’s keynote talk at PyCon went into some depth
about PEP 3156 (http://www.python.org/dev/peps/pep-3156/),
which is a new effort to put a standard event loop into the stan-
dard library. Although one wouldn’t think that an event loop
would be that exciting, it’s interesting in that it aims to stan-
dardize a feature that is currently being implemented separately
by many different libraries that don’t currently interoperate
with each other so well. This effort is also notable in that the
PEP involves the use of co-routines and requires Python 3.3 or
newer. Could asynchronous I/O be the killer feature that brings
everyone to Python 3? Only time will tell.

Figure 3: Notebook works with matplotlib and NumPy so you can include inline plots and charts

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 55

iVoyeur
Approaching Normal

D A V E J O S E P H S E N

Dave Josephsen is the author
of Building a Monitoring
Infrastructure with Nagios
(Prentice Hall PTR, 2007)

and is Senior Systems Engineer at DBG, Inc.,
where he maintains a gaggle of geographically
dispersed server farms. He won LISA ‘04’s
Best Paper award for his co-authored work on
spam mitigation, and he donates his spare time
to the SourceMage GNU Linux Project.
dave-usenix@skeptech.org

In the past, I have been known to indulge in hyperbole. I freely admit this,
but to say that our Christmas tree erupted into flames wouldn’t come
close to an adequate description. It exploded into a wholly new form of

matter that transcended flames. I tell you, one moment it was a chopped up,
dead Christmas tree in a fire-pit, and the next moment it was a churning
column of violent, malevolent living fire. It was as if there were something
inside that tree. As if the tree had been imbued with some small piece of the
soul of Christmas, or maybe anti-Christmas, and we had set it alight. The
tree had arms, and a face, and it writhed and screamed and reached out for
us, beckoning for us to come closer. We took a few steps back.

“Is that normal?” my wife asked, not taking her eyes off the 15-foot columnar fire-being.

Normal; I paused to consider. To know whether a thing is normal, we’d have to define normal,
by quantitative measurement and comparison. To honestly know the truth of the “normal”
interaction between Christmas trees and matches, we’d have to burn every Christmas tree
on earth to establish a mean, and compute our Christmas tree’s standard deviation from that
mean. Then we could objectively say whether or not this was “normal.” This is probably an
impossible task (but I’m willing to try if you’re able to fund me).

“I don’t know.” I replied, taking note of the location of the garden hose.

Of course, it isn’t true that we’d need to burn every Christmas tree on earth. There are many
problems that require us to quantify the “normalness” of a given property in a population.
And it’s not unusual for the population to be large enough to make infeasible the measur-
ing of every member. All we really need is a statistically relevant sample from which we can
estimate the normal interaction between Christmas trees and matches.

By “statistically relevant,” I’m referring not only to our ability to accurately approximate
the normal interaction between Christmas trees and matches, but also to our ability to
compute the accuracy of our estimates. Statistics was invented to answer just this sort
of (ahem) burning conundrum. Really, this is a data sampling problem of the sort that is
important in many systems monitoring and analytics contexts, and will only become more
important as the data grows. Further, sampling can help us scale monitoring systems, not
only by reducing the amount of measuring we have to do, but also by reducing the metric
data we need to transmit.

The Simple Random Sample
Most of what humanity knows about the science of data sampling comes from statistics
problems involving subjective human opinions on this or that political issue. Even when the
problems involve “harder” subjects, such as crime statistics, our humanity can intrude in
ways that make it notoriously difficult to acquire data samples that are statistically relevant.
For this reason there are myriad data sampling methodologies that we can ignore entirely
in a monitoring context. For our purposes, we will usually be looking for a “simple random
sample,” or “SRS” [1].

56  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

COLUMNS
iVoyeur

Taking humans out of the sample-collecting picture (mostly)
helps us to avoid the common pitfalls that have a negative impact
on the accuracy of conclusions statistically derived from sam-
pled data. Selection bias, overcoverage, undercoverage, process-
ing errors, and measurement errors are all out the window. This
makes data sampling a really effective technique for the kinds of
problems we’re usually concerned with in a monitoring context.

Gleaning a simple random sample is, well, simple. We just need
to choose a subset of measurements from a larger body of data in
a way that every measurement has an equal probability of being
chosen as a sample. Imagine, for example, that you’ve written
a program that calls a function foo(). You want to monitor the
length of time foo() takes to return, but your program is dis-
tributed across several hundred compute nodes, so foo() gets
called several million times per second. You could obtain an SRS
for foo() return times by generating a pseudo-random number
every time foo() is called, and comparing it to a threshold. If the
current random number is less than the threshold, then you take
a sample return time. If that’s too expensive for your purposes,
the random requirement can usually be adequately satisfied in
practice by simply decrementing a counter and sampling when it
hits zero (especially in large populations like foo()).

Sample Size
If we generated a random number between 0 and 1, and used
.0025 (a quarter of one percent) for our threshold, we should
collect around 2,500 samples for every million calls to foo(). The
Central Limit Theorem [2] allows us to make a few assumptions
about our sample. For instance, we can assume that our sample
mean pretty much equates to our population mean. By “pretty
much” I mean our sample approximates the population within
some margin of error, which we can compute [3]. In my example
our sample should approximate the population within about a 5%
margin of error.

As you might expect, if we reduce the sample size, we increase
the error percentage. This relationship directly affects the
accuracy of our estimates, and means we can increase accuracy
by either sampling more often, or sampling for a longer period
of time. It also means that it is important to deliberately choose
your sample size [4].

Here’s something you might not expect: as long as the population
is an order of magnitude larger than the sample, the accuracy of
our predictions does not vary with the size of the population. In
other words, it wouldn’t matter if foo() was being called a million
times per second, or ten thousand. My 2,500 samples would give
me the same accuracy in either case.

That’s weird but useful; it means we don’t need to think about
data samples as a percentage of the total population for many of

the problems we’re interested in, which certainly helps us scale.
It also introduces the irony that smaller populations are more
difficult to sample accurately.

Sometimes, Sampling Ruins Everything
sFlow [5] is a great example of a controversial use of data sam-
pling. Sometimes we’re interested in knowing the number of
occurrences of X in a population, like the number of packets that
make up the total population of packets that traversed a given
switch port, or the number of bytes sent that were BitTorrent
protocol in the population of all bytes.

These numbers are expensive (in a computational sense) to
gather and process. Traditional approaches, such as hardware
packet taps, span ports, and NetFlow-enabled switches, burn
every Christmas tree by either measuring each packet directly or
copying each packet to an external entity. The cost of this brute-
force endeavor is actualized as more expensive (in dollars and
cents) network gear, or slower network gear.

sFlow, by comparison, gleans a simple random sample by dec-
rementing a counter per interface, and sampling the current
packet when the counter hits zero. By modeling the sample as a
binomial distribution [6] sFlow can, at near zero cost, answer
questions like the BitTorrent-related ones above with sufficient
accuracy for the purpose of customer billing in the real world.
This is clever engineering, and the sFlow creators have obvi-
ously [7] put careful thought into its design and implementation.
The accuracy of its estimates are guaranteed by math.

What sFlow cannot guarantee, however, is that all classes of
traffic actually make it into the sample set. It’s entirely feasible
that small, one-time bursts of traffic (the packets making up a
port scan, for example) might never be sampled, and therefore
never be represented in sFlow’s output (and this property, by the
way, does vary with the size of the population). So while flow sta-
tistics of the sort that are interesting to network operations folks
are accurately represented, the kind of statistically aberrant
thing that might interest the security folks is maybe not.

The Buddha said that it’s not what we carry with us but what we
let go of that defines us, which is an apropos sentiment in this
case. I’m sure it was not a design goal for sFlow to capture these
aberrant, one-off micro-flows, but their exclusion renders sFlow
unusable for a huge chunk of the reason many of us run packet
taps, span ports, and NetFlow, which is to say, intrusion detec-
tion and forensics, and, therefore, since we’re doomed to incur
the cost of those other solutions anyway, belies our use of sFlow
entirely. That’s kind of sad because I personally like clever engi-
neering, statistics, and things that are cheap (in any sense), but I
also think it’s possible that data sampling and traffic inspection
might not be compatible undertakings.

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 57

COLUMNS
iVoyeur

It’s easy, especially for statistics geeks, to become overly fasci-
nated with the center mean line of that perfectly symmetrical
bell curve: the normal distribution. When we plot a sample that
approximates the normal distribution for some attribute, we
know that we’ve methodologically nailed it. But the prudent
monitoring engineer should, in many endeavors, be concerned
with the statistically irrelevant, with whether the flaming
Christmas tree is, in fact, abnormal instead of normal. Even if
the cost is burning them all, it is a cost that should be weighed
against the loss of statistically irrelevant but really interesting
weirdo observations.

Take it easy.

References
[1] The simple random sample: http://www.ma.utexas.edu/
users/mks/statmistakes/SRS.html.

[2] The Central Limit Theorem: http://en.wikipedia.org/
wiki/Central_limit_theorem.

[3] Sample means: http://www.stat.yale.edu/
Courses/1997-98/101/sampmn.htm.

[4] Choosing a sample size: http://www.itl.nist.gov/div898/
handbook/ppc/section3/ppc333.htm.

[5] sFlow: http://www.inmon.com/technology/index.php.

[6] sFlow packet sampling basics: http://www.sflow.org/
packetSamplingBasics/index.htm.

[7] sFlow sampling theory: http://www.sflow.org/about/
sampling_theory.php.

58  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

For Good Measure
The Price of Anything Is the Foregone Alternative

D A N G E E R A N D D A N C O N W A Y

Dan Geer is the CISO for In-Q-
Tel and a security researcher
with a quantitative bent. He has
a long history with the USENIX
Association, including officer

positions, program committees, etc.
dan@geer.org

Daniel G. Conway is founding
director of the MBA in Analytics
program at Loras College and is
a faculty member in the
McCormick School of

Engineering at Northwestern University. He
previously served on the faculty of Indiana
University and the University of Notre Dame.
daniel.conway1@northwestern.edu

Cybersecurity insurance has been talked about forever, but absent
some ill-advised government mandate, the insurance market is not
going anywhere useful without better data.

A demand for insurance emerges as soon as traditional risk management providers of family,
clan, and tribe become too small to help. The first formal insurance was supplied to enable
risk transfer around physical assets, which are susceptible to harm by physical forces.

In Nature, physical forces are local. Physical risk mitigation strategy thus requires pooling
of risk based on locality independence. For example, the risk of a fire in NY is uncorrelated
with, and thus offset by, the risk of a typhoon in Taipei, which is uncorrelated with, and thus
offset by, the risk of an earthquake in Istanbul. A successful insurance company diversifies
risks geographically so as to remove the impact of the correlation implied in locality. You
don’t write fire insurance for abutting tenements.

In information security, locality is manifested by systems which, when compromised, have
a correlated impact on value. These systems include operating systems, ubiquitous applica-
tions, standardized protocols, and a host of other vulnerable single points of failure. For any
operating system code base, all instances of it are “virtually local.” In essence, this means
we have only a few digital cities, each built within the digital world’s “ring of fire.” Insurance
providers cannot offer affordable insurance without a means of diversifying locality, that is
to say without limiting the provider’s own exposure to cascade failure among their insureds.

In a recent DHS workshop on cyber insurance [1], many suggestions were offered to drive
adequate coverage alternatives and thus maturity in the cyber insurance industry. The
report cited the difficulty insurance providers faced:

1. a lack of actuarial data, which requires high premiums for first-party policies that many
can’t afford;

2. the widespread, mistaken belief that standard corporate insurance policies and/or general
liability policies already cover most cyber risks; and

3. fear that a so-called “cyber hurricane” will overwhelm carriers who might otherwise enter
the market before they build up sufficient reserves to cover large losses.

Difficulty (3) results from locality, so an insurance company would prefer to provide coverage
for potential insureds that have system diversity. This can be encouraged through discounts
for those with diverse system characteristics and verified through audit or embedded monitor-
ing tools. Difficulty (2) is beyond the scope of this column. We focus on difficulty (1), which has
been at the heart of For Good Measure since its inception (http://geer.tinho.net/fgm).

The most reflexive strategy to collect better actuarial data is to impose data sharing through
regulation, and that approach can have positive results if accompanied by liability protec-
tion; however, the incentives for reporting events completely and accurately are generally
unaligned with the organization’s individual reward structure, viz., full disclosure exposes
firms to litigation and potential additional cyber risks that far exceed any value to be gained
from such disclosures. Moral hazard has a digital counterpart.

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 59

COLUMNS
For Good Measure

A Market Approach
A market approach would induce sharing of actuarial data by
providing a framework for rewarding contributed value, which
would, as a result, provide inference into event trends. Rewards
tend to attract further market participants, often resulting in
the maturing of metrics programs and improved management
techniques. Analytics in baseball has been good for maturing
baseball. Analytics in the cyber insurance industry would cata-
lyze maturation in cyber risk management and are a necessary
component of re-insurance.

What would such a market look like, and how might it be used to
improve security? A participant in the DHS workshop described
(1) the frequency and (2) the severity of events as the “Holy
Grail” of cybersecurity risk management, so we start with that.
Severity is in the eye of the beholder, and thus subject to stake-
holder appetite for risk. Financial markets use spot price of
money for this measure, and ignore the beholder’s current posi-
tion and/or money demand. Futures markets and money markets
extend the spot concept to a price-over-time concept, and thus
allow for better capital planning. (Time-lapsed pricing permits
the incorporation of data points, such as the frequency of certain
events occurring over time, that spot pricing cannot capture.)

What would a market for “event frequency” as a commodity look
like? For data, we take 96 months of event frequency, from 2005–
2012, using the Data Loss Database [2] as a proxy. Events by year
are represented in Table 1, and events by month in Figure 1.

Financial analytics professionals have created markets to buy
and sell probabilities for many domains, including who will be
the next president, the next pope, and the next winner of “Danc-
ing With the Stars.” During the most recent MIT sports analyt-
ics workshop [3], major league baseball teams suggested that
their players were evaluated as if they were financial assets and
a team was a portfolio of such options on those assets.

If changes in cybersecurity event frequency were important to
us, we could treat that frequency as if it were a financial asset,

and, more importantly, we could price futures in cybersecurity
event frequency. For our example, we will use ticker symbol XEF.
This market could be used as a hedge against risks for those
most susceptible to an increase or decrease in event frequency,
such as cyber insurance providers. Increases in XEF “price”
would mean that the market predicts an increase in the fre-
quency of cybersecurity events.

For example, if an email company were measuring the fre-
quency of “.exe” attachments over time and saw a spike in that
metric, they could purchase shares of XEF in anticipation of an
increase in future cybersecurity events. Any market participant
who was sensitive to an increase in such events might purchase
an option to buy XEF in the future for a small price today as a
risk mitigation instrument. This market would likely be more
responsive in terms of expectations than data collected through
regulatory imposition.

Option Pricing via Black-Scholes
Black-Scholes option pricing [4] is a widely used calculation
method in finance for providing future price information on
assets, and is used to price grain futures, weather futures, and
the value of major league baseball players. In our case, it would
have a price on the future of XEF, that is to say the future fre-
quencies of cyber events. A mature options market in XEF would
allow a market participant to purchase the right (but not the
obligation) to buy XEF in the future at a set price in exchange for
an amount today. Such prices are determined by the volatility of
the underlying stock where, in the case of XEF, the underlying is
security debt as defined by Wysopal [5].

To be concrete, and again using the monthly data from data-
lossdb.org as a proxy, if the investor wanted to obtain the
right to purchase (call) a share of XEF at a price of 90 in three
months from December of 2012, the investor would identify the
following:

◆◆ Spot price today: 106

◆◆ Future strike price: 90

◆◆ Risk-free rate (historical monthly increase): 1%

◆◆ Volatility: 27%

Figure 1: Data Loss Events by Month (2005-2012)

Table 1: Data Loss Events per Year

Year Incidents
2005  156

2006  643

2007  774

2008 1048

2009  727

2010  828

2011 1088

2012 1586

60  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

COLUMNS
For Good Measure

The Black-Scholes calculation would then price at 28.68 (dol-
lars) the option of purchasing a share of XEF in three months at
90 (dollars). Table 2 lists various option prices for a future price
of 90. We also include the price for the option to sell (put) a 90
(dollar) share of XEF in the future.

A futures market for event frequency in cybersecurity might
offer a way for security professionals to infer future events as
well as provide a mechanism to insure against the associated
risks. The amount we invest in future calls/puts reflects our
perceived impact of an event, thus pushing the severity half of
the Holy Grail metric to the beholder.

John Poindexter and others demonstrably understood the
potential of derivative markets to serve as predictors of future
events, although they were unable to navigate the political
obstacles to realize such markets [6]. Now is the time to revisit
those ideas; cybersecurity is in crisis, and crises must not be
allowed to go to waste.

References
[1] Cybersecurity Insurance Workshop Readout Report:
http://www.dhs.gov/sites/default/files/publications/cyber-
security-insurance-read-out-report.pdf.

[2] DataLossDB: http://datalossdb.org/.

[3] MIT Sloan Sports Analytics Conference: http://www.
sloansportsconference.com/.

[4] Investopedia: http://www.investopedia.com/terms/b/
blackscholes.asp.

[5] C. Wysopal, “A Financial Model for Application Security
Debt”: http://www.veracode.com/blog/2011/03/a-financial
-model-for-application-security-debt.

[6] R. Hanson, “The Policy Analysis Market: A Thwarted
Experiment in the Use of Prediction Markets for Public
Policy,” Innovations, Summer, 2007: http://hanson.gmu.edu/
innovations.pdf.

Months Call Put
 1 $ 21.00 $  4.10

 2 $ 25.24 $  7.45

 3 $ 28.68 $ 10.02

 4 $ 31.65 $ 12.12

 5 $ 34.28 $ 13.89

 6 $ 36.68 $ 15.44

 7 $ 38.88 $ 16.79

 8 $ 40.92 $ 18.00

 9 $ 42.83 $ 19.09

10 $ 44.63 $ 20.06

11 $ 46.33 $ 20.95

12 $ 47.94 $ 21.76

Table 2: Call and Put Option Prices for XEF

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 61

/dev/random
R O B E R T G . F E R R E L L

Robert G. Ferrell is a fourth-
generation Texan, literary
techno-geek, and finalist for the
2011 Robert Benchley Society

Humor Writing Award. rgferrell@gmail.com

A t first I thought Ganeti clusters were some form of yummy confec-
tion, like peanut brittle, only gooier. Then it occurred to me that they
might instead be an exotic stellar architecture discovered since I had

my college astronomy courses in 1977. Or perhaps they were a neuroanatomi-
cal feature that wasn’t covered during my abortive attempt at medical school
in the late ’80s, like the lateral geniculate nucleus, only gooier. I was discom-
bobulated to discover that I was, as too often happens, mistaken. I didn’t
really mind, though, as I had been combobulated since the last cold front
came through and I was running out of muscle rub.

Clustering as a task list item first buzzed around in my personal lateral geniculate nucleus
back in 1997, when I was given the job of constructing a load balancing high-availability clus-
ter for the USGS using four Sun Enterprise 450 servers running that fancy new Solaris 2.6.
Back then clustering software was a bit less sophisticated than it is today. The flow control
algorithm resembled the digital version of four old men sitting around in rocking chairs on a
porch when the phone rings inside. Those of you under 30 may need to consult Wikipedia for
some of this. Believe it or not, there was a time when phones were anchored to the wall and
we got our news from large sheets of flimsy paper folded and rolled into a tube for delivery
by boys on bicycles. We had to be alert and snag those tubes off the front lawn before the
dinosaurs got to them.

Server #1 (Clem): The phone’s ringin’.

Server #2 (Wally): Yep.

Server #3 (Rufus): ‘Peers so.

Server #4 (Cooter): Uh huh.

Clem: Think we oughta answer it?

Rufus: I answered it last time.

Cooter: Probably not important, anyways.

Wally: My hip’s not right. Somebody else get it.

Clem: Fine. I’ll get it.

Wally: Here comes the paper boy. Anybody got five bucks?

Rufus: I thought the paper was four-fifty.

Wally: Gotta tip the little skeeter or he drops it out in the sticker patch.

Cooter: I think I got some cash left over from Bingo last night.

Wally: What happened to Rufus?

Cooter: Had to go to the john.

Wally: Dang. My wife’s hollerin’ for me. Gotta git.

Cooter: Hope the phone doesn’t ring.

62  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

COLUMNS
/dev/random

Apparently, somewhere in the middle of this imaginary
exchange, I forgot exactly what point I was trying to make,
but what the heck: you get the gist (or if you don’t, send a self-
addressed stamped tweet to @whatwasItalkingaboutagain and
whoever owns that tag will tell you to shove off). Load balancing
and high availability were largely left to chance in those far off
days of six-shooters and Conestoga tape drives. I am pleased to
report that not only has clustering software made quantum leaps
since then, some of it is even open source. What’s not to like? So
cluster away, my fine fellows, and th’ divil tak’ th’ hindmost!

Moving on to a topic about which I know a little bit more (prepo-
sitions at the end of sentences is something up with which I,
along with Churchill, will not put), I recently developed a rather
elementary training guide for people who are Windows literate
but who have had little to no exposure to *nix. The guide covers a
few specific areas integral to the job these folks are expected to
perform, nothing more. You would think that might not be much
a challenge, but brothers and sisters I’m here to testify that this
seemingly simple task is deceptively difficult. I’d rather train a
wombat to do my taxes.

My presentation starts out laudably enough: a few useful sys-
tems administration commands, such as ls, su, sudo, cd, ifconfig,
ps, chmod, and so on; nothing too complex there. But the intellec-
tual pudding begins to congeal quickly as I try to figure out some
straightforward way to explain file permissions. Remember,
these are dyed-in-the-wool Windows people, and all I have is an
hour or so and PowerPoint to work with.

I try several approaches. The first results in something that
reads like instructions for assembling a double helix using the
little-known r, w, and x nucleotides. (What time does the nucleo-

tide come in today, please?) My second attempt is a reasonably
decent representation illustrating the effects of the dread afflic-
tion alphabetiasis dementiae. Following these abject failures are
a spastic Scrabble irruption, four or five paragraphs of what can
only be described as toxic literary sludge, and finally, a frankly
puzzling series of statements that when read aloud make a noise
that calls to mind a mechanical dog barking whilst immersed in
a bath of peanut butter, potato chips, and ball bearings. I decide
to go with this one.

Because I am already firmly in the tempestuous throes of
incoherency by this point, I go for broke and tackle (not to be
confused with block and tackle, which is the process of using
football players to carry heavy stuff for you) the thorny subject of
auditing. Where file permissions were an abecedarian’s febrile
nightmare, the subject of audit flags and settings comes out
sounding like the lyrics to a Tom Lehrer song, minus the rhyme
scheme and comprehensibility. I suggest reading them to an
accompanying soundtrack; Nine Inch Nails’ “Head Like a Hole”
might work well. Or not.

Access control is a little easier to understand, but my cumulative
brain damage from formulating the preceding lessons results in
a rather uninformative series of short, choppy statements that
give the impression of having been lopped off the main narra-
tive by some automatic trimming machine that goes “whoosh
whoosh” with nasty long pointy blades slicing smoothly through
the conjunctions and prepositions as though they were nothing
more than insubstantial denizens of a labored metaphor embed-
ded in a run-on sentence. And baby makes three.

Come to think of it, the entire project is a total washout. I think
I’ll just scrap it and write a cookbook, instead.

Co-Located Workshops Include:

EVT/WOTE ’13: 2013 Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections
August 12–13, 2013

CSET ’13: 6th Workshop on Cyber Security
Experimentation and Test
August 12, 2013

HealthTech ’13: 2013 USENIX Workshop
on Health Information Technologies
Safety, Security, Privacy, and Interoperability
of Health Information Technologies
August 12, 2013

LEET ’13: 6th USENIX Workshop on Large-Scale
Exploits and Emergent Threats
August 12, 2013

FOCI ’13: 3rd USENIX Workshop on Free
and Open Communications on the Internet
August 13, 2013

HotSec ’13: 2013 USENIX Summit
on Hot Topics in Security
August 13, 2013

WOOT ’13: 7th USENIX Workshop
on Offensive Technologies
August 13, 2013

The USENIX Security Symposium brings together
researchers, practitioners, system administrators,
 system programmers, and others interested in the
latest advances in the security of computer systems
and networks.

USENIX Security ’13 will feature:
Keynote Address
“Dr. Felten Goes To Washington:
Lessons from 18 Months in Government”
Edward W. Felten, Director, Center for Information
Technology Policy, and Professor of Computer Science
and Public Aff airs, Princeton University; former Chief
Technologist, U.S. Federal Trade Commission

A 3-day Technical Program including:
• Paper presentations on large-scale systems

security, attacks, mobile security, and
applied crypto

• Invited talks by industry leaders
• Poster session
• Rump session
• Birds-of-a-Feather sessions (BoFs)

Register by July 22 and Save!
www.usenix.org/sec13

www.usenix.org/facebook

twitter.com/usenixsecurity

www.usenix.org/youtube

www.usenix.org/linkedin

www.usenix.org/blog

www.usenix.org/gplus

Stay Connected...

WASHINGTON, D.C. • AUGUST 14–16, 2013

NOTES

64  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

USENIX Member Benefits
Members of the USENIX Association
 receive the following benefits:

Free subscription to ;login:, the
Association’s magazine, published six times
a year, featuring technical articles, system
administration articles, tips and tech-
niques, practical columns on such topics
as security, Perl, networks, and operating
systems, book reviews, and reports of ses-
sions at USENIX
conferences.

Access to ;login: online from October 1997
to this month:
www.usenix.org/publications/login/

Access to videos from USENIX events in
the first six months after the event:
www.usenix.org/publications/
multimedia/

Discounts on registration fees for all
 USENIX conferences.

Special discounts on a variety of products,
books, software, and periodicals: www.
usenix.org/membership/
specialdisc.html.

The right to vote on matters affecting the
Association, its bylaws, and election of its
directors and officers.

For more information regarding
membership or benefits, please see
www.usenix.org/membership/
or contact office@usenix.org.
Phone: 510-528-8649

USENIX Board of Directors
Communicate directly with the USENIX
Board of Directors by writing to
board@usenix.org.

P R E S I D E N T

Margo Seltzer, Harvard University
margo@usenix.org

V I C E P R E S I D E N T

John Arrasjid, VMware
johna@usenix.org

S E C R E T A R Y

Carolyn Rowland, National Institute of
Standards and Technology
carolyn@usenix.org

T R E A S U R E R

Brian Noble, University of Michigan
noble@usenix.org

D I R E C T O R S

David Blank-Edelman, Northeastern
 University
dnb@usenix.org

Sasha Fedorova, Simon Fraser
University
sasha@usenix.org

Niels Provos, Google
niels@usenix.org

Dan Wallach, Rice University
dwallach@usenix.org

C O - E X E C U T I V E D I R E C T O R S

Anne Dickison
anne@usenix.org

Casey Henderson
casey@usenix.org

New Exclusive Electronic
Edition: ;login: logout
If you haven’t seen it already, please take a
look at our new electronic-only supplement
to ;login: magazine, ;login: logout. Published
every other month, ;login: logout will appear
during the months when ;login: magazine is
not published, giving you year-round ;login:
content. Each issue will contain at least
three new articles. The inaugural issue for
May 2013 features:

•	 James Mickens on “The Saddest
 Moment”

•	 Selena Deckelmann on “The Disam-
biguator: Learning about Operating
Systems”

•	 Rik Farrow on “So many filesystems…”
Enjoy!

Notice of Annual Meeting
The USENIX Association’s Annual Meet-
ing with the membership and the Board
of Directors will be held on Wednesday,
June 26, 2013, in San Jose, CA, during
 USENIX Federated Conferences Week,
June 24-28, 2013.

Tell Us What You Think
Please watch your inboxes and the ;login:
Web site at www.usenix.org/publications/
login/ for a link to a ;login: readership
 survey. We’d like to hear what you think
about the types of articles and authors
we’ve been featuring; our current colum-
nists; the recently refreshed magazine
design; ;login: logout, our new electronic
supplement; and more. Thanks for your
assistance in making ;login: even more
 valuable to you, our readers.

Stay Connected...

www.usenix.org/facebook

twitter.com/lisaconference

www.usenix.org/youtube

www.usenix.org/linkedin

www.usenix.org/blog

www.usenix.org/gplus

www.usenix.org/lisa13
NOVEMBER 3–8, 2013 | WASHINGTON, D.C.

SAVE THE DATE!

27th Large Installation
System Administration Conference

Sponsored by USENIX
in cooperation with LOPSA

Come to LISA ’13 for training and face time with experts in the
sysadmin community.

LISA ’13 will feature:
6 days of training on topics including:
• Configuration

management
• Cloud Computing
• Distributed Systems

• DevOps
• Security
• Virtualization
• And More!

Plus a 3-day technical program:
• Invited Talks
• Guru Is In sessions
• Paper presentations
• Vendor Exhibition

• Practice and
Experience reports

• Workshops
• Posters and Lightning

Talks

New for 2013! The LISA Labs “hack space” will be available for mini-presentations,
experimentation, tutoring, and mentoring.

Register Now!
www.usenix.org/lisa13

66  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

BOOKSBook Reviews
T R E Y D A R L E Y A N D M A R K L A M O U R I N E

Burdens of Proof: Cryptographic Culture and
Evidence Law in the Age of Electronic Documents
Jean-François Blanchette
MIT Press: 2012, 280 pp.
ISBN: 978-0262017510
Reviewed by Trey Darley

Blanchette’s thesis is that while cryptographers spend their days
in the world of pure mathematics, they exist in messy, human
socio-historical contexts, and, consequently, efforts to model
that world in protocol form are fraught with latent, ofttimes
unconsidered, assumptions. Blanchette provides sufficient
background in both the history and practice of cryptography and
of evidence law to draw both technical and legal audiences into
his discussion. As IANAL, I found the background material on
contracts, witnesses, the notarial system (as opposed to common
law practices more familiar to me), and the privileged eviden-
tiary status of authenticated acts both fascinating and helpful.
On the cryptographic side, Blanchette does an admirable job
capturing technical details whilst still writing in language that
should be understandable to a general audience, albeit hopefully
a well-caffeinated one.

He narrates how, back in the ’90s, various interest groups, feel-
ing themselves encroached upon by the advance of technology,
drove the legislative reform agenda on cryptographic signatures.
Shockingly, it seems that the resultant regulations for the most
part failed to address the vital point of signature verification.
Blanchette shows how the concept of nonrepudiation flies in the
face of traditional judicial discretion. Cryptographers assume,
he argues, that judges will think about cryptographic primitives
like cryptographers would and, as such, existing protocols make
unhelpfully high crypto-literacy demands.

This is a wide-ranging book. I was taken aback by how many
avenues for further research it opened. For example, I never
considered the impact that format-transcoding (necessary to
maintain future-proof digital archives) has on signature verifi-
cation (and, hence, document authentication). If we’re building a
paperless world in which 500-year-old documents will be more
transparent than 50-year-old ones, then clearly the modeling has
gone badly off the rails. Anyway, just something to think about.
If you are at all interested in crypto, you’ll probably dig this book.
Pay close attention to Blanchette’s chapter summaries, which
are remarkably trenchant.

Practical Lock Picking: A Physical Penetration
Tester’s Training Guide, Second Edition
Deviant Ollam
Syngress Media, 2012, 296 pp.
ISBN: 978-1597499897
Reviewed by Trey Darley

The idea that information security begins in meatspace is an
accepted cliché, but in practice it’s all too easy to get distracted
by OSI layers 2–7. There’s nothing quite like the experience of
popping your first lock to awaken your senses to weak physical
security all around you. If you haven’t had the pleasure already, I
would encourage you to let Deviant Ollam be your guide through
the world of picking, raking, shimming, and bumping. After you
read this book, with its diagrams clear enough to be understood
by a child and plenty of helpful hints on assembling a toolkit, you
probably won’t look at your front door the same way again.

Vintage Tomorrows
James H. Carrott and Brian David Johnson
Maker Media, 2013, 398 pp.
ISBN 978-1-449-33799-5
Reviewed by Mark Lamourine

Carrott and Johnson had a beer and a question. Three ques-
tions, actually: “Why Steampunk?” “Why now?” and “What
does it mean for the Future?” The book is the story of their
inquiries and ref lections. Along the way they visit Australia,
the UK, Seattle, Dallas, Comicon, and Burning Man (twice),
among other places. They accidentally spawn a documentary
film, which they end up documenting.

This isn’t your average sociology paper. The text alternates
between first person accounts by each of the authors as they
travel to meet the people they interview, visit conventions, and
even host a dinner gathering of Steampunk luminaries. The
authors invite the reader to participate in the journey and the
conversations.

Carrott is a historian who likes to immerse himself in his sub-
ject. As a teen, he was a Civil War reenacter, and for this book
he first visits and then participates in Burning Man in Nevada.
His tech background includes managing the development of the
XBox 360. Johnson is a professional futurist, projecting trends
as much as 10 years out to help Intel guide their research. The
historian and the futurist use each other as sounding boards for
their ideas and questions.

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 67

BOOKS

If you’re familiar with Steampunk at all you’ll probably know at
least a couple of the authors that they meet. You may or may not
know of the artists, tailors, craftsmen, many of whom were doing
what they do before the term was coined. As a long-time reader
of Bruce Sterling and William Gibson, I found myself thinking
both “Oh, cool” and “Well, of course” within a single sentence
more than once.

Carrott and Johnson find that the Steampunk movement isn’t a
simple one-dimensional fad of nostalgia. The visual and literary
trappings of the 19th century resonate with different groups of
people and, remarkably, none of them are Luddites who want
to live in the past. There are the hangers-on who think that to
make something Steampunk you just “stick a gear on it,” but a
central tenet of the Steampunk movement is individual active
participation in the process of shaping our surroundings, cloth-
ing, tools, and technology. Participants value the craftsmanship
of unique items as a response to what they see as the modern
sterile cookie-cutter design ethic. They are optimistic about the
use of technology that contrasts sharply with the trend toward
dystopian literature since World War II.

Did I mention a movie? The process of writing the book inspired
documentary filmmaker Byrd McDonald to follow the authors
on many of their visits. A trailer is up at http://www.vintageto-
morrows.com. A release date hasn’t been announced.

The authors are also adding more to the book over time in the
form of a companion (DRM-free) ebook: Steampunking Our
Future: An Embedded Historian’s Notebook, available from
O’Reilly (though it will take a bit of search-fu to find it apart
from Vintage Tomorrows).

I got copies of Vintage Tomorrows in several ebook formats as
well as hard copy. Each has advantages. The photographs in
the paper book are rendered in half-tone black and white. The
ebook images are full color images; however, I found that, with
one exception, the images were cropped in odd ways rather than
re-sizing on my ereader (a no-name 7-inch tablet running vendor
and third-party reader apps). The exception was the PDF ver-
sion, in which the images were scaled nicely; however, the PDF
version was almost four times bigger than the EPUB or MOBI
versions. Also, when you scale the text for easier reading, you’re
really zooming, and the text is cropped rather than wrapped.

Corsets and top hats making it back into most people’s everyday
lives is unlikely, but the Steampunk ethos is having an influence
on mainstream thought and sensibilities. The optimism and joy
of makers, hackers, and geeks are gradually making enthusiasm
for learning and technology acceptable again. The nerd of the
1960s, ’70s, and ’80s is becoming intelligent, witty, and stylish.
Vintage Tomorrows shines some light on the way that we are
constructing both our future and our past.

Testable JavaScript
Mark Ethan Trostler
O’Reilly Media, 2013, 250 pp.
ISBN 978-1-449-32339-4
Reviewed by Mark Lamourine

There are any number of books that will tell you how important
it is to write tests. In the ones I’ve read, little time is given to the
elements of software that can make it hard to test. More than
once I’ve found myself looking at a test routine that just smells
bad without understanding why.

In Testable JavaScript, Trostler explains how to recognize the
characteristics of hard-to-test code and how to avoid writing it.
The early chapters cover the concepts of code complexity: cyc-
lomatic complexity, fan-out, and coupling. Trostler proceeds to
describe how event or message-driven systems can provide the
ultimate in decoupling (with their own set of caveats).

This section makes up about the first half of the book and was
the most valuable to me. The concepts of complexity are fairly
subtle. Recognizing and then mitigating these elements in code
will take some practice. I suspect I’ll come back here a number
of times over the next few months. This isn’t something that was
in the college curriculum when I was a student, but I’m guess-
ing the concepts glossed in these three chapters could fill a full
semester of undergraduate work.

There are references to a number of books, papers, and articles in
those opening chapters. Many of the references are accompanied
by permanent bit.ly URLs. While I can fish back through the text
to find them later, a proper bibliography would be nice.

From here on the title of the book could be seen as a bit of a mis-
nomer. The remainder of the book seems to go back to the more
typical topics.

The unit testing and coverage sections continue the mix of
theory and practice, though the practice begins to come to the
fore. The chapter on unit testing opens by glossing the concepts
of mocks, stubs, and spies (a new one on me). The next few sec-
tions introduce testing frameworks for client-side testing in Web
browsers and Android devices and closes with more traditional
server-side testing in Node.js.

The next chapter introduces the concept of code coverage, that
is, the idea of exercising every path and branch in your code.
The concept is generally applicable, but the tool and techniques
presented are for JavaScript only. Trostler is cautious about the
value of code coverage metrics, but shows how the use of auto-
mated instrumentation can improve the quality of the results.

The book closes with chapters on integration and performance
testing, in-browser debugging, and test automation. The tools

68  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

BOOKS

available in most browsers are both impressive and pretty slick,
taking advantage of the capabilities of the graphical interface.

This is a book about JavaScript programming. It could take some
additional effort to puzzle through for someone who’s not fluent.
If you can manage, most of the techniques and patterns in the
first half of the book are applicable to (and valuable for) other
object-oriented and procedural languages. I would recommend
this book if only for that. If you’re also looking for some new
tricks, you’ll find something here.

EPUB 3 Best Practices
Matt Garrish and Markus Gylling
O’Reilly Media, 2013, 345 pp.
ISBN 978-1-449-32914-3
Reviewed by Mark Lamourine

I think the most important thing I learned from EPUB 3 Best
Practices is that there’s a lot more to building electronic docu-
ments than I would have imagined. The authors sum up an
EPUB document this way: It’s a Web server in a box.

EPUB 3 is the most recent open electronic document standard.
It’s actually defined by four specifications. These define the for-
mat for the content, structure, packaging, and “media overlays.”
This last one is new to EPUB and it describes how to sync audio
and text for things such as subtitles. The specifications define
the function and limitations of each of the features. EPUB 3 Best
Practices describes how to use them.

Each of the chapters covers an aspect of the EPUB 3 format.
While there is a progression, and you can read the book cover
to cover, you can also dive into any one of the chapters without
missing anything.

EPUB 3 documents are composed using other current standards.
The content must be XHTML5 or SVG. Note that this refers to
the document as a whole. HTML documents can refer to images
in formats other than SVG.

The rest of the glue is XML or CSS. There are a set of standard
fonts, and you can embed additional fonts in a document with the
OTF or WOFF formats (there are translators for others). While
the HTML5 audio and video codec discussions continue, the
EPUB 3 specification requires reader software to support MP3
and AAC (MP4) audio. Video is another matter, and the authors
stick to describing the implications of the ongoing ambiguities
on EPUB 3 documents and reader software.

Interactivity is provided by a required JavaScript engine,
which allows the inclusion of dynamic graphics and forms.
There is a chapter on language support, another on acces-
sibility, and a third on providing text-to-speech capabilities.
Including external resources through standard HTML links
is possible, and there are provisions for alternate media if a
network is not available.

I like the fact that the authors address several non-technical
issues with EPUB production. There is a fairly detailed discus-
sion of the need and means to acquire the rights for proprietary
fonts before embedding them. As noted above, the authors devote
a portion of the chapter on fonts to their proper use. I think there
are a number of instances in which a judiciously placed structure
graphic might have helped illuminate how the parts fit together.

As with Vintage Tomorrows, I read this book in paper, EPUB, and
PDF. In the case of books with code samples, I find the ebooks
difficult on small and medium-sized tablet devices. Code often
has been laid out carefully in a typeset book, and the otherwise
laudable ability of an ebook reader to re-flow the text based on
the font size and the device becomes a problem.

I don’t expect ever to have the need to create an EPUB 3 docu-
ment from scratch and by hand. If I do, or if I ever find myself
needing to look inside one, I’ll keep this book handy. This is a
great book for the curious, and I suspect it could be required
reading for people meaning to write an EPUB 3 editor, com-
piler, or reader.

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 69

REPORTSConference Reports

FAST ’13: 11th USENIX Conference on File and
Storage Technologies
San Jose, CA
February 12-15, 2013
Summarized by Mathias Bjorling, Thanh Do, Rik Farrow, Min Li, Leonardo
Marmol, Muthukumar Murugan, Dorian Perkins, and Morgan Stuart

Opening Remarks
Summarized by Rik Farrow (rik@usenix.org)

Keith Smith began FAST 2013 by telling us that 127 papers were
submitted and 24 accepted, and that the attendance had almost
reached the same level as 2012, which was the record year for
attendance. There were 20 full-length papers, four short ones,
nine with just academic authors, five industry-only authors, and
ten collaborations. Smith said he enjoyed having people from
academia and industry in the same r oom talking.

FAST is a systems conference, and the top topics in submitted
papers were those tagged with file-system design and solid state
storage. Cloud storage has increased over time, as has caching,
while file-system architectures have actually been decreasing.

There were over 500 paper reviews, totaling more than 350,000
words of commentary.

Yuanyuan Zhou, the co-chair, presented the best paper awards.
Unioning of the Buffer Cache and Journaling Layers with Non-
Volatile Memory by Lee et al. won the Best Short Paper award,
and A Study of Linux File System Evolution by Lu et al. won
Best Paper.

File Systems
Summarized by Morgan Stuart (stuartms@vcu.edu)

ffsck: The Fast File System Checker
Ao Ma, EMC Corporation and University of Wisconsin—Madison; Chris
Dragga, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau, University
of Wisconsin—Madison

Ao Ma considered the creation of a file system that supports a
faster checking utility. Ao first reviewed the necessity of file
system integrity checkers and repairers. He explained that
significant work has been done to prevent corruption or misuse
of file systems, but no solution guarantees a system free of such
corruption. Therefore, the file-system checker is often thought
of as a last resort, but it hasn’t seen much improvement in some
time. Given capacity increases, complexity growth, and general
enterprise dependence, that storage admins must still depend on
offline, slow, unpredictable file-system checkers is unfortunate.

In order to significantly improve file-system checking, the stan-
dard e2fsck utility was analyzed. The e2fsck checker completes

its repairs in five phases, but the authors found that the utility
spends more than 95% of its time in phase 1. During this phase,
the checker scans all inodes and their corresponding indirect
blocks and even requires an additional scan if multiply-claimed
blocks are detected. Any improvements to file-system check-
ing clearly should target the actions performed in this phase.
Ao introduced a novel pairing of a file system, rext3, and a file
system checker, ffsck, both of which complement each other to
accelerate file- system checking.

The rext3 file system modifies the layout of a traditional ext3
file system to decouple the allocation of indirect blocks and
data blocks. The indirect region in rext3 stores the indirect
blocks contiguously to allow quick sequential access. In apply-
ing this reformation, rext3 achieves an improved metadata
density that a modified checker could leverage. The strict
organization also reduces file system aging from fragmenta-
tion. The separation proves not to result in extraneous seeks
because a drive track buffer will often cache multiple indirect
blocks with a single track load.

The fast file system checker (ffsck) leverages the contiguous
indirect blocks of rext3 to increase scan speed. Because the indi-
rect blocks and corresponding data blocks are physically rather
than logically sequenced, however, ffsck requires that all meta-
data be read before it can be checked. In order to avoid memory
saturation from storing the entire metadata of large systems,
ffsck separates the checking process into its inherent two
phases: a self-check phase and a cross-check phase. The self-
check phase must use all the metadata to verify the file inodes
individually, but the cross-check phase only needs a subset of
the metadata in order to perform redundancy-based checks
across data. Therefore, the self-check is completed first, followed
by the removal of data not needed by the cross-check, and finally
the cross-check is performed. This method helps reduce the
average memory footprint over time for the checker.

The end result of the file-system file-checker cooperation is the
ability to scan and correct the file system at nearly ten times the
speed of e2fsck and without hindrance from disk fragmentation.
In most cases, rext3 performance is similar to ext3, but does incur
about a 10% penalty when dealing with smaller files. Impres-
sively, rext3 actually outperforms ext3 by up to 43% for random
reads and up to 20% for large sequential writes. These improve-
ments are attained by improving journal checking with the meta-
data density and by more efficiently using the track buffer.

Andreas Dilger (Intel) asked whether the authors had con-
sidered submitting an upstream patch to ext3. Ao said that the
source code still needs to be polished, but they do intend to See the complete FAST ’13 reports online at:

https://www.usenix.org/publications/login

70  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

REPORTS

open source their work. Someone from Symantec Labs asked
what level of performance increase was seen without the file-
system modifications. Ao explained that they can still achieve
between 50% to 200% improvement with only the in-order scan.
Brent Welch (Panasas) requested more details about the
indirect region— specifically, whether they enforced a hard limit
and what they did if the region was filled. Ao said that the size
was fixed and that further experimentation is required as an
appropriate size is hard to determine.

Building Workload-Independent Storage with VT-Trees
Pradeep Shetty, Richard Spillane, Ravikant Malpani, Binesh Andrews, Justin
Seyster, and Erez Zadok, Stony Brook University

Pradeep Shetty began with a simple question: “What should file
systems do?” He explained that file systems must allow for crash
recovery, perform efficiently for both sequential and random
accesses, and provide low overhead application-level transac-
tions. Most real-world solutions don’t meet all of Pradeep’s
requirements, giving him and his co-authors their motivation.
Pradeep further alluded to the major discourse for today’s
administrators: they can either choose fast lookup transaction-
based relational databases or instead opt for file systems that
support high volumes of sequential and random accesses. Often
neither is completely sufficient, as modern workloads are large
and complex with randomized access patterns.

The proposed solution describes a new data structure, the VT-
Tree, based on LSM-Trees. The LSM-Tree provides fast random
insertions but significantly slower queries, making the LSM-
Tree popular in large data sets where queries can be parallel-
ized. The LSM-Tree uses a memtable to hold r-tuples of recently
inserted items in a buffer. Once the buffer fills, the memtable,
along with a Bloom filter and secondary index, is f lushed to
disk. The combination of these components is referred to as an
SSTable. Consequently, the workload produces more SSTables
as more tuples are created. Because queries often must search
through the majority of the SSTables, the queries slow down
over time. To combat this, a limit on the number of SSTables
is typically used to bound the lookup and scan latency of the
system. A primary weak point of the LSM-Tree is its repeated
copying of tuples as SSTables are serialized and compacted to
the disk. These copies in the minor compaction allow for the
quick lookup, but are considered unnecessary if the incoming
data is already sorted.

Following his explanation of the LSM-Tree, Pradeep began
to outline the goals of their VT-Tree. To optimize the minor
compaction, which produces the extra copies, stitching was
introduced. Pradeep described stitching as a way in which their
system investigates the need for a merge during compaction.
The stitching mechanism allows the VT-Tree to merge only
the blocks that overlap and stitch non-overlapping blocks into
appropriate locations. The repositioning of the tuples to perform

a stitch introduces fragmentation and holes in the tree. This is
prevented by storing the VT-Tree on a log-structured block
device to allow a LFS-style defragmenter to reclaim lost space.
The stitching threshold is the minimum size that a stitched region
must accomplish in order for stitching to occur. This thresh-
old therefore helps limit the level of system fragmentation. The
method for avoiding I/O in LSM-Trees is to use a Bloom filter, but
the VT-Tree uses quotient filters instead to allow rehashing in
RAM without the need for an original key.

Pradeep next outlined their file system, KVFS, and how it utilizes
VT-Trees to provide novel functionality to a system. In actual-
ity, KVFS translates requests into key-value operations that
are then sent to KVDB, which then performs the necessary I/O
operations. Three dictionary formats—nmap, imap, and dmap—
can be used to create dictionaries, each backed by a VT-Tree.
The nmap format is used for namespace entries, the imap format
simply stores inode attributes, and the dmap format is used for
the data blocks of files. The system’s ACID transactions are
snapshot-based, where each transaction gets its own private
snapshot. This allows the system to avoid double writes and
implement the standard begin, commit, and abort operations of
transactional systems.

The resulting system, Pradeep described, performs comparable to
other systems but achieves the enhanced performance of standard
LSM-Trees when performing random writes. This means that the
VT-Tree can support both file system and database workloads
efficiently. The transactional architecture supported by the VT-
Trees provides 4% speedup with 10% overhead.

Peter Desnoyers (Northeastern) expressed concern about the
system’s background cleanup and asked whether the authors
had pursued a way to adjust the stitching threshold to prevent
cleaning from overloading the system. Pradeep said that they
experimented with many thresholds and found 32 Kb or 64 Kb
to work best. He added that while increasing the threshold may
reduce fragmentation, it would negate the purpose of including
the threshold at all if it was increased too much. Margo Seltzer
(Harvard) asked how their implementation differs from LFS
segment cleaning. Pradeep agreed that it is indeed similar and
that they only look at the sequential data and examine the rate on
it. The questioner further encouraged Pradeep to look at the age
of the data as well.

A Study of Linux File System Evolution
Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Shan
Lu, University of Wisconsin—Madison

Awarded Best Paper!

As winner of Best Paper, this analytic research presented a
 fascinating look into a significant portion of the Linux 2.6
file system development. The authors painstakingly reviewed
5096 patches across six file systems and categorized each patch
as bug, performance, reliability, feature, or maintenance related.

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 71

REPORTS

Lanyue Lu began by noting the continued importance of local
file systems to a crowd ripe with cloud storage enthusiasts. He
explained that local storage is still common on mobile devices,
desktops, and as the base file system for many cloud applica-
tions. Lanyue said that much can be learned from a large-scale
development review, such as understanding where complexity
comes from, how to avoid future mistakes, and to help improve
current designs and implementations.

This comprehensive study required that Lanyue and his associ-
ates comb through eight years of Linux 2.6 file system patches.
Utilizing each patch’s commit message, code diffs, and com-
munity discussions, the authors accumulated granular data
describing the process of developing major open source file
systems. The file systems examined included ext3, ext4, XFS,
Btrfs, ReiserFS, and JFS.

The researchers found that code maintenance and bug fixes
account for the majority of the patches sampled, at 45% and
just under 40%, respectively. Lanyue noted that the mainte-
nance patches were deemed uninteresting early on and were not
investigated in detail. The bug patches were further categorized
into either semantic, concurrency, memory, or error code related
bugs. Semantic bugs were the biggest offenders, making up more
than 50% of all bug-related patches. Concurrency bugs were the
next most common at about 20%. Interestingly, nearly 40% of
these bug patches occurred on failure paths or error handling.
Other than the bugs, performance and reliability patches also
made up a significant portion of the patches studied, accounting
for 8% and 7% of patches, respectively.

The results suggest that bugs do not necessarily diminish over
time, as one might presume. Even the stable, well-tested, file
systems seem to have a relatively constant rate of bug patches
during the period. Of all the possibilities, data corruption bugs
were the most dominant across all the file systems studied and
caused the most severe problems, such as system crashes and
deadlocks. Lanyue went on to discuss actual patch examples
from each patch category, pointing out the types within each
category responsible for the most patches.

Lanyue said that, although time-consuming, a large-scale study
such as this is manageable and useful. He stressed the impor-
tance of research matching reality and said that history does
indeed repeat itself.

Akshat Aranya (NEC Labs) asked whether any correlation
between feature patches and bug patches was studied. Lanyue
recognized this as possible area of study but said that he and his
co-authors did not analyze it. Margo Seltzer asked just how in
depth the group’s initial study of maintenance fixes was before
deeming them “uninteresting.” Lanyue responded that these
maintenance bugs were almost always attempts to simplify the
core structure through refactoring and that relating it to a bug

patch was difficult. Rick Spillane (Apple) asked about bug fixes
introducing another bug. Lanyue confirmed that they found
these and even labeled them as “fix-on-fix” patches.

The data set is available at http://research.cs.wisc.edu/wind/
Traces/fs-patch/.

Caching
Summarized by Leonardo Marmol (marmoleox@gmail.com)

Write Policies for Host-Side Flash Caches
Ricardo Koller, Florida International University and VMware; Leonardo
Marmol and Raju Rangaswami, Florida International University;
Swaminathan Sundararaman and Nisha Talagala, FusionIO; Ming Zhao,
Florida International University

Ricardo Koller began his presentation by pointing out the big
performance gap between write-through (WT) and write-back
(WB) policies for caches. Traditional caching solutions for
network storage, he said, implement WT policies because these
guarantee data consistency at the price of experiencing high
latencies for every update. Inspired by the “Designing for Disas-
ters” work, he described two new caching policies for locally
attached SSDs, designed to perform similarly to WB while
preserving point-in-time consistency. The first policy, ordered
write-back (OWB), uses a graph to store the ordering dependen-
cies for I/Os using only issue and completion times, in order to
evict the block in the right order. The second policy, journaled
write back (JWB), builds a journal on the cache and evicts
transactions atomically over the network using an interface
similar to that of Logical Disk. This policy also required modifi-
cation to the network storage in order to write blocks atomically.

The experimental results showed the benefits that come with
caching, not only read but also write requests for those applica-
tions that can tolerate some level of staleness. The caching solu-
tion was evaluated using several benchmarks, and the results
showed that, in general, WT performed worse than any other
policy. JWB outperformed OWB but not traditional WB. Other
experiments were presented showing the throughput and the
number of I/O updates sent to storage as a function of the cache
size for each policy.

Wenguang Wang (Apple) asked whether it was possible to relax
the ordering constraints of the OWB policy, pointing out that,
typically, hard disks acknowledge the completion of writes
once the data is in their internal buffer, and then these are not
necessarily performed in the same order they were issued.
Koller disagreed with the questioner’s premise, saying that the
order of writes in non-volatile caches sent to disk is maintained
and therefore matters.

72  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

REPORTS

Warming Up Storage-Level Caches with Bonfire
Yiying Zhang, University of Wisconsin—Madison; Gokul Soundararajan, Mark
W. Storer, Lakshmi N. Bairavasundaram, and Sethuraman Subbiah, NetApp;
Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau, University of
Wisconsin—Madison

Caching solutions determine the contents of the cache on-
demand. As I/O requests come and go, the content of the cache
changes to better reflect the current needs of the application.
New technologies such as SSDs have made it possible to increase
the size of caches to be much bigger than DRAM memory, which
slows the process of warming caches. To put things into per-
spective, Zhang mentioned that a cache of 1 TB takes about 2.5
hours to fill with sequential workloads and six days or more with
random workloads. For these reasons, Zhang claimed that the
on-demand approach to warming up caches is no longer appro-
priate. She proposed a solution, Bonfire, that monitors and logs
I/O requests with the goal of speeding up the warming of caches
by loading data in bulk.

To answer questions such as what and how the data should be
monitored and logged, and how to load warmed data into caches
efficiently, Zhang et al. performed statistical analysis on the
MSR-Cambridge traces [Narayanan ’08]. The temporal and spa-
tial access patterns found on the traces were used to shape the
design goals of their system. Bonfire monitors I/O requests with
a module that sits below the buffer cache and keeps a buffer for
its own metadata. When the buffer is nearly full, this is written
to a persistent storage in a circular log. When a cache restarts,
Bonfire uses its metadata to load warm data from storage into
the cache. In addition to metadata, Bonfire could also log data
that can be used to further reduce the warm-up time.

The system was evaluated by replaying the MSR-Cambridge
traces in a synchronous fashion using both metadata-only and
metadata+data logging schemas and comparing them to the on-
demand and always-warmed policies. The results showed that
Bonfire could warm up caches from 59% to 100% faster than on-
demand while reducing the storage I/O load by 38% to 200%. As
a consequence, the I/O latency experienced by applications was
reduced on average by 1/5 to 2/3 when compared to on-demand.
Before concluding, Zhang mentioned the need for making more
trace available to the research community and invited everyone
to contribute.

Umesh Maheshwari (Nimble Storage) asked Zhang why they
assumed that caches are volatile when they could use SSDs as
caches and they are persistent. Zhang explained that even per-
sistent caches need rewarming after a repartition of the cache
or a server migration. Ajay Gulati (VMware) asked about the
case in which workload does not follow the patterns seen in the
study’s traces. Zhang replied that Bonfire would default to on-
demand. Someone asked how they kept stored data and Bonfire’s
buffer consistent. Zhang answered that the buffer is updated
only after the data is written to storage. The questioner pointed

out that this requires some form of synchronization among
nodes sharing storage. Joe Buck (UC Santa Cruz) mentioned
that Zhang’s research group’s logo is very similar to that of the
Nintendo GameCube logo.

Unioning of the Buffer Cache and Journaling Layers with
Non-Volatile Memory
Eunji Lee and Hyokyung Bahn, Ewha University; Sam H. Noh, Hongik
University

Awarded Best Short Paper!

Eunji Lee pointed out that journaling is one of the most common
techniques used by file system architects to provide data consis-
tency. However, it comes at the cost of extra I/O operations. Lee
suggested an interesting alternative that eliminates the extra I/
Os associated with journaling while maintaining the same level
of reliability by effectively using non-volatile memory. In partic-
ular, she argued for an architecture called UBJ that unifies the
buffer cache and the journal into non-volatile memory. Unlike
conventional journaling techniques, committing blocks in UBJ
is a simple matter of marking them as frozen, eliminating both
the copy operation and data duplicate. In addition, frozen blocks
are used as cache, reducing the latency of read requests. As in
any journaling system, transactions are eventually checkpointed
to storage, but UBJ makes use of copy-on-write techniques to
allow the update of frozen blocks. This simple technique signifi-
cantly reduces the latency of write-intensive workloads.

The UBJ prototype was implemented in Linux, and the NVM
was simulated using DRAM. The implementation was com-
pared to the ext4 file system configured to journal both data
and metadata, and several I/O benchmarks were used to gener-
ate the workloads. The results showed that UBJ outperformed
ext4 with 59% higher throughput, which translated into a 30%
reduction in execution time on average. Due to the simplicity of
the UBJ system’s in-place commit mechanism, the latency of I/O
is no longer dependent on the frequency of commit operations.

Richard Spillane (Apple) commented on how the buffer cache
and in-memory journal were sized on one of the experiments.
He suggested that she could have gotten a better performance
by reducing the size of the journal and increasing the size of
the cache, as opposed to making them equal in size. Youyou Lu
(Tsinghua University) asked about the performance penalty
associated with protecting frozen blocks and performing the
COW. Lee replied that the overhead is expected to be very small,
but no data was available at the time.

Conference Luncheon
During the conference luncheon, the Test of Time award was
presented for GPFS: A Shared-Disk File System for Large Com-
puting Clusters, by Frank Schmuck and Roger Haskin of IBM
Almaden Research Center. You can read this paper via http://
static.usenix.org/publications/library/proceedings/fast02/
schmuck.html.

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 73

REPORTS

Protecting Your Data
Summarized by Morgan Stuart (stuartms@vcu.edu)

Memory Efficient Sanitization of a Deduplicated Storage
System
Fabiano C. Botelho, Philip Shilane, Nitin Garg, and Windsor Hsu, EMC Backup
Recovery Systems Division

Storage sanitization can be described as any method that removes
sensitive data from a device, such that it appears the guarded
information never actually existed on the system. Effective saniti-
zation methods have their place in many fields, including the
government and highly regulated private sectors. With the rise
of massive storage systems and deduplication, there is a need to
revisit sanitization mechanisms.

After explaining the modern motivation for advanced sanitization
methods, Fabiano Botelho explained that crypto-sanitization
isn’t a contender in this particular area for several reasons.
Key management would be difficult in these large systems
where blocks are shared in the namespace. Furthermore, crypto-
sanitization sacrifices performance of normal file system
operations to achieve its goal. Finally, the NIST and DOD do
not accept encryption as a sanitization method. Fabiano solidi-
fied their requirements, stating that their solution must com-
pletely erase deleted data, maintain the availability of live data,
use resources responsibly, and leave the storage system in a
usable state while sanitization is being performed.

The widespread technique of deduplication and the need for
bulk sanitization are the primary motivators of Fabiano’s work.
When files are written in a deduplicated storage system, the data
is separated into chunks and each chunk’s hash value is calcu-
lated. The hash value can be used to determine whether or not
the chunk is unique, whether or not it needs to be stored. Files in
these systems are represented as a list of fingerprints that can
be used to reconstruct the original file. This methodology allows
only one instance of duplicate chunks to be stored on the system,
saving large amounts of storage. However, these chunk refer-
ences present the primary challenge when attempting to sanitize
a deduplicated storage system.

Fabiano and his co-authors investigated several methods of
tracking unused data and objects known as dead chunks. After
comparing the possible usage of reference counts, Bloom filters,
bit vectors, and perfect hashing, they found that perfect hash-
ing can best fulfill their requirements. Perfect hashing allows a
mapping without collisions of a static key set, using a minimal
number of bits to represent the mapping. The perfect hash func-
tion will map to perfect hash buckets that are variable size, but
16K fingerprints per bucket on average worked very well.

The five-step algorithm for read-only file system sanitization
has Merge, Analysis, Enumeration, Copy, and Zero phases.
The Analysis phase was described in more detail as the point

in which the algorithm builds the perfect hash function, walks
multiple perfect hash vectors in parallel, and records the range
that the data structure is actually covering. An algorithm for
read-write systems was also implemented, which must handle
incoming fingerprints after both the Merge and Analysis phases.
These chunk resurrections are handled by notifying the process
of incoming deduplication and utilizing a second consistency
point, or snapshot, to enumerate differences.

Three sets of experiments were used to formulate a control for
storage systems. First, a system using only local compression
with no deduplication wrote its entire file system at about 70
MB/s. Next, deduplication was added with a factor of about 7x,
resulting in 5.06 GB/s data rates. This increase in performance
correlating to the deduplication factor confirms that a system
can scale performance according to the deduplication factor.
The next benchmark added the sanitization mechanism as well
as data ingest, running at 59% peak throughput and 70% peak
throughput, respectively. Fabiano explained that this benchmark
showed that the system’s data ingest is CPU-intensive while the
sanitization is I/O-intensive. A final benchmark removed the
deduplication, leaving the sanitization and data ingest variables.
Sanitization ran above 45% of its peak throughput in this test,
with high CPU usage for the data ingest as well as high I/O usage
for both sanitization and ingest.

Cheng Huang (MSR) asked if the deduplication system must
hold all the fingerprints in memory in the first place. Fabiano
recommended that Cheng attend the HP session the next day,
where they describe techniques to avoid holding everything in
memory. Cheng then asked whether the authors had looked into
options other than the perfect hash data structure. Fabiano
explained that they had not seen any better techniques.

SD Codes: Erasure Codes Designed for How Storage
Systems Really Fail
James S. Plank, University of Tennessee; Mario Blaum and James L. Hafner,
IBM Almaden Research Center

The past ten years have seen rapid growth in utilization of era-
sure codes to handle disk failures. However, recent research has
exposed what James Plank terms the “RAID6 Disconnect”: that
storage administrators are effectively using entire disks to toler-
ate common latent sector errors rather than full disk failures.
Latent sector errors are particularly bothersome because they
are typically only detected once a read access is attempted on
the data. This clearly wasteful use of resources has motivated
James and his co-authors to develop an erasure code that can
tolerate both full disk failures and latent sector errors. The goal
is to allow administrators to devote the right amount of coding
to match the failure mode.

James explained the theoretical view of a stripe to define their
Sector-Disk (SD) code. More specifically, each disk holds r w-bit
symbols in a system of n disks, where w is relatively small.

74  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

REPORTS

The system also uses m disks and s sectors per stripe to tolerate
simultaneous failures of any m disks plus any s sectors per
stripe. The SD code uses Galois Field arithmetic, where more
w-bit symbols decrease speed but make the code more robust.
James noted that this Reed-Solomon-like code has large amounts
of documentation and open source code, and said he would spare
the audience the mathematics.

The SD code is slower than Reed-Solomon, but it outperforms
the solutions that the SD code could replace. For example,
replacing RAID6 with a one-disk-one-sector code achieves
higher performance with less dedicated storage. A complete
open source implementation, in C, was made available the week
of the conference. The source code is intended to act as template
for engineers wishing to use the code or experiment with it.

Someone pointed out that the assumption seems to be that
the latent errors are somewhat random and therefore small in
number, but disk drives, instead of flash drives, could have many
kilobytes in error. James explained that the implementation of
the code must have the sector size defined as sufficiently large to
encompass these larger failures. Geoff Kuenning asked “What
am I getting?” since the SD codes don’t really solve the two disk
failures previously resolved by RAID6. If RAID6 is used, you are
already protected from both types of failures. James explained
that if you want to allow for more disk failures, you need to
increase the m for disks. He suggested that models be used
to examine the need to tolerate these failures. IBM researchers
performed data loss modeling to investigate the data loss of SD
coding versus RAID6 and they showed that SD can get higher
reliability.

HARDFS: Hardening HDFS with Selective and
Lightweight Versioning
Thanh Do, Tyler Harter, and Yingchao Liu, University of Wisconsin—
Madison; Haryadi S. Gunawi, University of Chicago; Andrea C. Arpaci-
Dusseau and Remzi H. Arpaci-Dusseau, University of Wisconsin—Madison

Thanh Do began by describing the implementation of the
cloud’s reliability, describing it as complex systems made up
of thousands of commodity machines, where once-rare fail-
ures become frequent. In these systems, machine crashes and
disk failures have been generally mitigated. However, Thanh
described “fail-silent” failures as a continuing problem for
these large-scale systems. The fail-silents are failures where
the machine or program exhibits incorrect behavior but doesn’t
entirely halt the system. These failures can be caused by many
problems, but are often the result of corrupt memory or soft-
ware bugs. The defining factors of fail-silent failures are that
standard crash recovery mechanisms do not combat them, as
the issue can quickly propagate across collaborating machines.
Current solutions for these failures, found in N-Version pro-
gramming’s redundant implementation methodology, require
extensive resources and engineering effort which results in its
rare deployment.

Thanh introduced selective and lightweight versioning
(SLEEVE) to combat the fail-silent failures that he describes.
Rather than “telling a lie” by continuing to run after a silent
 failure, SLEEVE exploits the crash recovery support for sys-
tems if it detects a failure with its trusted sources. Detection
of the erroneous operations is achieved by utilizing a second
lightweight implementation of the functionality that requires
SLEEVE’s protection.

SLEEVE is described as selective due its small engineering
effort and its ability to target important functionality for protec-
tion. For instance, the error checking can target bug sensitive
portions of a program or system, such as subsystems that are
frequently changed or even currently unprotected with inter-
nal mechanisms. The lightweight aspect of SLEEVE describes
the absence of full state replication. Instead, SLEEVE encodes
states to reduce required space. The hardened version of HDFS
(HARDFS), protected with SLEEVE, was able to detect and
recover from 90% of random memory corruption faults and
100% of the targeted memory corruption faults. Furthermore,
HARDFS was able to detect and recover from five software bugs
injected into the system.

SLEEVE is composed of four subsystems: an interposition
module, state manager, action verifier, and a recovery module.
The state manager only maintains important states of the main
version and only adds new states incrementally. The state
manager must also understand the semantics of the protocol
messages and events in order to correctly update the state. The
state manager encodes states with counting Bloom filters, which
supports insert, delete, and exist operations. Thanh noted that
Bloom filter false positives are rare and that they simply lead to a
tolerable yet unnecessary recovery. The action verifier performs
micro-checks to detect incorrect actions in the main version.
The recovery module supports both full recoveries, described
as a crash and reboot, and micro-recoveries in which corrupted
states are repaired from trusted sources.

The HARDFS implementation hardens HDFS’s namespace
management, replica management, and its read/write proto-
col. Thanh and his co-authors found that HARDFS reduced
the number of silent failures from 117 to 9, which ultimately
increased the number of crashes from 133 to 268. Addition-
ally, by using the counting Bloom filter, their implementation
incurred a relatively small space overhead of 2.6%. Thanh
concluded by saying that a crash is better than a lie and that
HARDFS turns these lies into crashes and leverages existing
recovery techniques to bring systems back online.

John Badger (Quantum) asked about the Bloom filter and how
facts are represented. Thanh said that only yes/no verification
is supported and that it ultimately depends on the property
you want to check; no “magic rule” can be applied. Brent Welch

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 75

REPORTS

expressed concern about false positives, crashes, and the poten-
tial for a crash loop. Thanh agreed that this was possible and
informed the audience that crashes can be counted and a hard
limit for stopping crash loops can be enacted. Next, Rick Spillane
cautioned against Thanh’s statement of the Bloom filter’s 2.6%
overhead, telling him that it grows linearly. Finally, Jacob
Lorch pointed out that since SLEEVE is the ultimate arbiter
of the system, a bug in SLEEVE can potentially cause cata-
strophic consequences.

Big Systems, Big Challenges
Summarized by Min Li (limin@cs.vt.edu)

Active Flash: Towards Energy-Efficient, In-Situ Data
Analytics on Extreme-Scale Machines
Devesh Tiwari, North Carolina State University; Simona Boboila, North-
eastern University; Sudharshan Vazhkudai and Youngjae Kim, Oak Ridge
National Laboratory; Xiaosong Ma, North Carolina State University; Peter
Desnoyers, Northeastern University; Yan Solihin, North Carolina State
University

Devesh presented Active Flash, an in-situ data analysis method,
to help improve the performance and energy efficiency for sci-
entific data analysis tasks. He started with the introduction of
a two-step process of scientific data analysis which consists of
scientific simulation and data analysis and visualization. Con-
ventionally, data analysis is performed offline on a small-scale
cluster involving expensive data migration between compute
and storage infrastructure resulting in extra energy cost. Devesh
observed enabling trends: SSDs are increasingly adopted in HPC
for higher I/O throughput and energy efficiency; SSD controllers
are becoming powerful; idle cycles exist at SSD controllers due
to the natural I/O burst of scientific workload etc. Devesh pro-
posed conducting scientific data analysis on SSD controllers in
parallel with simulation without affecting I/O performance.

He organized the discussion of system design around two ques-
tions: (1) if SSD are deployed optimizing only I/O performance,
is active computation feasible? (2) how much energy and cost
saving can Active Flash achieve? The main constraints of SSD
deployment without active computation support are capacity,
performance, and write durability. On the other hand, model-
ing active computation feasibility depends on simulation data
production rate, staging ratio, and I/O bandwidth. Their results
showed that most data analysis kernels can be placed on SSD
controllers without degrading scientific simulation performance.
Moreover, he observed, additional SSDs are not required to
sustain the I/O requirement of scientific simulations even with
active computation enabled. Compared with an alternative
approach of running active computation on partial simulation
nodes, he suggested that Active Flash is able to achieve the same
performance but with lower staging ratio and infrastructure cost.

He went on to analyze the energy and cost saving of Active
Flash. Modeling a Samsung PM830 SSD, they considered mul-
tiple components such as energy consumption of I/O, compute

idle periods, data movement, etc. He also mentioned brief ly
how they modeled the energy consumption of two other state-
of-the-art approaches. The results showed that Active Flash is
more cost and energy efficient compared with other approaches
in many cases. Finally, he introduced the prototype which they
developed, based on the OpenSSD platform, demonstrating
that scientific data analytics with Active Flash is viable with
OpenSSD.

Dave Anderson (Seagate) wondered whether SSDs have enough
resources to perform the complex task designed in the paper.
Devesh replied that he had researched several products and
believed that the SSD controller will be more powerful and
have more cores to do complex tasks, such as data analytics,
in the near future. Song Jiang (Wayne State University) asked
if some intelligence is implemented on the SSD controller.
Devesh replied yes. The implementation allows the SSD con-
troller to communicate with hosts and perform data analytics.
Song followed up by asking how the active cache handles data
that is striped across SSDs. Devesh said that in that case, they
would need frameworks such as MapReduce to help coordinate
between different SSDs and perform analysis.

MixApart: Decoupled Analytics for Shared Storage
Systems
Madalin Mihailescu, University of Toronto and NetApp; Gokul Soundararajan,
NetApp; Cristiana Amza, University of Toronto

Madalin started by pointing out that enabling data analytics
platforms, such as MapReduce and Pig, to directly use data on
enterprise storage can help eliminate the two-storage-silos
problem. The traditional two storage silos require dedicated
compute infrastructure and additional time to migrate the data,
and increase the hardware cost in terms of expense and number
of errors. Madalin then presented MixApart, a scalable on-disk
cache which allows distributed computation frameworks to use
single enterprise storage and supports transparent on-demand
data ingestion.

Effective design of MixApart comes from the analysis and
understanding of MapReduce workloads. Madalin introduced
three key insights they observed: (1) jobs exhibit high data reuse
rate; (2) the input phase of a MapReduce job is usually CPU
intensive; (3) the I/O demands of jobs are predictable. He also
showed that with a high data reuse rate, MixApart can effec-
tively support around 2000 parallel tasks using an envelope
calculation demonstrating the compute scale of MixApart. With
the goal of preserving the scalability and performance gained
from data locality and efficient bandwidth utilization of stor-
age, cache, compute node, Madalin mentioned that MixApart
designed per-job task I/O rates and job scheduling policy to maxi-
mally overlap computation with data fetch. More specifically,
he introduced two components, a compute scheduler, which
allows assigning map tasks to nodes with cached data, and a data

76  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

REPORTS

transfer scheduler, which facilitates just-in-time parallel data
prefetch within and across jobs based on job I/O rate prediction.
He also illustrated MixApart in action by using an example.
They reengineered Hadoop by implementing a cache-aware
compute scheduler as a variant of the Hadoop task scheduler,
and a data transfer scheduler as a module within the namenode.
They also reused the namenode as the XDFS metadata manager
and added support within HDFS to enable caching stateless
data. In their evaluation, they ran MixApart on Amazon EC2
with three types of EC2 instances and compared with Hadoop.
They found that MixApart can reduce job durations by up
to 28% compared to the traditional ingest-then-compute
approach and can closely match the performance of Hadoop
when the ingest phase is ignored for HDFS.

Akshat (NEC Labs) asked whether they had considered the
workloads that were I/O intensive in the Map phase. Madalin
admitted that there is not much they can do if the workloads are
I/O intensive in the Map phase. However, the Facebook trace
they analyzed had shown that the average task’s effective I/O
rate is low, which allows moving data from the shared storage
to distributed cache. He argued that there are efforts to scale
out the shared storage system to provide more bandwidth, which
enables MixApart to sustain large clusters. He also mentioned
that they had the notion of limiting the network bandwidth
consumption of MixApart to make sure it does not compete with
regular network traffic. Kadir Ozdemir (EMC) asked whether
they had thought of a case in which the system would affect the
performance of the enterprise system. Madalin responded that
they had done some experiments in terms of performance
isolation, arguing that the quanta-based scheduling effectively
minimized the interference effects. Joe Buck (UC Santa Cruz)
asked whether he had noticed a trace from CMU which dem-
onstrated that 99% of data are actually processed within an
hour, which means a better strategy would be to stream the data
directly into the cache system instead of just-in-time prefetch-
ing. Madalin replied that it was a great use case. Since their
approach is more generic, their system could always plug in bet-
ter prefetching schemes to accommodate special scenarios like
the one just mentioned.

Horus: Fine-Grained Encryption-Based Security for
Large-Scale Storage
Yan Li, Nakul Sanjay Dhotre, and Yasuhiro Ohara, University of California,
Santa Cruz; Thomas M. Kroeger, Sandia National Laboratories; Ethan L.
Miller and Darrell D. E. Long, University of California, Santa Cruz

Li began by pointing out that current HPC systems store their
sensitive data using an unencrypted or simply encrypted
approach, which increases the chance of data leakage due to an
increased chance of compromised nodes within these large-
scale HPC centers. These HPC systems depend on a vulnerable
security model which has a hard exterior and a soft interior.
There are also concerns of leaking critical information from

both malicious insiders and untrusted service providers. How-
ever, he mentioned that traditional data encryption techniques
could not be directly applied to peta-scale data sets since they
are either coarse-grained or incur high key-management over-
head. Moreover, they could not provide security even when
few nodes are compromised or when the service provider is
untrusted. To solve the problem, Li introduced their system,
Horus, which enables fine-grained encryption-based security
for peta-scale data sets with low key management overhead.
The key idea was to use keyed hash trees (KHT) to generate dif-
ferent keys for each region of a file and allow keys to be produced
for variously sized regions based on users’ need. He stressed that
by carefully designing KHT, Horus greatly simplified key distri-
bution and key storage.

Li explained how Horus is made up of three major components:
key distribution cluster (KDC), Horus client library, and key
exchange protocol. KDC is stateless and independent from the
storage and compute nodes within the HPC system, which can
help provide security, scalability, and easy deployment. Because
only the KDC knows the root key while compute nodes receive
the needed keys , any data leakage is confined when nodes are
compromised. He then explained the key distribution process
through an animation followed by a description of key distribu-
tion protocol. The experiments testing the raw performance
of KDS showed that a single KDS can sustain about 140,000
queries per second, and it scales linearly with the number of
KDSes. Next, he presented an experiment to adjust the system
parameters, KHT branch and depth, in order to explore the
tradeoff of shifting workloads between servers and clients. He
showed that Horus is flexible enough to balance the compute
resource between the KDS client and the network. He concluded
that Horus supports fine-grained security, is easily deployed,
and has high performance.

Mark Lillibridge (HP Labs) asked how to revoke permissions. Li
answered that they chose to have two root keys for a file; when
a client tries to access a region, it will test which key works for
the file. The paper has a detailed discussion. Xubin He (Virginia
Commonwealth University) asked how to handle a case in which
keys are randomly scattered. Li replied that the read/write
workloads are usually in a range. If the depth of KHT is as big as
28, Xubin followed up, what would be the overhead? Li replied
that the KHT needs width not depth, and suggested referring
to the paper for more details. Bill Bolosky (Microsoft Research)
suggested trying different hash functions. Li responded that
the focus here was to study the property of KHT; choosing hash
function could be future work. Bill said that using an inappropri-
ate hash function would affect the performance. Li admitted
that was true.

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 77

REPORTS

Poster Session and Reception I
Summarized by Muthukumar Murugan (muru0007@umn.edu)

SLM: Synchronized Live Migration of Virtual Clusters
Across Data Centers
Tao Lu, Morgan Stuart, Xubin He, Virginia Commonwealth University

The authors address the problem of live migration of virtual
clusters across geographically distributed datacenters. They
claim that synchronizing the migration of all VMs in a virtual
cluster can reduce the cost of communication and data shar-
ing among VMs through the low bandwidth WAN and hence
can avoid any significant performance degradation in the
 applications.

The proposed architecture has three components: (1) a status
monitor to monitor the available resources and the resources
currently used by VMs; (2) a migration simulator that predicts
the migration impact on the performance of the VMs based
on modeling and profiling of the system; and (3) a migration
manager that initiates and schedules the migration of each
VM. Contact: Tao Lu, cstao.lv@gmail.com

Energy-Aware Storage
Yan Li, Christina Strong, Ignacio Corderi, Avani Wildani, Aleatha Parker-
Wood, Andy Hospodor, University of California, Santa Cruz; Thomas M.
Kroeger, Sandia National Laboratories; Darrell D.E. Long, University of
California, Santa Cruz

This work tries to address the problem of energy consumption
in future large-scale HPC storage systems. The two issues that
are addressed are providing high bandwidth and/or capacity
under power constraints and reducing data movement to save
power. The work proposes a new metric called “energy score,”
which accounts for the energy consumed by all components
in the process of the data object generation and is comparable
between systems. The work explores multiple options such as
near-node storage, use of SSDs, and extensive use of compres-
sion, and it studies the impact of proposed approaches on energy
consumption of the storage systems.

In order to evaluate the proposed approaches on large complex
computer systems, the authors built a comprehensive energy
simulator. They also proposed exploring energy-efficient data
allocation to increase idle times in storage devices so that they
can be transitioned to low-power modes. Contact: Yan Li, yanli@
ucsc.edu

On-Demand Indexing for Large Scientific Data
Brian A. Madden, Aleatha Parker-Wood, Darrell D.E. Long, University of
California, Santa Cruz

This work proposes an efficient on-demand indexing scheme
for large-scale scientific data. The proposed system consists
of three components: the filter, the indexer, and the storage
substrate. The filtering process creates a map of files to features
and attributes. The indexer manages the indices on the filtered
data and avoids expensive parsing of all files by narrowing the

search based on the filter data. Transducers specific to different
file formats help in the filtering process as data is ingested. The
filter and index are stored as column stores which serve as the
storage substrate. Currently transducers have been built for CSV
and XML formats, and Apache HBase is used as the column store.
Contact: Brian A. Madden, madden@soe.ucsc.edu

Efficient Use of Low Cost SSDs for Cost Effective Solid
State Caches
Yongseok Oh, Eunjae Lee, University of Seoul; Jongmoo Choi, Dankook
University; Donghee Lee, University of Seoul; and Sam H. Noh, Hongik
University

In this work the authors propose the use of Hybrid Solid State
Cache (HySSC), a combination of SLC (Single Level Cell) and
TLC (Triple Level Cell), to reduce the cost of Solid State Caches
by integrating high performance SLC with low cost TLC. HySSC
manages the SSC device, takes care of page replacement in the
cache, and maintains the mapping between logical and physical
blocks. HySSC manages SLC SSC as read/write and TLC SSC
as read-only. The proposed architecture is evaluated with the
extended version of the DiskSim simulator and real-world work-
load traces. Contact: Yongseok Oh, yongsukoh@gmail.com

Energy-Efficient Cloud Storage Using Solid-State Drive
Caching
Jorge Cabrera, Salma Rodriguez, Jesus Ramos, Alexis Jefferson, Tiffany Da
Silva, Ming Zhao, Florida International University

This work explores the use of SSDs as a near-node storage layer
to reduce the power consumption of storage systems. SSDs
consume a lot less power than hard disks and are much faster
than hard disks for certain workloads. The work uses a modified
version of an existing SSD block-caching solution called DM-
Cache to enable a write-back cache for the primary storage. A
user-space daemon is implemented to talk to the shared storage
layer in order to spin down or spin up the disks.

The experiments are carried out on a shared storage device with
and without the SSD cache layer. The authors report significant
savings in power consumption when the I/O requests are served
from SSDs. Contact: Jorge Cabrera, jcabr020@fiu.edu

Cloud Storage System which Prohibits Information
Leakage on Both Client and Server
Kuniyasu Suzaki, Toshiki Yagi, Kazukuni Kobara, National Institute of
Advanced Industrial Science and Technology (AIST); Nobuko Inoue,
Tomoyuki Kawade, Koichiro Shoji, SciencePark Corporation

This work proposes a mechanism to prevent information
 leakage on client and servers in a cloud storage system. The
proposed system, Virtual Jail Storage System (VJSS), encrypts
a file using All-Or-Nothing Transform (AONT), and cuts out a
part of the encrypted file as a split tally. The split tally is stored
in a local storage in the client, and the remaining portion of the
file is stored in the cloud storage system after encoding with
Reed-Solomon error correcting code. The original file is only
reconstructed in the VJSS which has the corresponding split

78  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

REPORTS

tally. The encryption and split tally prevent information leakage
from servers.

The reconstructed file in the VJSS can be opened by a suitable
application but cannot be copied, printed, or screen- captured
and pasted. These actions are prevented by the access control
library called NonCopy. NonCopy hooks APIs of the Windows
kernel, functions of DLL, and event handler I/O APIs, and
 prevents the action related to information leakage. The current
VJSS implementation is based on Loopback Content Address-
able Storage (LBCAS) for Windows, which uses “Dokan” for
user-mode file system and BerkeleyDB for managing data.
Contact: Kuniyasu Suzaki, k.suzaki@aist.go.jp

Offline Deduplication-Aware Block Separation for Solid
State Disk
Jeongcheol An and Dongkun Shin, Sungkyunkwan University
Summarized by Vasily Tarasov (tarasov@vasily.name)

Jeongcheol An presented a deduplication-based technique that
increases the lifespan of Solid State Disks (SSDs). The method
consists of inline and offline steps. During the inline step, the
SSD computes a CRC32 checksum of every incoming chunk
(the size of a chunk is equal to SSD’s page size). CRC32 is not
a collision-resistant hash, so it is used to classify chunks into
those containing unique data and those of undetermined status.
CRC32 is 12.5 times faster than collision-free hash functions
such as SHA-1, so write latency is not severely penalized by the
inline step. The data that is classified as unique is separated on
SSD from undetermined data. Later, during the offline step, the
actual deduplication with strong SHA-1 hashes is performed.
The number of pages invalidated by the deduplication in the
undetermined area is significantly higher than when no block
separation is used and, consequently, the number of page cop-
ies during garbage collection decreases considerably (by up to
5 times in some experiments). Associated write amplification
diminishes and the lifespan of the SSD increases. Contact:
Jeongcheol An (luckyjc7@skku.edu)

Extension of S3 REST API for Providing QoS Support in
Cloud Storage
Yusuke Tanimura, National Institute of Advanced Industrial Science and
Technology (AIST); Seiya Yanagita, National Institute of Advanced Industrial
Science and Technology (AIST) and SURIGIKEN Co., Ltd.

Though popular today, the S3 REST API does not allow a user to
specify performance reservations for read and write throughput.
Yusuke Tanimura presented an extension to the S3 REST API
that provides a QoS capability to the base protocol. The exten-
sion adds new optional arguments to the already existing ‘PUT
Bucket’ and ‘Put/Get Object’ operations. In the ‘Put Bucket’
operation, a user can specify the bucket size, its lifetime, and
read/write throughput reservations. In the ‘Put/Get Objects’
operation, one can specify a reservation ID. Reservations in
this case are made using an external tool, but in the future such
 commands can be added to the main protocol. The authors

implemented the extension for Papio backend, which already
supports QoS internally. Preliminary results demonstrate a
good control over the throughput reservations. Contact: Yusuke
Tanimura (yusuke.tanimura@aist.go.jp)

Improved Analysis and Trace Validation Using Metadata
Snapshot
Ian F. Adams and Ethan L. Miller, University of California, Santa Cruz;
Mark W. Storer, NetApp; Avani Wildani and Yangwook Kang, University of
California, Santa Cruz

The fact that an I/O trace does not miss important activities
is a crucial requirement for making true trace-based conclu-
sions about the workload. Ian Adams presented an interesting
approach for determining the coverage of a trace. Before the
tracing starts, an initial file system metadata snapshot is taken.
Immediately after the tracing is over, another snapshot, called
a reality snapshot, is taken. By applying the trace records to the
initial snapshot, one can obtain a so-called expected snapshot.
The analysis of the differences between the expected and the
reality snapshots allows identifying the coverage of the trace.
The authors provide several examples of such an analysis that
determines the periods of the logger failure, missing creates,
renames, and permission changes. Contact: Ian F. Adams (iad-
ams@soe.ucsc.edu)

An Efficient Data Deduplication Based on Tar-Format
Awareness in Backup Applications
Baegjae Sung, Sejin Park, Youngsup Oh, Jeonghyeon Ma, Unsung Lee, and
Chanik Park, Pohang University of Science and Technology (POSTECH)

Sejin Park presented an approach to improve the chunking
algorithm for tar-files. It is known that typical tar-files consist
of numerous concatenated sub-files. Traditional chunking algo-
rithms, such as fixed chunking and content defined chunking
(CDC), ignore sub-file boundaries, which degrades the dedu-
plication ratio. The authors added to the Opendedup SDFS file
system the ability to form chunks using the sub-file boundaries
in tar files. Their experiments demonstrate that deduplication
ratio for 20 Linux kernel sources in a single tar file increased
from 2.5 for CDC to almost 8.5 for CDC with tar-aware chunk-
ing. Contact: Sejin Park (cipark@postech.ac.kr)

GreenDM: A Versatile Hybrid Drive for Energy and
Performance
Zhichao Li, Ming Chen, and Erez Zadok, Stony Brook University

Zhichao Li and Ming Chen presented a design for a novel
device mapper target—GreenDM. GreenDM rests on top of
several block devices with varying performance and power
 consumption characteristics, e.g., SSDs and HDDs. Using a
number of approaches to determine the hotness of the data,
GreenDM transparently migrates the data between SSDs
and HDDs to improve performance and reduce power con-
sumption. Preliminary results demonstrate up to 330% per-
formance improvements and up to 80% power savings.
Contact: Zhichao Li (zhicli@cs.stonybrook.edu) and Ming
Chen (mchen@cs.stonybrook.edu)

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 79

REPORTS

Using Hybrid Cloud and Mobile Platforms to Enhance
Online Education
Rachel Chavez Sanchez and Ming Zhao, Florida International University

Moodle is a known open source educational system similar to
BlackBoard. Currently it lacks the integration with virtualiza-
tion technologies, where each student could, for example, have
his or her own VM for the experiments. Rachel Chavez Sanchez
presented vMoodle, an educational system that incorporates
Virtual Machines (VMs) in Moodle. vMoodle supports Web-
based and mobile application interfaces. For mobile application,
the authors worked on developing intelligent caching algorithms
to improve user experience when high-latency networks are
employed. Another problem the researchers tried to tackle is the
support of live VM migration from a private to public cloud. This
can be useful in cases when the university, for example, does
not have enough resources to run all VMs on its own hardware.
Contact: Rachel Chavez Sanchez (rchav010@cs.fiu.edu)

Policy-Based Storage System for Heterogeneous
Environments
Dai Qin, Ashvin Goel, and Angela Demke Brown, University of Toronto

Applications are often decoupled from storage even though
these applications and file systems produce a variety of work-
loads. Most modern storage systems are not aware of application
workloads and requirements and interact with the upper layers
using a simple block interface. According to Dai Quin and his
colleagues, solutions like ZFS and Btrfs that integrate storage
management in a file system are not flexible enough for hetero-
geneous environments. Instead, the authors propose a modular
framework that determines application semantics using previ-
ously developed introspection and hinting mechanisms, and
adjust storage policies accordingly. Policies also allow handling
hardware with different performance characteristics. Currently
the work is focused on implementing a fast and consistent map-
ping layer for the virtual block device. In the future, the authors
plan to develop a library of policies for different applications and
devices. Contact: Dai Quin (mike@eecg.toronto.edu)

Keynote Address
Disruptive Innovation: Data Domain Experience
Kai Li, Princeton University
Summarized by Rik Farrow

Kai Li told the story of Data Domain, a tiny company he founded
that set out to replace the tape libraries used in data centers.
They wanted to reduce the data footprint and network band-
width by an order of magnitude, and did. What once required 17
tape libraries, a huge row of systems, became three 3U rack-
mounted systems, in an example Li cited.

Li first asserted that innovation in large companies is very dif-
ficult, but he had a much more disturbing message for academics
later in his keynote. He also said that you must have customer-
driven technical development, work with the best venture capital

firms, raise more money than you need, and hire the best people
you can, even if you miss hiring goals. As for hiring people,
Li stated the goal was to have people who work well together,
minimizing egos, and using the best ideas. Li also said that some
people demonized VCs, but good VCs helped them avoid many
detours, and also helped with software design reviews and busi-
ness plans.

Li presented a very interesting graph that compared income
growth to lines of code. In the early years of Data Domain (2001-
2007), they were producing 100,000 lines of production quality
code every year, while growing the engineering team from ten
to one hundred over this period. Li encouraged startups to stay
focused, to carefully pick what features you code for—that is
your roadmap.

In the early days, they had to find companies willing to install
their product instead of tape libraries. Tape libraries are
expensive, and that helped them have high margins, as the Data
Domain hardware costs were low. And even though storage
customers are very conservative and slow to change, they suc-
ceeded by having a product that worked. Li disparaged both
trade shows and analyst groups, like Gardner, as a way to create
new markets. Data Domain was successful long before analysts
ever noticed the company.

Li pointed out that large companies like EMC, NetApp, and HP
hopped on the data deduplication bandwagon early, but discon-
tinued their efforts soon after. Except for NetApp, these larger
companies eventually acquired small companies with successful
deduplication, just as EMC acquired Data Domain.

As for reasons why big companies often fail, Li suggested that
engineers can lack motivation because they feel ignored by the
company, including lack of incentives (stock options). Another
reason is that the process used in big companies can be very
wrong: checking with lead customers and research firms, and
having many meetings structured around PowerPoint graphics.
Li said, “Microsoft has reduced the productivity of millions,” a
statement greeted with enthusiastic applause. Another reason
is that established companies are afraid of killing their own
children, their cash cows, with new products that will compete
with them.

Finally, Li put the focus on academic research. Deduplication was
not developed in a university. He and others left their positions
to focus on their research, saying you can’t both research and
innovate. If you want to do a startup, you cross over, rather than
stand in “two canoes, research and startup innovation.”

Someone from EMC asked how often can you go from academia
to a startup with no prior experience. Li replied that he is not
saying your prior research has nothing to do with success. It’s
just that the skill set for making a product successful is not

80  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

REPORTS

taught in universities. You must put yourself into the market
environment, and work to make your product successful. Margo
Seltzer pointed out that Michael Stonebraker was another model
of how this can work. Li agreed while pointing out that Stone-
braker’s current project (VoltDB) is already VC funded. Margo
replied that Stonebraker said it is easier to get VC funding than
research funding. How do we get a supportive systems research
program going? Li had no answer. Someone asked whether fol-
lowing technical trends was a good idea, and Li laughed and said
that it was a good question. He pointed out that we are moving
away from spindles to flash memory, using forms of cloud to
minimize the cost of running private DCs. But moving to the
cloud for large companies will not work because of the cost of
network bandwidth.

Keith Smith (NetApp) wondered why large companies struggle
with innovation, and Li replied that there is just not enough
innovation juice in large companies, and that little innovation
has happened at Data Domain since it was acquired. Someone
from EMC said that he was a researcher now, and Li countered
by saying that Apple killed their research lab when Steve Jobs
came back, and Amazon, Cisco, and EMC don’t have research
labs. Li cannot find the destructive type of product developed
mainly due to researchers, as they are not exposed to learn-
ing the market. Li did have a small research lab at Princeton,
which did make important contributions, including deduping data
before network transmission. Randal Burns (John Hopkins) sug-
gested SBIR (Small Business Innovation Research, sbir.gov) as
an example of an attempt to extract innovation where it occurs
in research. Li replied that SBIR is good and getting better, and
that if there were a way for SBIR efforts to interact with many
customers and team up with professionals, that would be great.
Tech people are trained not to listen to other people, to believe
“my idea is better and we know more than you,” and after years
of doing that, they lose the ability to hear what people want.

During his keynote, Li kept hinting that he had more to say,
but wouldn’t because his talk was being recorded (the video is
available free at USENIX.org). As it was, Li’s speech was both
disruptive and enlightening.

Deduplication
Summarized by Min Li (limin@cs.vt.edu)

Concurrent Deletion in a Distributed Content-Addressable
Storage System with Global Deduplication
Przemyslaw Strzelczak, Elzbieta Adamczyk, Urszula Herman-Izycka,
Jakub Sakowicz, Lukasz Slusarczyk, Jaroslaw Wrona, and Cezary Dubnicki,
9LivesData, LLC

Strzelczak presented a deletion algorithm for a distributed
content-addressable storage (CAS) system with global dedupli-
cation. Data deletion with deduplication enabled all the time is
motivated by the fact the otherwise the storage consumption
would be increased significantly because successive backups are

usually similar. Strzelczak explained that data deletion with
deduplication enabled was challenging because deduplication
resulted in several owners of chunks, dynamic system changes
such as adding/deleting nodes, and failures. The requirements
of deletion are continuous system availability, no read-only
period, negligible impact on user operations, scalability, and fault
tolerance. He then discussed a simplified data model in a CAS
storage system followed by the challenges for deletion in CAS.

The data model for a CAS storage system has been trees built
bottom up sharing deduplicated blocks. Challenges lie in the root
set determination and block resurrection through deduplication.
Their deletion algorithm is comprised of two phases: garbage
collection and space reclamation. Each deletion run proceeds
in three subphases. More specifically, to solve the problem that
a retention root is written to block A after deletion starts yet A
is deleted mistakenly, they proposed to allow the counter to be
increased between the first and the second advance. To deal
with the problem of block A becoming a duplicate after deletion
start or being deleted wrongly, they use an undelete marker to
preserve deduplicated blocks. Strzelczak went on to discuss how
they extend the algorithm to support distributed CAS systems.
The main difficulty is to decide consistently whether to preserve
or remove all fragments of a block. The solution they proposed is
to leverage redundancy of computation from good peers, which
have good enough data state and counter validation. When mis-
matches are found, the deletion would be aborted.

In terms of implementation, Strzelczak explained that they imple-
mented the algorithm with a commercial system, HYDRAstor,
which is designed for backup and archival data. Their evaluation
showed that the deletion reduces performance less than 30%
while using 30% system resources under the default configu-
ration. When given minimum system resources, the deletion
impacts performance within 5%.

Neville Carvalho (EMC) asked what size of block and of identifier
were used. Strzelczak answered the chunk size in HYDRAstor
is 64 KB and the block address has 20 bytes. Mark Lillibridge
(HP Lab) asked what happens if you put an undelete marker on a
block that is later going to be deleted. Strzelczak replied that if a
counter was positive, the system did not do anything, but other-
wise it knew the block should be deleted.

File Recipe Compression in Data Deduplication Systems
Dirk Meister, André Brinkmann, and Tim Süß, Johannes Gutenberg
University, Mainz

Meister introduced the concept of file recipes, which consists of
lists of fingerprints of variable-sized chunks belonging to a file.
He pointed out that file recipes occupy increasingly significant
disk capacity because chunk data grow with post-deduplication
space whereas file recipes grow with pre-deduplication space.
To reduce the storage usage, he proposed compressing the file
 recipes by leveraging shortened code words rather than the

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 81

REPORTS

finger print in the file recipe with low overhead in terms of
memory, I/O, storage, and limited impact on write and restore
speeds. He mentioned several assumptions: fingerprinting-
based data deduplication systems, full chunk index availability,
backup workloads, and reverse lookup necessity.

Next, Meister discussed three techniques used in their file
recipe compression system. First, based on the observation
that few chunks exhibit a high number of references such as
zero-chunks, Meister proposed optimizing the case by using a
one-byte code word, eliminating the need to store and look up
the fingerprint. Second, they adopted a chunk index page-based
approach to assign a code word to each fingerprint. In particular,
the code word is assigned by the page ID and a unique identi-
fier in the page. Third, they utilized statistical mechanisms
which generalize zero-chunk suppression and assign shorter
code words to fingerprints based on statics of the chunk usages.
Meister went on to discuss the evaluation result. They used a
trace-based simulation of weekly full backup. The figures he
presented illustrated that their technique shrinks file recipes
by more than 90%. He also concluded that file recipe allows
additional storage saving, and it calls for exploration in storage
deduplication research.

Michael Condict (NetApp ATG) asked whether they conducted
experiments to reduce the average size of deduplication chunks
since the compression of file recipes opens up opportunities to
enable smaller size of chunks. Meister replied no, because this was
not the only metadata overhead; as the size of chunks is reduced,
the size of the chunk index increases and, for performance pur-
poses, it was not quite special. Akshat Aranya (NEC Labs) asked
whether they have the lookup table stored on SSD, mapping the
compressed code words to the actual hash. Meister answered no,
they did not need extra indexes; the code word itself consists of
a page ID and unique identifier in a page, and can be used as the
lookup keys, which is a nice property of this approach. Akshat then
said he would follow up the question offline.

Improving Restore Speed for Backup Systems that Use
Inline Chunk-Based Deduplication
Mark Lillibridge and Kave Eshghi, HP Labs; Deepavali Bhagwat, HP Storage

Mark Lillibridge started by pointing out that the restore speed in
chunk-based deduplication system gets slower over time due to
worsening chunk fragmentation. Because chunks of backups get
scattered around the whole system, restoration suffers when it
has to jump back and forth between different chunk groups of
different ages. “Why not just defragment data periodically like
we did for the disks?” Mark asked. He mentioned two reasons.
One was that there usually did not exist a chunk layout that
reduces the fragmentation for all the backups. The other was
that rearranging chunks required expensive data movement.

To deal with the problem, they investigated three techniques:
increasing the cache size, using a forward assembly area, and

container capping. Next, he explained that they measure frag-
mentation by using the mean number of containers read per MB
of backup restored since that is proportional to the extent of
chunk fragmentation. They also measured the restore speed to
be the inverse of mean containers read per MB of data restored,
which allowed them to focus on the dominant cost, container
reading, ignoring noise and other factors. He next described
how a baseline restoration algorithm works and highlighted the
effect of cache size on restoration speed. A graph illustrated how
restore speed is inversely proportional to the measure of frag-
mentation and how larger cache size yielded faster restoration
speed. Another finding was that the increasing fragmentation
levels result in unacceptable restoration speeds in emergencies.

Mark explained the forward assembly area approach they
designed, which leverages the accurate knowledge from the
backup recipe to perform better caching and prefetching and
reduce the memory required during restoration. The method
contained two variants, M-byte slices and rolling. M-byte
slices control the amount of data to be assembled at one time
in the forward assembly area that can be sent out in a single
piece; rolling utilizes a ring buffer to effectively use memory to
ensure that each container is loaded at most once every M bytes.
He also showed an animation explaining how this technique
works. Mark presented a chart showing how rolling effectively
improves the speed factor compared with fixed case and LRU.
An interesting point he mentioned was that given a backup
workload, there would be sweet spots for LRU. Next, he switched
to capping techniques, which are used to exploit the tradeoff
between deduplication and faster restore speed. The basic idea is
to bound the containers read per MB ingested. Using an anima-
tion, he explained how it worked. They first divide the backup
streams into segments, such as 20 MB fixed size, read a segment
into I/O buffer, then check which of the chucks are stored and
in which containers. Next they choose up to T old containers to
use, and finally they compute the recipe section for the segment
and append any new chunks to the open container. The evalua-
tion results he mentioned illustrate that the capping technique
provided a good tradeoff between deduplication efficiency and
restoration speed.

One attendee asked about the impact of capping on ingestion
time and backup speed. Mark answered that it was not much,
and actually might be faster. He then suggested the attendee go
to the poster session and have a more detailed discussion with
him. Geoff Kuenning asked about the order of containers in the
assembly area, and Mark replied that you could use a variant of
an elevator algorithm. Fred Douglis (EMC) wondered whether
by focusing on read performance you would have a really large
look-ahead buffer for the recipe. Mark answered that there are
various data structures that you can use in walking the recipe in
linear time to create backpointers.

82  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

REPORTS

Work-in-Progress Reports (WiPs)
Summarized by Thanh Do (thanhdo@cs.wisc.edu)

A Deduplication Study for Host-Side Caches with Dynamic
Workloads in Virtualized Data Center Environments
Jingxin Feng and Jiri Schindler, NetApp Inc.

Jiri Schindler said that it is unclear whether host-side caches
are effective for dynamic workloads, e.g., virtual machine (VM)
migration, in virtual desktop infrastructure (VDI). For such
workloads, re-warming the caches after VM migration may be
costly; the caches may contain many copies of the same content
because each VM disk image is a separate entity. This work ana-
lyzes real dynamic VDI workload traces to assess the deduplica-
tion opportunity for large host-side caches. The study finds that
deduplication can reduce the data footprint inside the caches
by as much as 67%. As a result, deduplication enables cach-
ing larger data sets and improving cache hit rates, therefore
alleviating load from networked storage systems during I/O
intensive workloads.

IBIS: Interposed Big-Data I/O Scheduler
Yiqi Xu, Adrian Suarez, and Ming Zhao, Florida International University

Yiqi Xu started his presentation with the problem of I/O sched-
uling in current big-data systems, such as Hadoop MapRe-
duce. Such systems do not expose management of shared storage
I/O resources, leading to potential performance degradation
under high I/O contention among applications. To solve that
problem, he proposed a new I/O scheduler framework, called
IBIS, which provides performance differentiation for compet-
ing applications. Implemented in the Hadoop framework, IBIS
schedules I/Os based on application bandwidth demands at
individual data nodes as well as across distributed data nodes.
Preliminary results showed the benefit of IBIS. Someone from HP
Labs asked whether the framework considered network conten-
tion. Yiqi answered that network contention was not a concern
because IBIS exploited data locality (i.e., task was likely sched-
uled in the same node where data was stored).

Adaptive Resource Allocation in Tiered Storage Systems
Hui Wang and Peter Varman, Rice University

Peter Varman explained the tradeoff between utilization and
fairness in tiered storage systems, which are composed of SSD
and disk arrays, with a simple example. The example showed
that fairly allocating weights among clients with different hit
ratios leads to non-optimized system utilization. Peter argued
that a better allocation scheme would lead to better system
utilization. To maximize system utilization, he proposed that
weights for clients should be dynamically computed, based on
their hit ratios. He showed some simulation results to prove
that the proposed method helps to improve system utilization.

Trace Analysis for Block-Level Caching in Cloud
Computing Systems
Dulcardo Arteaga and Ming Zhao, Florida International University; Pim Van
Riezen and Lennard Zwart, Cloud VPS

The goal of this work is to assess the efficiency of using SSD
caches in cloud systems. To that end, various traces from real-
world private and public cloud systems are analyzed in order to
answer key questions about the proper size of SDD caches and
the caching policies that work best. The analysis shows some
preliminary but interesting answers. For instance, I/O patterns
vary across workloads; write-back cache is best for write-
intensive workloads. Someone asked when the trace would be
available. The answer was taken offline.

Radio+Tuner: A Tunable Distributed Object Store
Dorian J. Perkins, Curtis Yu, and Harsha V. Madhyastha, University of
California, Riverside

Dorian Perkins started his presentation with a dilemma: there
are no one-size-fits-all storage systems. As a result, for system
administrators to choose the “right” systems for their work-
loads is hard. Furthermore, as new workloads emerge, new
systems need to be built. To address this challenge, Dorian
proposed Radio+Tuner. While Radio offers f lexible storage
 configuration, Tuner picks the most cost-effective configura-
tion for Radio, given input specification about cluster hardware,
application workload, and performance SLO. Finally, he showed
initial results to prove the benefit of Radio+Tuner. Someone
asked whether Dorian assumed the underlying storage system
was a black box. Dorian clarified that he built the system from
scratch, meaning no black-box assumptions here. Another per-
son asked how many nodes Radio+Tuner could scale to. Dorian
answered that in his current prototype, there were 12 nodes in
the system; to scale to many more nodes would require a more
accurate algorithm.

JackRabbit: Improved Agility in Elastic Distributed
Storage
James Cipar, Lianghong Xu, Elie Krevat, Alexey Tumanov, and Nitin Gupta,
Carnegie Mellon University; Michael A. Kozuch, Intel Labs; Gregory R.
Ganger, Carnegie Mellon University

Building an elastic storage system that has high performance,
good fault tolerance, flexibility to shrink to a small fraction of
servers, and the ability to quickly resize the system footprint
(termed “agility”) with minimal data migration overhead is hard.
Rabbit, an elastic distributed system, provides good agility but
has poor write performance. JackRabbit improves Rabbit with
new policies for data placement, workload distribution, and data
migration. For instance, JackRabbit takes read requests away
from low numbered servers, which are bottlenecks for writes,
to improve write throughput. These new policies allow Jack-
Rabbit to shrink to a small number of nodes while still main-
taining performance goals. Preliminary results show these
policies as beneficial.

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 83

REPORTS

High Performance & Low Latency in Solid-State Drives
Through Redundancy
Dimitris Skourtis, Scott Brandt, and Carlos Maltzahn, University of California,
Santa Cruz

SSDs provide many benefits such as fast random access, but
they also have problems. For instance, garbage collection in the
background can degrade performance, especially in the case of
mixed workloads. This work proposes a new design based on
redundancy that provides consistent performance and minimal
latency for reads by physically isolating reads from writes. The
idea is to have a cache layer sitting on top of two SSDs, each of
which serves reads or writes. One major challenge is to keep data
“in sync” across two drives. Initial results are promising.

SATA Port Multipliers Considered Harmful
Peng Li, University of Minnesota; James Hughes and John Plocher, FutureWei
Technologies; David J. Lilja, University of Minnesota

This work studies the reliability of SATA port multipliers (PMs)
by proposing a reproducible process for creating actual failures
in the HDDs. The authors conducted two experiments, one with
the SATA PMs and one without them. In all experiments, a fatal
HDD error was emulated by removing the HDD’s cover. Experi-
mental results showed that without SATA PMs, HDD failure
was independent; however, at least one combination of the SATA
controllers, the SATA PMs, and the HDDs did not provide resil-
iency when a single HDD failed. Investigating why this occurred
was left for future work. Someone made a comment asking for
another way to emulate fatal errors without destroying the disk,
perhaps by putting a bullet through it.

Beyond MTTDL: A Closed-Form RAID 6 Reliability
Equation
Jon Elerath and Jiri Schindler, NetApp Inc.

Jiri Schindler argued that although simple, the original RAID
reliability equation that expressed mean-time-to-data loss
(MTTDL) is no longer accurate, because today RAID systems
are much more complex, with many processes for proactive
scanning and repair of media defects. Moreover, researchers
now have a better understanding of HDD failure modes and
non-constant time-to-failure distributions. As a result, Jiri
proposed a new equation that is more accurate, easy to use,
easy to understand, and could help system designers to explore
a variety of design points quickly. The new equation takes into
account many factors, such as HDD operational failures, their
restorations, latent (sector) defects, and disk media scrubbing.
The great news was that this new equation is available online
for anyone who wants to try it out at http://raideqn.netapp.com/.
Finally, Jiri presented some results showing that the new equa-
tion is more accurate than the original. Someone asked whether
the new equation models “wetware” (i.e., the human factor). Jiri
answered that the model actually covers the human factor.

Reverse Deduplication: Optimizing for Fast Restore
Zhike Zhang, Preeti Gupta, Avani Wildani, Ignacio Corderi, and Darrell D.E.
Long, University of California, Santa Cruz

Deduplicated storage systems suffer from data fragmentation,
as more and more data are added and more data chunks are
shared. Due to the nature of existing deduplication algorithms,
the most recent backup is the most fragmented, resulting in
performance issues. This work proposes to invert the dedupli-
cation process in order to make restoring the most recent copy
more efficient. Specifically, new data segments will be written
contiguously, and older data segments that share chunks in the
new segments will reference those chunks; however, because
older backups will develop more and more holes, restoring them
would be costly. Preliminary results show that retrieving the
most recent backup in reverse deduplication is more efficient
than in traditional deduplication.

Quality-of-Data Consistency Levels in HBase for
GeoReplication
Álvaro García Recuero, Instituto Superior Técnico; Luís Veiga, INESC-ID
Lisboa, Distributed Systems Group

HBase only supports eventual consistency for replication between
the local site and remote sites; updates are replicated asynchro-
nously between datacenters. Thus, ensuring a given level of
quality of service for delivering data to remote master replicas
is challenging. This work extends some of the main compo-
nents of HBase to replace the eventual consistency model with
an adaptive consistency one. It outlines the architecture of a
quality-of-service layer proposed for HBase.

Something for Everyone
Summarized by Dorian Perkins (dperkins@cs.ucr.edu)

Shroud: Ensuring Private Access to Large-Scale Data in
the Data Center
Jacob R. Lorch, Bryan Parno, and James Mickens, Microsoft Research;
Mariana Raykova, IBM Research; Joshua Schiffman, AMD

Jacob Lorch addressed the question: How can we prevent the
cloud from learning our private data? Even when encryption
is used, cloud services can still learn up to 80% of the content
in email. This approach is based on previous work on oblivious
RAM (ORAM), a technique used to obfuscate a client’s access
patterns to data; however, the authors note that ORAM is far too
slow in practice. For example, a map application serving a single
map tile to one user can take up to one week. Shroud leverages
parallelism to speed up this technique while preserving privacy,
reducing I/O time, and providing fault tolerance.

Overall, Shroud aims to fetch data from the cloud without the
service knowing which block a user actually wants to access.
Shroud uses trusted, secure coprocessors (smart cards that cost
approximately $4 each) throughout the datacenter as proxies
to each storage node. Users convey requests over secure chan-
nels with these proxies, which then access the data in-parallel.
The coprocessors then employ a binary tree ORAM selection

84  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

REPORTS

technique to randomize the access patterns to data. Each time a
block needs to be accessed, an adversary can only know how far
down the tree the block may be, but has no idea where it actually
is; subsequent access must use a different path to access the
block. When a block is found, all coprocessors must send their
blocks to the same node, which then uses a technique called
oblivious aggregation to compute a collective XOR efficiently
and securely. Jacob said that Shroud was deployed on 139
machines at MSR using emulated smart cards (due to availabil-
ity), and was tested using various workloads, including Facebook
images and map tiles.

An attendee asked how Shroud scaled. Jacob said that performance
increases linearly until around 10K coprocessors, where perfor-
mance gains begin to taper off. Jacob noted that Shroud is still
more about theory than practice, as performance is still very
slow, taking about 45 seconds to serve a map tile, and around
nine seconds for serving a tweet. The clear performance bottle-
neck is the low-bandwidth smartcards they use as coprocessors,
which only have around 12 KB/s bandwidth. The authors leave
as future work employing high-bandwidth tamper-resistant
FPGAs as coprocessors to improve performance, and admitting
the hard drive to the trusted computing base to allow the use of
more efficient ORAM protocols.

Getting Real: Lessons in Transitioning Research
Simulations into Hardware Systems
Mohit Saxena, Yiying Zhang, Michael M. Swift, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau, University of Wisconsin—Madison

Mohit Saxena noted there has been much work on SSD design,
and common evaluation methods focus on three techniques:
modifying the SSD by replacing the FTL (generally limited to
vendors); FPGA prototyping, which is flexible and fast, yet hard
and time-consuming; and simulators/emulators, which replay
block traces and implement device models, and are generally
used by the research community. Commonly, simulators are
used when designing or evaluating new solid state drive (SSD)
designs; however, the problem is that simulators cannot model
real hardware accurately as they do not capture the complete
interaction with the operating system in their model (e.g., tim-
ing dependencies, request alignment, etc.). Mohit pointed out
that in the past three years, most papers have used simulators
to validate their SSD designs. Instead, Mohit suggests a better
approach using the OpenSSD hardware platform with a Jasmine
board to develop new SSD designs. Yet the OpenSSD platform
was not without issues, so Mohit explained how his team spent
time optimizing this board to improve its performance.

Mohit discussed their prototyping experience with two previous
works, Solid-State Cache (SSC) and Nameless-Writes (NW-
SSD), noting the challenges, solutions, and lessons learned from
optimizing their hardware design and evaluation suite for flash
storage devices. SSC aims to improve performance compared to

using an SSD as block cache, while NW-SSD introduces new
commands to build cheap and fast SSDs, by exposing the flash
block layout and interacting directly with the OS when serv-
ing reads and writes. Mohit separated his prototyping experi-
ence into three sections: new forward commands, new device
responses, and real hardware constraints for SSC and NW-SSD.
Mohit summarized each of his points with lessons learned. When
designing new forward commands, Mohit urges that you should
always consider all layers of the OS, especially I/O schedulers
merging and re-ordering operations, and also consider the com-
plete SSD ecosystem, including encoding sub-types and acceler-
ating new command queues. Designers of new device responses
should again consider all OS layers, such as race conditions for
callbacks in the device and file system, and handling of frequent
benign errors in the storage device drivers. A prototyping lesson
also learned here is simplicity and correctness; make the Kernel-
FTL a simpler block layer OS interface and enforce correct erase-
before-overwrite operations in the Device-FTL.

In their performance evaluation, they compared their two sys-
tems (SSC and NW-SSD) with a bare SSD using filebench. They
validated the previous performance claims of SSC (168% better
than common hybrid FTL) design by showing that it performs
52% better than a faster page-map FTL and that NW-SSD can
substantially reduce the amount of device memory required
with performance close to a page-map FTL. In conclusion,
Mohit found that OpenSSD is a valuable tool for evaluating
new SSD designs. Mohit shared his first high-performance
open-source FTL at http://cs.wisc.edu/~msaxena/new/ftl.html.

To Zip or Not to Zip: Effective Resource Usage for Real-
Time Compression
Danny Harnik, Ronen Kat, Oded Margalit, Dmitry Sotnikov, and Avishay
Traeger, IBM Research—Haifa

Danny Harnik lightheartedly began his talk by asking, “To zip,
or not to zip, that is question.” Danny introduced his work with
the motivating goal of reducing time, cost, rackspace, and cool-
ing requirements. The challenge of this work is to add “seamless”
compression to a storage system with little effect on perfor-
mance. Danny noted paying the compression overhead is okay
if you are going to gain something, but it is not always worth the
effort. The authors’ goal is to avoid compressing “incompress-
ible” data, while also maximizing the compression ratio of their
stored data. To tackle this problem, Danny noted that there is
no established, accurate method for estimating compression
ratio, outside of actually compressing the data. Other solutions
included deducing from empirical application data or file exten-
sions, but these are neither accurate nor always available.

Danny explained how the authors tackled this problem from a
micro and macro scale. For macro, they considered a large multi-
GB/TB volume in which the time to compress was on the order of
hours, where estimates only took a short time (minutes) and they

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 85

REPORTS

could actually obtain accuracy guarantees. At this scale, they
choose M random locations to test local compression ratios and
compute an average compression ratio for these locations; how-
ever, he noted that in practice, this straightforward sampling
method can have issues of compression locality. So they tweaked
their method to evaluate the “compression contribution” of
single bytes from regions throughout the file, and define the con-
tribution of a byte as the compression ratio of its locality region
(where locality depends on the specific compression method at
hand). They then proved through statistical analysis for esti-
mating averages that their method estimated the overall ratio
with guaranteed accuracy (the actual parameters depend on the
sample size but do not depend on the volume size). This macro-
scale compression estimate is also useful as an evaluation and
sizing tool. A version of this tool can by found by searching “IBM
Comprestimator” or at this link: http://www-01.ibm.com/sup-
port/docview.wss?uid=ssg1S4001012.

Danny noted that at the micro-scale, they consider single write,
KB-sized files, which take milliseconds to compress; since
estimation has to be ultra-quick, they rely on heuristics. Danny
pointed out that getting guarantees is impossible as the local-
ity in this case amounts to the entire chunk. They considered
two approaches: a prefix-based estimation and a heuristic
indicator method. In the latter, they collect some basic indicators
about the data and output a recommendation accordingly. For
this method they employ a number of techniques to improve
the time performance of the estimation. Danny discussed the
performance evaluation of the two estimation methods on more
than 300 GB (17,790 files) of mixed data types, showing that the
heuristics approach wins out over the 1 KB prefix sampling,
and both improve on the option of running a full compression on
an 8 KB chunk. In a time versus compression tradeoff analysis,
prefix compression has 74% CPU utilization with 2.2% capacity
overhead, while the heuristics method has 65% CPU utilization
at a nominally higher 2.3% capacity overhead.

In summary, Danny concluded that when most data is com-
pressible use prefix estimation, when a significant percentage
is incompressible use the heuristics method, and when most
is incompressible, turn off compression and run macro-scale
offline to detect a change. Michael Condit (NetApp) noted that
other compression techniques are faster than the one studied
in the paper, and this work depends on the compression algo-
rithm’s latency. Danny replied that the work generalizes to other
methods as well, but may be less relevant to some. For example,
Snappy is a compression algorithm that already uses prefix
estimation.

Poster Session and Reception II
Summarized by Matias Bjorling (mabj@itu.dk)

Examining Scientific Data for Scalable Index Designs
Aleatha Parker-Wood, Brian A. Madden, Michael McThrow, and Darrell D.E.
Long, University of California, Santa Cruz

Aleatha Parker-Wood argued that modern file systems with
billions of files are no longer tractable for conducting searches
of scientific data. The vast amount of data and ever larger
metadata, describing scientific observations, has become
unmanageable. They argue that databases optimized for sparse
data, column-based compression, and high cardinality are a
better choice as a file-system index database. They evaluated
five architectures: row stores, column stores, key-value stores,
document stores, and spatial trees and compared each in regard
to sparseness, dimensions, cardinality, specialized access, and
ad hoc queries. They found column and document stores to be
efficient structures for the scientific metadata. Further investi-
gations include novel indexing strategies, such as on-demand
indexing on a per-column basis.

Reliability Analysis of Distributed RAID with Priority
Rebuilding
Hiroaki Akutsu and Tomohiro Kawaguchi, Yokohama Research Laboratory,
Hitachi, Ltd.

The storage capacity of hard drives has been increasing expo-
nentially, leading to longer RAID rebuild times and increased
risk of data loss. Distributed RAID is a technique to decrease
the rebuild time. Because of the expanded rebuild range, more
drives are prone to fault during rebuilding. Priority rebuild-
ing is used to restore data with the lowest redundancy first. To
estimate the redundancy reliability, Hiroaki Akutsu presented
a reliability analysis of distributed RAIDs that they can use as
a model. They found that distributed RAID reliability is roughly
equal to that of a level-1 redundancy method (e.g., mirroring,
RAID5); reliability becomes roughly constant, independent of the
number of drives in a level-2 redundancy method (e.g., triplica-
tion, RAID6); and reliability increased due to the increase in the
number of drives in the over level-3 redundancy method (e.g.,
triple parity RAID, high-redundancy erasure-coding).

Radio+Tuner: A Tunable Distributed Object Store
Dorian J. Perkins, Curtis Yu, and Harsha V. Madhyastha, University of
California, Riverside

There are many storage systems today, each designed with its
own specific workload and performance goals; however, no
single distributed storage system design is cost-optimal for meet-
ing performance goals of all workloads. Dorian Perkins pre-
sented Radio+Tuner, a tunable distributed object store (Radio)
and its configuration engine (Tuner). Radio offers a simple GET/
PUT interface, with three system components: NodeMetadataS-
tore, DiskMetadataStore, and DataStore. Each component offers
multiple implementations allowing for “mix-and-match” con-
figurations, with the benefits that as new workloads emerge,

86  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

REPORTS

new implementations may be added to the system (instead of
designing a new system). Tuner takes as input the workload’s
parameters and performance SLOs, as well as hardware and
component implementation specifications, and simulates the
operation of Radio to obtain a GET/PUT latency distribution.
Tuner then outputs the lowest cost configuration that meets the
workloads goals. Initial results show that Radio+Tuner is able to
adapt to disparate workloads, and does so at up to 5x cost savings
when using the Tuner-recommended configurations. Future
work includes unifying Radio with prior solutions that consider
consistency and availability requirements, and expanding Radio
to handle multiple conflicting workloads on the same hardware.

JackRabbit: Improved Agility in Elastic Distributed
Storage
James Cipar, Lianghong Xu, Elie Krevat, Alexey Tumanov, and Nitin Gupta,
Carnegie Mellon University; Michael A. Kozuch, Intel Labs; Gregory R.
Ganger, Carnegie Mellon University

Distributed storage is often expensive to scale and requires
aggressive write periods when new nodes are added or removed.
Recent research in elastic storage systems, such as Rabbit and
Sierra, enable better elasticity by new data layouts and mecha-
nisms, but both suffer from write degradation or poor agility.
Lianghong Xu presented JackRabbit. It focuses on new poli-
cies, designed to maximize the agility of elastic storage, while
accommodating both performance and fault tolerance. Evalu-
ation shows that JackRabbit comes closer to the ideal machine
hour elasticity (within 4%) and improves over state-of-the-art
elastic storage systems by 6–120%.

High Performance & Low Latency in Solid-State Drives
Through Redundancy
Dimitris Skourtis, Scott Brandt, and Carlos Maltzahn, University of California,
Santa Cruz

Dimitris Skourtis presented an approach to having both high per-
formance and low latency in solid-state drives using redundancy.
By separating read and write patterns, only one drive is being
written at a time. Thus, the other drive is solely available for
reads. After a variable amount of time, the disk responsibility
is switched. The to-be-written data is cached and then flushed.
The evaluation shows reads have consistently less variation and
double throughput for 256 KB blocks. Future work includes
quality of service for mixed workloads and evaluation under live
workloads, such as databases and VMs.

A Deduplication Study for Host-Side Caches with Dynamic
Workloads in Virtualized Data Center Environments
Jingxin Feng and Jiri Schindler, NetApp Inc.

Jiri Schindler presented a deduplication study of host-side
caches in virtualized datacenter environments. Host-side caches
can be rather large, and re-warming the cache for migrated vir-
tual machines may take up to several hours. In virtual desktop
infrastructure (VDI) deployments, a virtual machine is a sepa-
rate entity, but the host-side cache might contain many copies

of the same content, even though the network-attached shared
storage system would only store a single instance. The goal of
their study is to explore the effectiveness of deduplication for
large host-side caches running dynamic VDI workloads. Their
preliminary results show a disk space saving of 54% to 67%
using deduplication and a larger saving if reads and writes are
observed separately. They argue that the “deduplication degree”
metric captures a useful concept for evaluating cache effective-
ness for dynamic workloads. Future work includes analyzing
 similarity of VDI traffic, deduplication sensitivity to cache
block size, and other aspects that can improve the host-side
cache in VDI environments.

Summarized by Jorge E. Cabrera (jcabr020@cs.fiu.edu)

Adaptive Resource Allocation in Tiered Storage Systems
Hui Wang, Peter Varman, Rice University

Peter Varman addressed the challenge of providing both fair-
ness and high utilization guarantees in multi-tiered storage
 systems. Their work is centered around dynamically computing
a reservation and limit value for all clients based on their hit
ratio. These values are used to guarantee fairness by providing a
minimum allocation, and to provide remaining I/Os to other cli-
ents to obtain maximum system utilization. Evaluation results
using a process-driven simulator show that their allocation
model can potentially pull up utilization to maximum through-
put or close to it depending on the reservation values of all the
clients. Future work entails extending the allocation model to
include relative shares.

Quality-of-Data Consistency Levels in HBase for
GeoReplication
Álvaro García Recuero, Instituto Superior Técnico; Luís Veiga, INESC-ID
Lisboa, Distributed Systems Group

A major challenge in cloud storage systems is providing quality-
of-data consistency levels for data-replication mechanisms.
Alvaro García Recuero presented a mechanism to extend the rep-
lication mechanisms of HBase, an open-source version of Big-
Table. Currently, HBase uses a best-effort delivery mechanism
of data by using an eventual consistency mode. The proposed
approach is to leverage the vector field consistency model into a
framework that provides the HBase core with a QoD layer that
allows it to prioritize specific client replicas to deliver replica
updates with the agreed quality of data. Current evaluation is
pending, and expected results promise a reduction in bandwidth
usage and more control of the interval when replication occurs.

IBIS: Interposed Big-Data I/O Scheduler
Yiqi Xu, Adrian Suarez, and Ming Zhao, Florida International University

Yiqi Xu presented IBIS (Interposed Big-data I/O Scheduler),
which tries to solve the scheduling problem that exists in big-
data systems (e.g., Hadoop/MapReduce) because they do not
expose management of shared storage I/O resources. As such,
an application’s performance may degrade in unpredictable

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 87

REPORTS

ways under I/O contention, even with fair sharing of comput-
ing resources. IBIS provides performance differentiation for
the I/Os of competing applications in a shared MapReduce-type
big-data system. IBIS is implemented in Hadoop by interpos-
ing HDFS I/Os and use an SFQ-based proportional-sharing
algorithm. Experiments show that IBIS provides strong per-
formance isolation for one application against another highly
I/O- intensive application. IBIS also enforces good proportional
sharing of the global bandwidth among competing parallel appli-
cations, by coordinating distributed IBIS schedulers to deal with
the uneven distribution of local services in big-data systems.

Trace Analysis for Block-Level Caching in Cloud
Computing Systems
Dulcardo Arteaga and Ming Zhao, Florida International University; Pim Van
Riezen and Lennard Zwart, Cloud VPS

Client-side caching by using SSDs can potentially improve the
performance of shared block-level storage systems that can suf-
fer from scalability issues when the number of clients grows. Dul-
cardo Arteaga presented a trace analysis for this type of caching
with the goal of analyzing the effective use of SSD devices as
caches. Specifically, there are three factors that are studied:
size of SSD device through working set size analysis, a compari-
son of three caching policy configurations, and dynamic and
static allocation of shared caches among concurrent VM clients.
The types of traces analyzed include both public and private
cloud environments comprising Web servers, file servers, and
VM clients. The types of caching policies used are write-back,
write-through, and write-allocate. Some of the interesting results
show that both public and private clouds have an average cache
hit ratio of 74% and 78%, respectively, using write-back policy.
Additionally, working set sizes can be accurately predicted
90%of the time.

Beyond MTTDL: A Closed-Form RAID 6 Reliability
Equation
Jon Elerath and Jiri Schindler, NetApp Inc.

The complexity of RAID systems and new HDD technologies has
risen to a level where old MTTDL models cannot be applied to
obtain accurate results. New systems have improved designs
that employ repair mechanisms that did not exist in older HDDs.
Jiri Schindler presented a project based on developing a more
accurate and reliable MTTDL equation model, specifically for
RAID6 setups. The result of this research is a new closed-form
RAID6 reliability equation that can better model data-loss
events compared to the old MTTDL equation. This equation can
yield estimations for HDD operational failures, latent defects,
and disk media scrubbing. The equation was formulated by
using a two-parameter Weibull distribution using param-
eters obtained from real-world data. The equation was verified
against a Monte Carlo model simulation, and the results shows
similar accuracy. Additionally, the new MTTDL equation can
yield results in milliseconds, whereas a single MC simulation

ran between 14 seconds and 18 hours. A Javascript implemen-
tation of the model is available for the public at http://raideqn.
netapp.com. Evaluation results show that in comparison to the
old model, the new equation shows more realistic results when
it comes to predicting the occurrence of failures.

Reverse Deduplication: Optimizing for Fast Restore
Zhike Zhang, Preeti Gupta, Avani Wildani, Ignacio Corderi, and Darrell D.E.
Long, University of California, Santa Cruz

Preeti Gupta explained that as the number of shared data
chunks increases, the amount of data fragmentation increases
and can lead to decreased performance in deduplicated stor-
age systems. In particular, the most recent backup is the most
fragmented of this data. The goal of this project is improve the
performance access of the most recent backup in deduplicated
backup systems. The proposed approach entails the inversion
of the deduplication process. Instead of mapping new chunks
to already existing chunks, each new data segment is written
contiguously, and older data is mapped to the new chunks.
Evaluation results show that they can significantly reduce
fragmentation for the most recent data segments. Specifically,
retrieval time can be 4 to 19 times faster. While this solution
is great for the most recent backup, it does pose a tradeoff for
accessing older backups, which develop portions of data that
are no longer referenced.

Flash and SSDs
Summarized by Leonardo Marmol (marmol@cs.fiu.edu)

LDPC-in-SSD: Making Advanced Error Correction Codes
Work Effectively in Solid State Drives
Kai Zhao, Rensselaer Polytechnic Institute; Wenzhe Zhao and Hongbin Sun,
Xi’an Jiaotong University; Tong Zhang, Rensselaer Polytechnic Institute;
Xiaodong Zhang, The Ohio State University; Nanning Zheng, Xi’an Jiaotong
University

Current SSDs use Bose-Chaudhuri-Hocquengham (BCH) error
correction mechanisms. However, as NAND flash technology
becomes denser it also becomes less reliable, rendering BCH
incapable of dealing with the several types of interference pres-
ent in NAND. As an alternative, Kai Zhao proposed the use of
low-density parity-check (LDPC) techniques and explores its
potential and limitations. LDPC is known to provide stronger
error correction capabilities, but the performance penalty asso-
ciated with LDPC has made it impractical so far. Zhao addressed
these limitations with a technique that combines the simplicity
and high speed of hard-decision coding with the strong error
correction capability of soft-decision coding.

At a high level, the idea is to use hard-decision at first and only
apply a soft-decision in the presence of failures. By combining
look-ahead memory sensing to reduce the total latency, fine-
grained progressive sensing and decoding as needed, and smart
data placement interleaving, Zhao et al. managed to provide a
solution that significantly reduced the average response time delay
while still providing high reliability for dense flash technologies.

88  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

REPORTS

The implementation was evaluated using the DiskSim simulator
and six sets of traces of different workloads. The experimental
work flow consisted of running a high number of program/erase
cycles followed by a baking session to emulate the wear-out
recovery. The baking time was determined using Arrhenius’s
Law. Next, random data is programmed into the chips, and these
are baked once again to emulate one month retention time.
Finally, the data is read and compared with the original data
to get page error statistics. The results showed a comparison
between the proposed techniques and the basic two-step
sensing process. In general, the combined use of look-ahead,
 progressive sensing, and interleaving lead to a reduction of
response time delay from more than 100% to less than 20%.

Joseph Tucek (HP Labs) asked how his solution would play with
RAID systems with their own built-in error correction mecha-
nisms. Zhao replied that having the upper layer doing error
correction is an orthogonal solution that in most cases will not
suffice. Peter Harllee (CMU) asked whether the error informa-
tion was used to redefine new voltage thresholds. Zhao answered
that it can only be done at the word granularity. On a related
note, someone asked about the possibility of providing hints to
the decoder to avoid interleaving pages of different qualities.

Extending the Lifetime of Flash-Based Storage Through
Reducing Write Amplification from File Systems
Youyou Lu, Jiwu Shu, and Weimin Zheng, Tsinghua University

Youyou Lu explained how the increased density of flash memory
also made it less tolerant to leakage and noise interference,
taking a toll on the reliability and lifetime of flash memory.
He pointed out that traditional file systems were developed
assuming the use of hard disks and not f lash, the reason for
which common mechanisms such as journaling, metadata syn-
chronization, and page-aligned update can induce extra write
operations that further reduce the lifetime of flash. Lu proposed
an object-based flash translation layer design (OFTL) that
makes file systems no longer responsible for storage manage-
ment and exports a byte-unit access interface to them. This
decoupling allows the OFTL to lazily update metadata indexes
and eliminates journals without losing any consistency proper-
ties by making use of the page metadata area. Further, OFTL
makes it possible for coarse-grained block state maintenance to
reduce free management overheads using units of erase blocks
rather than file system blocks. Finally, the byte-unit interface
allows OFTL to compact and better co-locate small updates,
reducing the total number of updates and amortizing the cost of
page writes across unaligned pages.

The system was evaluated with several workloads and traces
and implemented as a Linux kernel module. For every workload,
Lu et al. measured the write amplifications—defined as the
total size or number of writes to the flash memory divided by
the total size or number of writes issued from the application

layer—across several file systems, including ext2, ext3, Btrfs
and their OFTL implementation. The results showed that the
OFTL-based system offers a write amplification reduction of
47% to 90% with synchronous workloads and 20 % to 64% with
asynchronous workloads. Richard Spillane (Apple) asked why
sequential workloads were causing so much write amplification
in one of the experiments. Lu explained that data is duplicated,
once for the journal and again for the actual write.

Understanding the Robustness of SSDs under
Power Fault
Mai Zheng, The Ohio State University; Joseph Tucek, HP Labs; Feng Qin, The
Ohio State University; Mark Lillibridge, HP Labs

Mai Zheng talked about the wide adoption of SSDs due to their
many good qualities; however, little has been said about the behav-
ior of SSDs under adverse conditions. In particular, Zheng studied
the behavior of SSDs under power failures. Among the potential
types of failures a SSD can experience, Zheng listed bit corruption,
metadata corruption, inconsistency in the internal state of the
device, shorn and flying writes, and unserializable writes.

To test the resilience of SSDs under power failures, Zheng et al.
created a testing framework made of four main components:
scheduler, workers, switcher, and checker. Each test cycle con-
sisted of three stages. Initially, the workers stress the SSD with
many write operations, ideally making the device as vulnerable as
possible by triggering wear leveling and garbage collection. Next,
the device’s power is cut off asynchronously by a circuit control-
ling the SSD’s dedicated power source. Finally, the checker reads
back the data and checks for potential failures. The data written
to the device is carefully arranged and contains enough metadata
to uniquely identify all types of errors and other possible interfer-
ences such as dynamic data compression by the SSD.

Fifteen SSDs were subjected to a series of controlled power
failures, and 13 exhibited some form of failure. Unserializable
writes were the most common type of failure, but all other types
of failures were also found. One device exhibited metadata corrup-
tion after only eight injected faults, which caused 72 GB of data to
be lost. Other devices were rendered undetectable by the host after
136 injected faults. Zheng was asked what types of errors he found
when the devices were not stressed, which was not considered in
the evaluation. John Badger (Quantum) asked about the devices
that claimed to have some form of power failure protection. Zheng
said three out of four failed. Fred Glover (Oracle) asked whether
they tried cutting the AC power supply instead of DC. Zheng said
they didn’t, as automating and performing many power cycles by
cutting the AC is not easy. Bill Bilofsky (Microsoft) asked whether
they tried cutting off power for a short period of time and whether
the error happened during powering off or powering up the device.
Zheng said that a quick power restore was not part of the evalua-
tion and the experimental setup did not provide enough insight to
determine exactly when failures took place.

Risk-FRee TRial!
 3 issues
 + 3 DVDs
 for only

 $3

ORDeR aT: shop.linuxnewmedia.
com

PRacTical. PROFessiOnal. eleganT.
Enjoy a rich blend of tutorials, reviews, international news, and
practical solutions for the technical reader.

Order Linux Pro Magazine issue 150
and receive our entire history on 1 searchable DVD!
For more than 12 years, Linux Magazine has
specialized in smart, insightful articles on open
source tools and real-world Linux. We‘ve charted
the history of Linux from an obscure hacker‘s
system to a mainstream OS that is friendly
enough for beginners and stable enough for the

corporate desktop. Now all that knowledge is
available in a single, searchable DVD archive.
The Complete Linux Magazine Archive includes all
the technical heavy lifting you‘ve come to expect
from us.

ad_login_admin+lpm_05_2013.indd 1 5/3/13 11:38:15 AM

Register by July 22 and Save!
www.usenix.org/sec13

www.usenix.org/facebook

twitter.com/usenixsecurity

www.usenix.org/youtube

www.usenix.org/linkedin

www.usenix.org/blog

www.usenix.org/gplus

Stay Connected...

Plus a 3-Day Technical Program:
• Paper presentations

on large-scale systems
security, attacks,
mobile security,
and applied crypto

• Invited talks
• Poster session
• Rump session
• Birds-of-a-Feather

sessions (BoF)

The USENIX Security Symposium brings together researchers, practitioners, system administrators,
 system programmers, and others interested in the latest advances in the security of computer
 systems and networks.

WASHINGTON, D.C. • AUGUST 14–16, 2013

USENIX Security ’13 will feature:
Keynote Address:
“Dr. Felten Goes To Washington:
Lessons from 18 Months in Government”
Edward W. Felten, Director, Center for Information
Technology Policy, and Professor of Computer Science
and Public Aff airs, Princeton University; former Chief
Technologist, U.S. Federal Trade Commission

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

