
;login:
V O L . 3 8 , N O . 4A U G U S T 2 0 1 3

Security
& Uncovering Zero-Days

Leyla Bilge and Tudor Dumitras

& Software Liability, a Lawyer’s
Perspective
Michael B. Scher

& Setting Up Enterprise Logging
David Lang

& Rethinking Passwords
Abe Singer and Warren Anderson

& Causal Consistency
Wyatt Lloyd, Michael Kaminsky,
David G. Andersen, and Michael Freedman

Columns
Practical Perl Tools: Working with Git
David N. Blank-Edelman

Python: Shrinking Dictionary Size
David Beazley

iVoyeur: Watch Files with inotify
Dave Josephsen

For Good Measure: Security Debt
Dan Geer and Chris Wysopal

/dev/random: Loadable Cranium Modules
Robert Ferrell

Conference Reports
NSDI ’13: 10th USENIX Symposium on Networked
Systems Design and Implementation

Stay Connected...

www.usenix.org/facebook

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/linkedin

www.usenix.org/blog

www.usenix.org/gplus

F O R A C O M P L E T E L I S T O F U S E N I X A N D U S E N I X C O - S P O N S O R E D
E V E N T S , S E E W W W . U S E N I X . O R G / C O N F E R E N C E S

U P C O M I N G E V E N T S

USENIX Security ’13: 22nd USENIX Security
Symposium
August 14–16, 2013, Washington, D.C., USA
www.usenix.org/conference/usenixsecurity13

Workshops Co-located with USENIX Security ’13
EVT/WOTE ’13: 2013 Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections
August 12–13, 2013
www.usenix.org/conference/evtwote13

USENIX Journal of Election Technology
and Systems (JETS)
Published in conjunction with EVT/WOTE
www.usenix.org/jets

CSET ’13: 6th Workshop on Cyber Security
Experimentation and Test
August 12, 2013
www.usenix.org/conference/cset13

HealthTech ’13: 2013 USENIX Workshop on Health
Information Technologies
Safety, Security, Privacy, and Interoperability of
Health Information Technologies
August 12, 2013
www.usenix.org/conference/healthtech13

LEET ’13: 6th USENIX Workshop on Large-Scale
Exploits and Emergent Threats
August 12, 2013
www.usenix.org/conference/leet13

FOCI ’13: 3rd USENIX Workshop on Free and Open
Communications on the Internet
August 13, 2013
www.usenix.org/conference/foci13

HotSec ’13: 2013 USENIX Summit on Hot Topics
in Security
August 13, 2013
www.usenix.org/conference/hotsec13

WOOT ’13: 7th USENIX Workshop on
Offensive Technologies
August 13, 2013
www.usenix.org/conference/woot13

LISA ’13: 27th Large Installation System
Administration Conference
November 3–8, 2013, Washington, D.C., USA
www.usenix.org/conference/lisa13

SESA ’13: 2013 USENIX Summit for Educators in
System Administration
C O - L O C AT E D W I T H L I S A ’ 1 3

November 5, 2013, Washington, D.C., USA
www.usenix.org/conference/sesa13

FAST ’14: 12th USENIX Conference on File and
Storage Technologies
February 17–20, 2014, Santa Clara, CA, USA
www.usenix.org/conference/fast14
Submissions due: September 26, 2013

2014 USENIX Research in Linux File and Storage
Technologies Summit
C O - L O C AT E D W I T H F A S T ’ 1 4

February 17, 2014, Santa Clara, CA, USA

NSDI ’14: 11th USENIX Symposium on Network
Systems Design and Implementation
April 2–4, 2014, Seattle, WA, USA
www.usenix.org/conference/nsdi14
Abstracts due: September 20, 2013

2014 USENIX Federated Conferences Week
June 17–20, 2014, Philadelphia, PA, USA

USENIX ATC ’14: 2014 USENIX Annual Technical
Conference

HotCloud ’14: 6th USENIX Workshop on
Hot Topics in Cloud Computing

WiAC ’14: 2014 USENIX Women in Advanced
Computing Summit

HotStorage ’14: 6th USENIX Workshop
on Hot Topics in Storage and File Systems

UCMS ’14: 2014 USENIX Configuration
Management Summit

USENIX Security ’14: 23rd USENIX Security
Symposium
August 20–22, 2014, San Diego, CA, USA

OSDI ’14: 11th USENIX Symposium on Operating
Systems Design and Implementation
October 6–8, 2014, Broomfield, CO, USA

Diversity ’14: 2014 Workshop on Diversity in
Systems Research
C O - L O C AT E D W I T H O S D I ’ 1 4

October 4, 2014, Broomfield, CO, USA

LISA ’14: 28th Large Installation System
Administration Conference
November 9–14, 2014, Seattle, WA, USA

E D I T O R
Rik Farrow
rik@usenix.org

M A N A G I N G E D I T O R
Rikki Endsley
rikki@usenix.org

C O P Y E D I T O R
Steve Gilmartin
proofshop@usenix.org

P R O D U C T I O N
Arnold Gatilao
Casey Henderson
Michele Nelson

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215,
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published bi-monthly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for a
subscription to ;login:. Subscriptions for non-
members are $90 per year. Periodicals postage
paid at Berkeley, CA, and additional offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2013 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designations
used by manufacturers and sellers to
distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those designations
appear in this publication and USENIX is aware
of a trademark claim, the designations have
been printed in caps or initial caps.

A U G U S T 2 0 1 3 V O L . 3 8 , N O . 4

E D I T O R I A L
2 Musings Rik Farrow

S E C U R I T Y
6 Investigating Zero-Day Attacks

Leyla Bilge and Tudor Dumitras

14 Rethinking Password Policies
Abe Singer and Warren Anderson

20 Bill Cheswick on Firewalls: An Interview
Rik Farrow

26 Setting the Stage for a Software Liability Discussion
Michael B. Scher

S Y S A D M I N
30 Enterprise Logging

David Lang

P R O G R A M M I N G
36 Cuckoo Filter: Better Than Bloom

Bin Fan, David G. Andersen, and Michael Kaminsky

S Y S T E M S
41 A Short Primer on Causal Consistency

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky,
and David G. Andersen

44 Arrakis: The Operating System as Control Plane
Simon Peter and Thomas Anderson

C O L U M N S
48 Practical Perl Tools David N. Blank-Edelman

52 Building a Better Dictionary David Beazley

58 iVoyeur Dave Josephsen

62 For Good Measure Dan Geer and Chris Wysopal

65 /dev/random Robert G. Ferrell

B O O K S
67 Book Reviews Elizabeth Zwicky, Mark Lamourine, and Rik Farrow

C O N F E R E N C E R E P O R T S
71 10th USENIX Symposium on Networked Systems Design and

Implementation (NSDI ’13)

EDITORIAL

2  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

Musings
R I K F A R R O W

There are dark clouds on the horizon, and an ominous deep rumble
shaking the windows. What we have carefully ignored for so many
years may soon be destroying all we hold dear. Of course, I am not

writing about the weather…

On May 27, a US Department of Defense committee reported [1]:

…that the cyber threat is serious and that the United States cannot be confident that
our critical Information Technology (IT) systems will work under attack from a
sophisticated and well-resourced opponent utilizing cyber capabilities in combination
with all of their military and intelligence capabilities (a “full spectrum” adversary).

Most news reports focused on the loss of technology to the Chinese [2], but this was not the
top finding of this committee. Their point was that US defense capabilities rely on networks
of systems, and these systems are not, and cannot easily be, made secure.

Security Debt
In this issue, Dan Geer and Chris Wysopal write about security debt. Their concept is that
all software has flaws when released, and as software is patched and upgraded over time,
the number of flaws tends to grow. These flaws can be thought of as a debt that needs to be
repaid over time, as the software matures.

Security debt refers specifically to those flaws that will be exploited maliciously. If you
look at the graphs in Figure 2 on page 63, you can see that five of the most popular applica-
tions have security debt that is building over time, with the sum of these debts appearing to
approach exponential growth.

Bilge and Dumitras, using a database of binary signatures collected from millions of
 Windows systems, show that beyond the visible debt of disclosed vulnerabilities, there is
also the undisclosed threat of zero-days. Zero-days are vulnerabilities that are actively
being exploited but have not been announced, and the average amount of time that zero-
days were exploited as reported in this research is astounding. And keep in mind that the
technique they used to detect binary exploits is prone to false negatives, so the numbers are
likely much worse.

Some of my friends in the security business, as well as the US Congress, had been talking
about legal measures that might be used to improve the state of security. Mike Scher, a
friend, security geek, and a lawyer, agreed to write an article accessible to non-lawyers about
the current state of software liability (page 26). My take based on Scher’s cogent analysis is
that we had better work on other approaches. Radical approaches.

Arrakis
Simon Peter and Tom Anderson write about Arrakis, an operating system designed to pro-
vide application stacks with direct access to devices designed to be multiplexed among VMs.
But Arrakis isn’t a hypervisor, and the application stacks are not the same as VMs. Instead,
Arrakis sets up containers for application stacks as well as arranging access to devices,
such as NICs that have multiple queues that can be allocated to specific applications. Peter

Rik is the editor of ;login:.
rik@usenix.org

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 3

EDITORIAL
Musings

expects that we will soon see block devices, first SSDs and later
hard disks, that work similarly.

You might wonder what Arrakis has to do with security, but
Arrakis reduces the software stack between applications and
devices. Arrakis also makes use of features such as extended
page tables so that different parts of an application can share
the same address space, but also be better isolated: for example,
Web browser tabs. Arrakis also puts applications in charge of
sharing information that they own, as they both control and
manage that information.

Jon Howell and fellow researchers have been taking a different
approach. Although Jon wasn’t able to write for this issue, he has
plans to do so in the future. In the meantime, you may want to
look at “Embassies,” his NSDI paper [3] (summaries in this issue
and online) and “How to Run POSIX Apps in a Minimal Picopro-
cess” [4], his ATC ‘13 paper. Jon has taken the work that started
with Xax [5], designed to run desktop applications within a Web
browser, and taken this notion much further. In Xax, libraries
and applications required extensive rewriting before they could
be run securely. In their latest work, Jon and his co-authors have
created POSIX libraries and an emulator that allows desktop
applications, such as the Gimp, Inkscape, and Abiword, to run
within a picoprocess that requires only minimal support from an
operating system.

This work takes away the ability of applications to make most
system calls from libc (which does this for most applications),
replacing many calls with emulations or simply stubs. They
emulate most operating system services and rely on only a few
actual system calls: allocating memory, network communica-
tions, getting time, and the ability to copy bits to a framebuffer
and receive input events. This tremendously narrows the inter-
face to the operating system and most system resources. For
example, there is no direct access to the file system. This system
relies on reading or writing files over the network interface. In
Embassies, a picoprocess running a Web browser tab is not given
full network access, but is only allowed access to the origin of the
tab. These limitations, although imposed by software, do a lot to
limit the access of exploited or malicious applications to both the
local system and other systems.

I really like the idea behind this research: that applications
can be run with minimal operating system support, in isola-
tion. Instead of the 330 plus Linux system calls, only a handful
are needed. Instead of running a LAMP stack within a VM on
top of a hypervisor, you just run LAMP in a container, as Peter
describes in his Arrakis article.

The Lineup
Of course, there is a lot more in this issue than what I’ve already
mentioned. Abe Singer and Warren Anderson have spent years
researching both the usability of passwords and methods for

measuring the entropy of passwords that can be created when
limited by password policies. Abe and Warren (page 14) take
a close look at how current password policies actually make
security worse, and suggest ways to improve password security.
Along the way, they examine the myths that have lead to the
password polices most commonly used today.

I interviewed Bill Cheswick, focusing on his work in security.
Ches was already running a firewall for AT&T when the Morris
worm appeared (November 1988), making his the earliest known
firewall. He later went on to co-author the first book about fire-
walls, as well as found a company to map out intranets. Getting
back to the concerns of the US DoD that I began this article with,
I imagine that they could really use some of the technology that
Ches helped develop for spotting “leaks” in networks.

David Lang begins a series about logging with an article about
setting up logging for enterprises. Even if you don’t have mul-
tiple datacenters, David presents a logging architecture that
makes sense for organizations that have more than a handful
of systems to monitor. I like his tiered system approach and the
way it separates groups of systems by task, allowing upgrad-
ing or changes to the logging infrastructure without having to
rebuild from scratch.

I met Bin Fan during the first NSDI ‘13 poster session. Fan was
enthusiastically explaining cuckoo filters, which he used in his
accepted paper at NSDI. Cuckoo filters have properties that
make them more suitable than the more familiar Bloom filters
for applications that require the ability to delete items in a set
and need a low probability of false positives. Fan and his col-
leagues explain the advantages of cuckoo filters, as well as shar-
ing the software testbed he used to generate his data.

Wyatt Lloyd and co-authors explain causal consistency in their
article. Wyatt had presented Eiger, a noSQL database, at NSDI
‘13, and I was interested in having the authors tell us more about
why they think that causal consistency might be better than
some of the many other consistency models for distributed and
replicated systems.

David Blank-Edelman, taking a page from Ruby, suggests that
readers of his column “git smart.” David explores various Perl
modules that may increase your enjoyment of the Git source
code management tool, through graphs, reports, and managing
multiple Git repositories.

Dave Beazley explains how a bug that appeared in Python 3.3,
in the Python package he supports, the PLY parser generator,
came from a security-related change in the Python dictionary
implementation. Dave explains how dictionaries work under the
covers, and suggests ways to reduce the size of data structures
that either use dictionaries or optionally use dictionaries. The
bottom line is that if you use Python dictionaries, objects, or
even modules, you will want to read his column.

4  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

EDITORIAL
Musings

Dave Josephsen has been playing with inotify(7), the group
of Linux system calls used for monitoring file system events.
Whereas you might have used dnotify in the past, Dave explains
why you want to use inotify instead, and provides an online
example C program to show you how.

I’ve already mentioned Dan Geer and Chris Wysopal’s For
Good Measure column about the danger of accumulating soft-
ware debt.

Robert Ferrell has written about a number of topics this time,
including the modern job interview, loadable cranial modules,
tiny devices, and software updating. As always, Robert is looking
toward a future that is both more secure and more sane.

Elizabeth Zwicky has written five book reviews this month.
She begins with a book on building real systems that deals with
the interface between marketing and programmers. Speaking
of real, she then reviews an insightful collection of essays that
deal with “bad data,” i.e., data analysis in the real world. Next,
she looks at a book that promises Data Insights but doesn’t really
deliver. She then turns her eye on Generation Blend, and finishes
with a book on nighttime digital photography.

Mark Lamourine starts out with a book called Hacker’s Delight,
which is for hackers in the original sense of the word. He then
takes a look at a book on Dart, a JavaScript replacement, and fin-
ishes with a book on Arduino-based distributed network sensors.

I reviewed Mike Lucas’ second edition of Absolute OpenBSD,
a good book to have if you plan on trying OpenBSD. BSDs in
general are quite different from the Linux systems most people
are familiar with, and Mike’s detailed presentation really helps
bridge that gap.

This issue also includes summaries of NSDI ‘13 presentations.

For many years, I’ve been writing about how poorly our current
architectures function when it comes to building secure sys-
tems. There are many good reasons for this, the top ones being

ease of programming and ease of use. Until we have system
architectures that provide security by default, and that support
much of the software and programming environments that peo-
ple are already familiar with, we will continue to use insecure
systems. I’ve mentioned some ideas in this column that I believe
will lead us closer to the goal of secure systems, but right now,
the storm is almost upon us.

References
[1] DoD Defense Science Board, “Resilient Military Systems
and the Advanced Cyber Threat”: http://www.acq.osd.mil/
dsb/reports/ResilientMilitarySystems.CyberThreat.pdf.

[2] “Confidential Report Lists U.S. Weapons System Designs
Compromised by Chinese Cyberspies,” Washington Post,
May 27, 2013: http://articles.washingtonpost.com/
2013-05-27/world/39554997_1_u-s-missile-defenses
-weapons-combat-aircraft.

[3] J. Howell, B. Parno, and J.R. Douceur, “Embassies: Radi-
cally Refactoring the Web,” NSDI ‘13: https://www.usenix.org/
conference/nsdi13/embassies-radically-refactoring-web.

[4] J. Howell, B. Parno, and J.R. Douceur, “How to Run
POSIX Apps in a Minimal Picoprocess,” ATC ‘13: https://
www.usenix.org/conference/atc13/how-run-posix-apps
-minimal-picoprocess.

[5] J. Howell, J.R. Douceur, J. Elson, and J.R. Lorch, “Lever-
aging Legacy Code to Deploy Desktop Applications on the
Web,” OSDI ‘08: http://static.usenix.org/events/osdi08/tech/
full_papers/douceur/douceur.pdf.

Shop the Shop shop.linuxnewmedia.com

RaspbeRRy pi on newsstands now oR oRdeR online at:

shop.l inuxnewmedia.com/rpi

Your companion for a strange
and wonderful adventure...

You ordered your Raspberry Pi...
You got it to boot...what now?

The Raspberry Pi Handbook takes
you through an inspiring collection of
projects. Put your Pi to work as a:

▪ media center

▪ photo server

▪ game server

▪ hardware controller

▪ and much more!

Discover Raspberry Pi’s special tools
for teaching kids about programming
and electronics, and explore advanced
techniques for controlling Arduino
systems and coding GPIO interrupts.

watch youR newsstands foR
the only RaspbeRRy pi RefeRence

you’ll eveR need!

ad_login_raspberryPi_07_2013.indd 1 7/3/13 5:34:07 PM

6  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

SECURITYInvestigating Zero-Day Attacks
L E Y L A B I L G E A N D T U D O R D U M I T R A S

Leyla Bilge became a Senior
Research Engineer at Symantec
Research Labs in February 2012
after obtaining her Ph.D. from
EURECOM, based in the south

of France, with work focusing on network-based
botnet detection. In her thesis, she proposed
three different network-based botnet detection
schemes, one of which is Exposure.
Leylya_Yumer@symantec.com

Tudor Dumitras is an Assistant
Professor in the Electrical and
Computer Engineering Depart-
ment at the University of Mary-
land, College Park. His research

focuses on Big Data approaches to problems in
system security and dependability. In his previ-
ous role at Symantec Research Labs he built
the Worldwide Intelligence Network Environ-
ment (WINE). He has received the 2011 A. G.
Jordan Award, from the ECE Department at
Carnegie Mellon University, for an out standing
Ph.D. thesis and for service to the community;
the 2009 John Vlissides Award, from ACM
SIGPLAN, for showing significant promise in
applied software research; and the Best Paper
Award at ASP-DAC ‘03.
tudor.dumitras@gmail.com

W e conducted a systematic study on data available through Syman-
tec’s Worldwide Intelligence Network Environment to help us
to understand the duration and prevalence of zero-day attacks.

Based on what we learned, we developed a methodology that automatically
identifies zero-day attacks that have affected a large number of real hosts
worldwide. Our methodology was not only able to detect already known
zero-day attacks but also some that were previously unknown. Moreover, we
discovered that the majority of zero-day attacks were able to stay undercover
for a surprisingly long time.

A zero-day attack is a cyberattack exploiting a vulnerability that has not been disclosed pub-
licly. There is almost no defense against a zero-day attack: while the vulnerability remains
unknown, the software affected cannot be patched and antivirus products cannot detect the
attack through signature-based scanning. For cybercriminals, unpatched vulnerabilities
in popular software, such as Microsoft Office or Adobe Flash, represent a free pass to any
target they might want to attack, from Fortune 500 companies to millions of consumer PCs
around the world. For this reason, the market value of a new vulnerability ranges between
$5,000 and $500,000 [7]. Examples of notable zero-day attacks include the 2010 Hydraq
trojan, also known as the “Aurora” attack, which aimed to steal information from several
companies; the 2010 Stuxnet worm, which combined four zero-day vulnerabilities to target
industrial control systems; and the 2011 attack against RSA. Unfortunately, very little is
known about zero-day attacks because, in general, data is not available until after the attacks
are discovered. Prior studies rely on indirect measurements (e.g., analyzing patches and
exploits) or the post-mortem analysis of isolated incidents, and they do not shed light on the
duration, prevalence, and characteristics of zero-day attacks.

We conducted a systematic study of zero-day attacks from 2008 to 2011 and developed a
technique for identifying and analyzing zero-day attacks from the data available through the
Worldwide Intelligence Network Environment (WINE), a platform for data-intensive experi-
ments in cybersecurity [8]. WINE includes field data collected by Symantec on 11 million
hosts around the world. These hosts do not represent honeypots or machines in an artificial
lab environment; they are real computers that are targeted by cyberattacks. For example, the
binary reputation data set includes information on binary executables downloaded by users
who opt in for Symantec’s reputation-based security program, which assigns a reputation
score to binaries that are not known to be either benign or malicious. The antivirus telemetry
data set includes reports about host-based threats (e.g., viruses, worms, trojans) detected by
Symantec’s antivirus products.

The key idea behind our technique is to identify executable files that are linked to exploits of
known vulnerabilities. We start from the public information about disclosed vulnerabilities
(i.e., vulnerabilities that have been assigned a CVE identifier), available from vulnerability
databases and vendor advisories. We use the public Threat Explorer Web site to determine
threats identified by Symantec that are linked to these vulnerabilities, and then we query the
antivirus telemetry data set in WINE for the hashes of all the distinct files (malware vari-

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 7

SECURITY
Investigating Zero-Day Attacks

ants) that are detected by these signatures. Finally, we search
the history of binary reputation submissions for these malicious
files, which allows us to estimate when and where they appeared
on the Internet.

Using this method, we identified and analyzed 18 vulnerabili-
ties exploited in the real world before disclosure. Our findings
include the following:

◆◆ Out of these 18 zero-day vulnerabilities, 11 were not previously
known to have been employed in zero-day attacks, which sug-
gests that zero-day attacks are more common than previously
thought.

◆◆ A typical zero-day attack lasts 312 days on average and hits
multiple targets around the world; however, some of these at-
tacks remain unknown for up to 2.5 years.

◆◆ After these vulnerabilities are disclosed, the volume of attacks
exploiting them increases by up to five orders of magnitude.

These findings have important technology and policy impli-
cations. The challenges for identifying and analyzing elusive
threats, such as zero-day attacks, emphasize that experiments
and empirical studies in cybersecurity must be conducted at
scale by taking advantage of the resources that are available
for this purpose, such as the WINE platform. This will allow
researchers and practitioners to investigate mitigation tech-
niques for these threats based on empirical data rather than on
anecdotes and back-of-the-envelope calculations. For example,
the fact that zero-day attacks are rare events, but that the new
exploits are reused for multiple targeted attacks, suggests that
techniques for assigning reputation based on the prevalence of
files [3] can reduce the effectiveness of the exploit. Furthermore,
because we quantify the increase in the volume of attacks after
vulnerability disclosures, we provide new data for assessing the
overall benefit to society of the full disclosure policy, which calls
for disclosing new vulnerabilities publicly, even if patches are
not yet available.

What Is a Zero-Day Attack?
In general, a zero-day attack is an attack that exploits vulner-
abilities not yet disclosed to the public. The origins of this term
are unclear. Accounts of events from World War II often use
“zero day “ when referring to the date set for a planned attack or
the day when the attack actually occurred:

October 20 [1943] was fixed as zero day for [V2] rocket
attacks [on London] to begin.
 —Winston Churchill, Closing the Ring, 1951.

In the computer world, the term is used in the warez community
when referring to any copyrighted work (e.g., software, movies,
music albums) that is cracked, copied, and re-released on the
same day as the official release. Additionally, naming a folder

“0day” placed it at the top of the list on a file sharing server as an
attempt to draw attention to the item, because zero-day warez is
usually sought after by downloaders.

When the “zero-day” qualifier was first applied to software
vulnerabilities and what the original meaning was is unclear.
Today, a “zero-day attack” usually is understood to be a cyberat-
tack that exploits a vulnerability before the vulnerability’s public
disclosure date (rather than on the same day as the disclosure).
These exploits correspond to vulnerabilities that the security
community is generally unaware of, and such vulnerabilities
are called “zero-day vulnerabilities.” This is illustrated in the
vulnerability timeline from Figure 1: a vulnerability is created
when an exploitable programming bug is introduced in a popular
software product (tv ), the vulnerability is then discovered by
attackers and is exploited in the wild for conducting stealthy
attacks (te ), the vulnerability is discovered by the vendor (td ) and
disclosed to the public (t0 ), leading to the release of countermea-
sures such as antivirus signatures for the exploit (ts ) and patches
for the vulnerability (tp ). The vulnerability ceases to present a
threat only when the patch deployment is completed (ta ). The
disclosure dates (t0 ) of vulnerabilities are tracked and recorded
in several public databases, such as Common Vulnerabilities and
Exposures (CVE). A zero-day attack is characterized by a vul-
nerability that is exploited in the wild before it is disclosed, i.e.,
t0 > te. Our goals are to estimate te for, to measure the prevalence
and duration of zero-day attacks, and to compare the impact of
zero-day vulnerabilities before and after t0.

Software vendors fix bugs and patch vulnerabilities in all their
product releases, and as a result some vulnerabilities are never
exploited or disclosed. We only consider vulnerabilities that have
a CVE identifier. Similarly, in some cases vendors learn about a
vulnerability before it is exploited, but consider it low priority,
and cybercriminals may also delay the release of exploits until
they identify a suitable target, to prevent the discovery of the
vulnerability. Although the CVE database sometimes indicates
when vulnerabilities were reported to the vendors, generally,
determining the exact date when the vendor or the cybercrimi-

Figure 1: Attack timeline. These events do not always occur in this order,
but ta > tp ≥ td > tv and t0 ≥ td. The relation between td and te cannot be
determined in most cases. For a zero-day attack, t0 > te.

8  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

SECURITY
Investigating Zero-Day Attacks

nals discovered the vulnerability or even which discovery came
first is impossible. Moreover, some exploits are not employed for
malicious activities before the disclosure date and are dissemi-
nated as proofs-of-concept, to help the software vendor under-
stand the vulnerability and the antivirus vendors to update their
signatures. We therefore focus on exploits that have been used
in real-world attacks before the disclosure of the corresponding
vulnerabilities.

What Do We Know About Zero-Day Attacks?
Most prior work has focused on the entire window of exposure
to a vulnerability (see Figure 1), first defined by Schneier [9].
Arbaugh et al. evaluated the number of intrusions observed
during each phase of the vulnerability lifecycle and showed that
a significant number of vulnerabilities continue to be exploited
even after patches become available [1]. Frei compared how fast
Microsoft and Apple react to newly disclosed vulnerabilities and,
although significant differences exist between the two vendors,
both have some vulnerabilities with no patch available 180 days
after disclosure [4]. A Secunia study showed that 50% of Win-
dows users were exposed to 297 vulnerabilities in a year and that
patches for only 65% of these vulnerabilities were available at
the time of their public disclosure [5].

Although the market for zero-day vulnerabilities has not been
studied as thoroughly as other aspects of the underground
economy, the development of exploits for such vulnerabilities
is certainly a profitable activity. For example, several secu-
rity firms run programs, such as HP’s Zero Day Initiative and
Verisign’s iDefense Vulnerability Contributor Program, that pay
developers up to $10,000 for their exploits [7], with the purpose
of developing intrusion-protection filters against these exploits.
Between 2000 and 2007, 10% of vulnerabilities were disclosed
through these programs [4]. Similarly, software vendors often
reward the discovery of new vulnerabilities in their products,
offering prizes up to $60,000 for exploits against targets that are
difficult to attack, such as Google’s Chrome browser [6]. More-
over, certain firms and developers specialize in selling exploits
to confidential clients on the secretive, but legal, market for zero-
day vulnerabilities. Sources from the intelligence community
suggest that the market value of such vulnerabilities can reach
$500,000 [7]. In particular, the price of exploits against popular
platforms, such as Windows, iOS, or the major Web browsers,
may exceed $100,000, depending on the complexity of the exploit
and on how long the vulnerability remains undisclosed.

Identifying Zero-Day Attacks Automatically
To identify zero-day attacks automatically, we analyzed the his-
torical information provided by multiple data sets. We conducted
our study on the Worldwide Intelligence Network Environment
(WINE), a platform for data-intensive experiments in cyberse-
curity [8]. WINE was developed at Symantec Research Labs for

sharing comprehensive field data with the research community.
WINE samples and aggregates multiple terabyte-size data sets,
which Symantec uses in its day-to-day operations, with the
aim of supporting open-ended experiments at scale. The data
included in WINE is collected on a representative subset of
the hosts running Symantec products, such as Norton Antivi-
rus. These hosts do not represent honeypots or machines in an
artificial lab environment; they are real computers, in active
use around the world, that are targeted by cyberattacks. WINE
also enables the reproduction of prior experimental results by
archiving the reference data sets that researchers use and by
recording information on the data collection process and on the
experimental procedures employed.

We analyzed two WINE data sets: antivirus telemetry and
binary reputation. The antivirus telemetry data records detec-
tions of known threats for which Symantec generated a signa-
ture that was subsequently deployed in an antivirus product. The
antivirus telemetry data was collected between December 2009
and August 2011, and it includes 225 million detections that
occurred on 9 million hosts. The binary reputation data reports
all the binary executables—whether benign or malicious—that
have been downloaded on end-hosts around the world. The
binary reputation data has been collected since February
2008, and it includes 32 billion reports about approximately
300 million distinct files, which were downloaded on 11 mil-
lion hosts. These files may include malicious binaries that were
not detected at the time of their download because the threat
was unknown. We note that this data is collected only from the
Symantec customers who gave their consent to share it.

We correlated the WINE data sets with information from two
additional sources: the Open Source Vulnerability Database

Figure 2: Overview of our method for identifying zero-day attacks
 systematically

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 9

SECURITY
Investigating Zero-Day Attacks

(OSVDB) and Symantec’s Threat Explorer. OSVDB is a public
vulnerability database, similar to CVE, providing informa-
tion on the discovery, disclosure, and exploit release date of
the vulnerabilities. Threat Explorer is a public Web site with
historical information about most threats for which Symantec
has generated antivirus signatures—including signatures for
exploits of vulnerabilities with known CVE identifiers. Because
the Microsoft Windows platform has been the main target for
cyberattacks over the past decade, we focus on vulnerabilities in
Windows or in software developed for Windows.

Analysis Method
Figure 2 illustrates our four-step analysis method. We start
from the known vulnerabilities recorded in OSVDB, and we
search Symantec’s Threat Explorer for the CVE numbers of
these vulnerabilities in order to identify the names of the viruses
or worms that exploit them. We manually filter out the generic
virus detections (e.g., “Trojan horse”) listed on Threat Explorer,
to compile a list of threat names that identify vulnerability
exploits. We then search for these threat names in the antivi-
rus telemetry, and we record the MD5 and SHA2 hashes of the
exploits detected in the field. Having identified which execut-
ables exploit known CVE vulnerabilities, we search for each
executable in the binary reputation data to estimate when they
first appeared on the Internet. If at least one of these executables
was downloaded before the disclosure date of the correspond-
ing vulnerability, we conclude that we have identified a zero-day
attack. More information about this analysis method is available
in the conference version of this article [2].

Threats to Validity
As WINE does not include data from hosts without Symantec’s
antivirus products, our results may not be representative of
the general population of platforms in the world. Although we
cannot rule out the possibility of selection bias, the large size
of the population in our study (11 million hosts and 300 million
files) and the number of zero-day vulnerabilities we identified
using our automated method (18, which is on the same order of
magnitude as the 43 reported by Symantec analysts during the
same period) suggest that our results have a broad applicability.
Moreover, for the zero-day vulnerabilities detected toward the
beginning of our data collection period, we may underestimate
the duration of the attacks. We therefore caution the reader that
our results for the duration of zero-day attack are best inter-
preted as lower bounds.

Analysis Results and Findings
Using this method, we identified 18 zero-day vulnerabilities: 3
disclosed in 2008, 7 in 2009, 6 in 2010, and 2 in 2011. From the
annual vulnerability trends reports produced by Symantec and
the SANS Institute, as well as blog posts on the topic of zero-day

vulnerabilities, we found out that seven of our vulnerabilities
are generally accepted to be zero-day vulnerabilities (see Table
1). For example, CVE-2010-2568 is one of the four zero-day
vulnerabilities exploited by Stuxnet, and it is known to have also
been employed by another threat for more than two years before
the disclosure date (July 17, 2010). As shown in Table 1, most of
these vulnerabilities affected Microsoft and Adobe products.
More information about the zero-day vulnerabilities identified is
available in [2].

Figure 3 illustrates the duration of zero-day attacks and their
distribution: they lasted between 19 days (CVE-2010-0480)
and 30 months (CVE-2010-2568), and the average duration of
a zero-day attack was 312 days. Figure 3 illustrates this distri-
bution. Fifteen of the zero-day vulnerabilities targeted fewer
than 1,000 hosts, out of the 11 million hosts in our data set. On
the other hand, three vulnerabilities were employed in attacks
that infected thousands or even millions of Internet users. For
example, Conficker exploiting the vulnerability CVE-2008-4250
managed to infect approximately 370,000 machines without
being detected for more than two months. This example illus-
trates the effectiveness of zero-day vulnerabilities for conduct-
ing stealth cyberattacks.

Zero-Day Vulnerabilities After Disclosure
We also analyzed the increase in the number of malware vari-
ants exploiting these vulnerabilities over time. Figure 4 shows
that, after the vulnerability disclosure, 183–85,000 more vari-
ants are recorded each day. One reason for observing the large
number of new different files that exploit the zero-day vulner-
abilities might be that they are repacked versions of the same
exploits; however, it is doubtful that repacking alone can account

Figure 3: Duration of zero-day attacks. The histograms group attack
durations in three-month increments, before disclosure, and the red rug
indicates the attack duration for each zero-day vulnerability.

10  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

SECURITY
Investigating Zero-Day Attacks

for an increase by up to five orders of magnitude. More likely,
this increase is the result of the extensive reuse of field-proven
exploits in other malware.

Figure 5 shows the time elapsed until all the vulnerabilities
disclosed between 2008 and 2011 started being exploited in the
wild. Exploits for 42% of these vulnerabilities appear in the field
data within 30 days after the disclosure date. This illustrates
that the cybercriminals watch closely the disclosure of new
vulnerabilities, in order to start exploiting them, which causes a
significant risk for end-users.

Other Zero-Day Vulnerabilities
Every year, Symantec analysts prepare an “Internet Security
Threats Report” (ISTR) in which new threats, vulnerabilities,
and malware trends are reported. This report includes informa-
tion about the zero-day vulnerabilities identified during the
previous year. These reports identify 43 between 2008 and 2011:
9 in 2008, 12 in 2009, 14 in 2010, and 8 in 2011. For each year, our
automated method discovers on average three zero-day vulner-
abilities that were not known before and on average two zero-day
vulnerabilities from the list reported by Symantec; however,
we were not able to identify on average eight known zero-day
vulnerabilities per year; these vulnerabilities are linked to Web

attacks, polymorphic malware, non-executable exploits, or tar-
geted attacks [2], which illustrates the current limitations of our
method and suggests interesting directions for future research.

Discussion
Zero-day attacks are difficult to prevent because they exploit
unknown vulnerabilities, for which there are no patches and no
antivirus or intrusion-detection signatures. As long as software
will have bugs and the development of exploits for new vulner-
abilities will be a profitable activity, we will be exposed to zero-
day attacks, it seems. In fact, 60% of the zero-day vulnerabilities
we identify in our study were not known before, which suggests
that there are many more zero-day attacks than previously
thought—perhaps more than twice as many; however, reputa-
tion-based technologies, which assign a score to each file based
on its prevalence in the wild and on a number of other inputs [3],
single out rare events such as zero-day attacks and can reduce
the effectiveness of the exploits.

The large fraction of new zero-day vulnerabilities we identify
also emphasizes that zero-day attacks are difficult to detect
through manual analysis, given the current volume of cyberat-
tacks. Automated methods for finding zero-day attacks in field
data, such as the method we propose in this paper, facilitate

0-day vulnerability Unknown Description

CVE-2008-0015 Microsoft ATL Remote Code Execution Vulnerability (RCEV)

CVE-2008-2249 Yes Microsoft Windows GDI WMF Integer Overflow Vulnerability

CVE-2008-4250 Yes Windows Server Service NetPathCanonicalize() Vulnerability

CVE-2009-0084 Yes Microsoft DirectX DirectShow MJPEG Video Decompression RCEV

CVE-2009-0561 Yes Microsoft Excel Malformed Record Object Integer Overflow

CVE-2009-0658 Adobe Acrobat and Reader PDF File Handling JBIG2 Image RCEV

CVE-2009-1134 Yes Microsoft Office Excel QSIR Record Pointer Corruption Vulnerability

CVE-2009-2501 Microsoft GDI+ PNG File Processing RCEV

CVE-2009-3126 Yes Microsoft GDI+ PNG File Integer Overflow RCEV

CVE-2009-4324 Adobe Reader and Acrobat newplayer() JavaScript Method RCEV

CVE-2010-0028 Yes Microsoft Paint JPEG Image Processing Integer Overflow

CVE-2010-0480 Yes Microsoft Windows MPEG Layer-3 Audio Decoder Buffer Overflow Vulnerability

CVE-2010-1241 Yes NITRO Web Gallery ‘PictureId’ Parameter SQL Injection Vulnerability

CVE-2010-2568 Microsoft Windows Shortcut ‘LNK/PIF’ Files Automatic File Execution Vulnerability

CVE-2010-2862 Yes Adobe Acrobat and Reader Font Parsing RCEV

CVE-2010-2883 Adobe Reader ‘CoolType.dll’ TTF Font RCEV

CVE-2011-0618 Yes Adobe Flash Player ActionScript VM Remote Integer Overflow Vulnerability

CVE-2011-1331 JustSystems Ichitaro Remote Heap Buffer Overflow Vulnerability
Table 1: New zero-day vulnerabilities discovered and their descriptions

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 11

SECURITY
Investigating Zero-Day Attacks

the systematic study of these threats. For example, our method
allows us to measure the duration of zero-day attacks (Figure
3). While the average duration is approximately 10 months, the
fact that all but one of the vulnerabilities disclosed after 2010
remained unknown for more than 16 months suggests that we
may be underestimating the duration of zero-day attacks, as the
data we analyze goes back only to February 2008. In the future,
such automated techniques will allow analysts to detect zero-
day attacks faster, e.g., when a new exploit is reused in multiple
targeted attacks; however, this will require establishing mecha-
nisms for organizations to share information about suspected
targeted attacks with the security community.

Our findings also provide new data for the debate on the benefits
of the full disclosure policy. This policy is based on the prem-
ise that disclosing vulnerabilities to the public, rather than to
the vendor, is the best way to fix them because this provides an
incentive for vendors to patch faster, rather than to rely on secu-
rity-through-obscurity [9]. This debate is ongoing, but most par-
ticipants agree that disclosing vulnerabilities causes an increase
in the volume of attacks. Indeed, this is what the supporters
of full disclosure are counting on, to provide a meaningful
incentive for patching; however, the participants to the debate
disagree about whether trading off a high volume of attacks for
faster patching provides an overall benefit to the society.

The root cause of these disagreements lies in the difficulty of
quantifying the real-world impact of vulnerability disclosures
and of patch releases without analyzing comprehensive field
data. We took a first step toward this goal by showing that the
disclosure of zero-day vulnerabilities causes a significant risk
for end-users, as the volume of attacks increases by up to five

orders of magnitude; however, vendors prioritize which vul-
nerabilities they patch, giving more urgency to vulnerabilities
that are disclosed or about to be disclosed. For example, 80%
of the vulnerabilities in 2007 were discovered more than 30
days before the disclosure date [4]. At the same time, anecdotal
evidence suggests that attackers also adapt their strategies to
the expected disclosure of zero-day vulnerabilities. Because
early disclosure reduces the value of zero-day vulnerabilities,
the fees for new exploits are sometimes paid in installments,
with each subsequent payment depending on the lack of a patch
[7]. Additional research is needed for quantifying these aspects
of the full disclosure tradeoff, e.g., by measuring how quickly
vulnerable hosts are patched in the field, following vulnerability
disclosures. Like our study of zero-day attacks, answering these
additional research questions will require empirical studies
conducted at scale, using comprehensive field data.

Conclusion
Zero-day attacks have been discussed for decades, but no study
has yet measured the duration and prevalence of these attacks in
the real world before the disclosure of the corresponding vulner-
abilities. We take a first step in this direction by analyzing field
data collected on 11 million Windows hosts over a period of four
years. The key idea in our study is to identify executable files
that are linked to exploits of known vulnerabilities. By searching
for these files in a data set with historical records of files down-
loaded on end-hosts around the world, we systematically identify
zero-day attacks and we analyze their evolution in time.

Figure 4: Increase in the number of malware variants exploiting zero-day
vulnerabilities after they are disclosed (at time = t0)

Time [weeks]

Figure 5: Time before vulnerabilities disclosed between 2008–2011
started being exploited in the field. The histograms group the exploitation
lag in three-month increments, after disclosure, and the red rug indicates
the lag for each exploited vulnerability. The zero-day attacks are excluded
from this figure.

Time to exploit [months]

12  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

SECURITY
Investigating Zero-Day Attacks

We identified 18 vulnerabilities exploited in the wild before
their disclosure, of which 11were not previously known to have
been employed in zero-day attacks. Zero-day attacks last on
average 312 days, and up to 30 months, and they typically affect
few hosts; however, there are some exceptions for high profile
attacks, such as Conficker and Stuxnet, which we respectively
detected on hundreds of thousands and millions of the hosts in
our study, before the vulnerability disclosure. After the disclo-
sure of zero-day vulnerabilities, the volume of attacks exploiting
them increases by up to five orders of magnitude. These findings
have important implications for future security technologies and
for public policy.

Acknowledgments
We thank Jonathan McCune and Michael Hicks for stimulat-
ing discussions on the topic of zero-day attacks. We also thank
Marc Dacier for his early feedback on our results, and Sam Perl
from CERT for sharing his research into the origins of the term
“zero-day attack.” Finally, this research would not have been
possible without the WINE platform, built and made available
to the research community by Symantec. Our results can be
reproduced by utilizing the reference data set WINE 2012-003,
archived in the WINE infrastructure.

References
[1] W.A. Arbaugh, W.L. Fithen, and J. McHugh, “Windows
of Vulnerability: A Case Study Analysis,” IEEE Computer,
vol. 33, no. 12, December 2000.

[2] L. Bilge and T. Dumitras, “Before We Knew It: An Empiri-
cal Study of Zero-Day Attacks in the Real World,” ACM
Conference on Computer and Communications Security,
Raleigh, NC, October 2012.

[3] D.H.P. Chau, C. Nachenberg, J. Wilhelm, A. Wright, and
C. Faloutsos, “Polonium : Tera-Scale Graph Mining for Mal-
ware Detection,” SIAM International Conference on Data
Mining (SDM), Mesa, AZ, April 2011.

[4] S. Frei, “Security Econometrics: The Dynamics of (In)
Security,” Ph.D. thesis, ETH Zürich, 2009.

[5] S. Frei, “End-Point Security Failures, Insight Gained from
Secunia PSI Scans,” Predict Workshop, February 2011.

[6] Google Inc., “Pwnium: Rewards for Exploits,” February
2012: http://blog.chromium.org/2012/02/pwnium-rewards
-for-exploits.html.

[7] A. Greenberg, “Shopping for Zero-Days: A Price List for
Hackers’ Secret Software Exploits,” Forbes, March 23, 2012:
http://www.forbes.com/sites/andygreenberg/2012/03/23/
shopping-for-zero-days-an-price-list-for-hackers-secret
-software-exploits/.

[8] T. Dumitras and D. Shou, “Toward a Standard Benchmark
for Computer Security Research: The Worldwide Intelli-
gence Network Environment (WINE),” EuroSys BADGERS
Workshop, Salzburg, Austria, April 2011.

[9] B. Schneier, “Full Disclosure and the Window of Exposure,”
September 2000: http://www.schneier.com/crypto-gram
-0009.html.

Buy the Box Set!
Whether you had to miss a conference, or just didn’t make it to all of the sessions, here’s your chance to
watch (and re-watch) the videos from your favorite USENIX events. Purchase the “Box Set,” a USB drive
 containing the high-resolution videos from the te chnical sessions. This is perfect for folks on the go or
those without consistent Internet access.

Box Sets are available for:

 UCMS ’13: 2013 USENIX Configuration Mangement Summit

 HotStorage ’13: 5th USENIX Workshop on Hot Topics in Storage and File Systems

 HotCloud ’13: 5th USENIX Workshop on Hot Topics in Cloud Computing

 WiAC ’13: 2013 USENIX Women in Advanced Computing Summit

 NSDI ’13: 10th USENIX Symposium on Networked Systems Design and Implementation

 FAST ’13: 11th USENIX Conference on File and Storage Technologies

 LISA ’12: 26th Large Installation System Administration Conference

Learn more at:
www.usenix.org/boxsets

14  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

Rethinking Password Policies
A B E S I N G E R A N D W A R R E N A N D E R S O N

Abe Singer is the Chief Security
Officer for the Laser Inter-
ferometer Gravitational Wave
Observatory at the California
Institute of Technology. He

has been a programmer, system administra-
tor, security geek, occasional consultant, and
expert witness. His areas of interests are in
security that actually works.
abe@ligo.caltech.edu

Warren Anderson is a Visit-
ing Assistant Professor in the
Department of Physics at
the University of Wisconsin-
Milwaukee and a member of the

LIGO Scientific Collaboration. His publications
are primarily on black holes and gravitational
waves. This is his first foray into the fascinating
world of computer security.
warren.anderson@ligo.org

W e are all familiar with having “rules” for passwords: they must
have characters from various character sets, have a minimum
length, get changed regularly, not be written down, etc. These

rules are supposed to make passwords “secure,” but there’s little to no
research to support that argument. In fact, they can even weaken security.
We argue that it’s time for a radical change of password policy. In the blog post
“Security Myths and Passwords,” Gene Spafford also made the case for questioning the
conventional wisdom on security:

In the practice of security we have accumulated a number of “rules of thumb” that
many people accept without careful consideration. Some of these get included in
policies, and thus may get propagated to environments they were not meant to
address. It is also the case that as technology changes, the underlying (and unstated)
assumptions underlying these bits of conventional wisdom also change. The result is a
stale policy that may no longer be effective…or possibly even dangerous.

Even the US government “standards” on password strength appear to be based on nothing
more than then-current default settings on a particular operating system. Most of the “best
practices” in use today are based largely on folklore or, in some cases, on severely outdated
theories of password strength. These password best practices have several usability prob-
lems. Some believe that security and usability are mutually exclusive, and so security has to
make things difficult. We argue that security depends on usability.

Passwords have to be strong enough to defeat cracking attempts, yet usable. This requires
both an understanding of usability, and quantitative measurements of password strength.
We provide an overview here and propose a solution (see [8] for more detail).

Why Do We Have Password Rules?
Users, left to their own devices, tend to choose passwords using real words. Which is under-
standable—users want to have a password that’s easy to remember. Attackers, knowing this,
use dictionaries of real words for dictionary attacks: cracking.

Password-strength rules ostensibly force the user to choose a password that’s not in the
attacker’s dictionary. More formally, the rules attempt to prevent successful dictionary
attacks by ensuring that users choose passwords with sufficient entropy to render the attack
infeasible. Entropy is the measure of the probability distribution of the passwords across the
keyspace—a measure of the relative randomness of each password to all the other pass-
words. Note that password strength rules provide no protection from brute-force attack: an
exhaustive attack against the entire keyspace. The defense against a brute force attack is an
immense keyspace.

Standards for Password Rules
What few standards exist are based on research that is at best inconsistent and, in most
cases, appear to be pulled out of thin air. For example, NASA’s password requirements claim
to be in compliance with the Federal Desktop Core Configuration and are representative of
these “best practices.” The Core Configuration itself may contain the settings that NASA

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 15

SECURITY
Rethinking Password Policies

uses, but no document within the FDCC provides any descrip-
tion or justification of password complexity requirements.

Here’s a summary of what we could find about password rules
among the various NIST and FIPS documents regarding pass-
words and computer security:

◆◆ Passwords shorter than 10 characters are usually considered
to be weak. Passphrases shorter than 20 characters are usually
considered weak (two different documents).

◆◆ Users are bad at choosing passwords; passwords should be
automatically generated.

◆◆ It’s difficult to measure the entropy of user-chosen passwords
and there’s not much data.

◆◆ Password composition is a factor in password requirements,
but the specific requirements are up to the organization.

◆◆ Users should be trained on good password practices, and
systems could restrict password choices based on password
composition.

◆◆ Choose good passwords by using the first character of each
word of a well known phrase, etc.

◆◆ When determining policies for password length and complex-
ity, organizations should consider maximum and likely actual
keyspace.

◆◆ Totally alphabetic password composition should be discouraged.

So whence the “best practices” in the NASA/FDCC require-
ments? It appears to come from Microsoft Windows NT Service
Pack 2. NT SP-2 introduced hard-coded password strength
requirements with a minimum length of six characters, and the
password had to contain at least one character from the four
character sets. Windows 2000 allowed for changing the settings,
with an eight-character default password length. Microsoft
gives no justification or citations for any of those requirements.

Additionally, the NSA [1] recommends passwords be at least 10
characters, contain at least one of each of the four character sets,
and get changed every 60 days. They too provide no justification
for those values.

Password Aging
There’s no there there.
  —Gertrude Stein, Everybody’s Autobiography

Aging passwords—requiring users to change passwords at regu-
lar intervals—originated due to the use of hashing algorithms
which were weak enough to be subject to a brute force attack.
Password aging is a defense against brute force attacks, not
dictionary attacks.

The NSA’s Green Book details the relationship between pass-
word length and password lifetime, and includes formulae for

calculating minimum password length. Note that at the time
that the Green Book was written, brute-force attacks against the
hash algorithms in use were considered within reach of govern-
ment funded agencies.

For Windows 2000, Microsoft stated, “Where security is a
concern, good values [for password lifetimes] are 30, 60, or 90
days. Where security is less important, good values are 120, 150,
or 180 days.” But they do not provide any definition for what
“important” and “less important” are, nor how they calculated
those numbers. The default password lifetime in Windows 2000
was 42 days.

None of these recommendations provide any analysis as to
how much, if any, password aging reduces the risk of diction-
ary attacks. For any given password aging interval n, assuming
some unknown attack on the passwords has equal probability of
discovery at any point over n, the mean exposure time for a com-
promised password is n/2. It would seem that for any reasonable
value of n, the exposure time would be unacceptable.

Passwords and Usability
This belief of the fundamental conflict between strong
computer security mechanisms and usable computer
systems pervades much of modern computing. According
to this belief, in order to be secure, a computer system
must employ security mechanisms that are sophisticated
and complex—and therefore difficult to use.
 — Matt Bishop, “Psychological Acceptability Revisited,”

Security and Usability

Computing professionals have long held onto the belief of an
inherent tension between security and usability, that each works
against the other, which has often led to a disregard of usability
for the sake of securing systems. But that belief turns out to be
a misconception based largely on a lack of understanding of the
meaning of usability.

So what do we mean by “usability” in the context of security?
Usability is often associated with perceived ease of use—the less
effort required, the more usable the system. More fundamental
properties of usability are [2, 3]:

◆◆ Is the user able to understand what is required of her? Can the
user understand how to use the security mechanism properly,
recognize when she’s failed, and understand why?

◆◆ Is the user capable of using the mechanism properly?

◆◆ Does the user understand the goal of the security mechanism?

◆◆ Is the user motivated to follow the security requirements?

◆◆ Do the requirements and interface match the user’s under-
standing of the security goals?

16  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

SECURITY
Rethinking Password Policies

The study of “human factors” separates tasks into “produc-
tion tasks” and “supporting tasks” (sometimes called “enabling
tasks”) [4]. Production tasks are the actual end goal of the user,
the desired output. Supporting tasks are those that enable the
user to work on the production tasks. For example, a user authen-
ticating himself to the system enables that user to access data
on the system. Accessing the data is the production task, and
authentication is the supporting task. Users don’t want to spend
time on supporting tasks—those that have too much of an impact
on production tasks affect the usability of the system and the
productivity of the users.

“Ease of use” is an important property but is not completely
equivalent to the “work factor”; the work factor of supporting
tasks can involve not only physical time and effort, but cognitive
load, the measure of the ability of people to learn [5]. The amount
of mental effort a user has to expend on understanding security
requirements and complying with them are all a cognitive load
that affects the size of the supporting task.

In order for a security mechanism to be used properly, the user
must be able to understand both how and why to use it, and be able
to use it efficiently and effectively. Security depends on usability.

The Usability of Common Password Requirements
The following are common password requirements that have a
negative impact on the usability of passwords:

◆◆ Rules for password complexity

◆◆ Requirements to change passwords on a periodic basis (pass-
word aging)

◆◆ Requirements not to reuse old passwords

◆◆ Prohibitions against writing down passwords

As we noted above, some of these rules were originally devised in
a context that often does not apply today.

Password Complexity and Aging
Password complexity rules make the user expend time and effort
to devise an acceptable password, and then memorize it. This
imposes a cognitive load on the user and increases the support-
ing task work factor.

Password aging rules further increase the cognitive load and
work factor, by forcing the user to repeat the process of devising
and remembering passwords repeatedly.

The negative impact of this combination of rules has been noted
in several places.

A study on password usage [6] within the FAA quantified the
direct cost in staff time in changing passwords, noting that the
costs were greatly magnified by the fact that users had numer-

ous (up to 20!) passwords for different systems, all with different
password rules and aging policies. Users were essentially in a
steady-state of changing passwords.

This same study noted that due to the burden of remembering
passwords, coupled with the impact of forgetting passwords on
production tasks, users adopted numerous coping strategies,
which were in turn violations of other security policies: leaving
sessions logged in, sharing passwords with coworkers, writing
passwords down, etc.

Even the federal government acknowledges that password
changing can cause problems: “The FIPS guidelines actually
acknowledge that the load on users created by frequent password
changes creates its own risks, which in many contexts outweigh
those created by changing a password less frequently.” [4]

And here’s the fun part: there is absolutely no risk justification
for any of the time intervals (42 days, 3 months, 6 months, 1 year)
seen in current “best practices.” As far as we can tell, all of those
numbers have been pulled out of thin air (or less well-lit regions).

Usability of Pro-Active Password Checking
Pro-active password checking [7] seemed like an effective
approach to strong passwords at the time that it was proposed.
Avoiding dictionary attacks was best solved by preventing users
from entering passwords that were in the dictionary. That
approach assumes, of course, that one can check against a dic-
tionary that’s at least as good as any attacker would use.

Computation power in 1992 was such that a reasonably modest
dictionary of 100,000 words or so, plus common substitutions,
was sufficient to deter attacks. But current computational
power, combined with easy online access to comprehensive
wordlists, has changed the landscape.

We made an attempt at implementing pro-active checking by
doing what an attacker would do: creating the biggest dictionary
we possibly could. Using 1-grams from the Google Book project.
We started with a list of ~4,000,000 words, and after applying
the Crack substitution algorithms, ended up with a dictionary of
about 90,000,000 passwords.

Having users change their passwords while checking against the
dictionary was a colossal usability failure. There were so many
unacceptable words that users became frustrated trying to come
up with an acceptable password, and ended up choosing ran-
domly until one was accepted by the system.

Pro-active password checking fails usability because it’s impos-
sible for the user to understand how to comply with the rules
without guessing, and ends up increasing both the work factor
and cognitive load of choosing a new password.

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 17

SECURITY
Rethinking Password Policies

Risks of Writing Down Passwords
The prohibition against writing down passwords is an assumed
mandatory requirement [2]. So the user is forced to devise a
difficult-to-remember password, and then immediately remem-
ber it, further exacerbating the cognitive load on the user [4].
Add to this the oftentimes useless feedback provided to the user
while attempting to create an acceptable password.

But that risk from writing down passwords is very context
dependent. Prohibition against writing passwords hails from the
military, where the threat of a malicious insider (a spy) looking
for written down passwords was substantial, and the liability of
that risk, astronomical. That threat may be substantially lower
in other contexts, where the threat of password guessing from a
remote anonymous attacker is much higher.

And, as mentioned above, the burden of having to remember
passwords causes users to take other measures that can impose
equal or greater risks. Writing down passwords reduces the
cognitive load for users, especially for passwords that get used
infrequently.

Writing down passwords is also perceived as being very insecure
because the passwords may get left someplace they are easily
discovered. That risk can be easily mitigated with some simple
rules for keeping the written password in a reasonably secure
location (e.g., wallet, locked desk, etc.). Note that even the Green
Book recommends that users memorize their passwords, but
allows for writing down passwords as long as the written pass-
word is sufficiently secured.

In many environments, the risk of dictionary attacks against
passwords greatly outweighs the risk of writing down pass-
words; strong passwords are more important than easily
memorable passwords.

Single Sign On
The FAA study noted that many subjects had numerous pass-
words to remember. Reducing the number of passwords that
users have to remember greatly reduces cognitive load. A single-
sign-on system, where the user has to remember and use one at a
given interval (once a shift, for example), has a profound effect on
usability [2].

Passwords and Entropy
People often speak of password entropy as a measurement of
password strength, and attempt to measure the entropy of a
given password. But as stated above, entropy is the measurement
of the relative randomness of all the passwords together—you
can’t measure the entropy of a single password.

The only way to guarantee high entropy of user-chosen pass-
words is to require users to enter passwords that are signifi-
cantly different from other passwords. But the only way to

achieve that is to reject the user’s new password as being too
similar to another password, which in turn provides hints about
the composition of another password on the system.

Password character class rules fail to provide any guarantees of
entropy because they do nothing to prevent users from choosing
the same or similar passwords.

Improving the Usability and Security of Pass-
words at the Same Time
Here’s a modest proposal to make password management more
usable for users and improve the entropy of the passwords at the
same time.

Provide single/common sign on to minimize the number of
passwords the user must remember (reducing cognitive load)
and the number of times the user has to authenticate (minimize
supporting tasks).

Allow the user to write down her password, as long as it’s done in
a reasonably secure manner, reducing cognitive load, and reduc-
ing the need for users to adopt insecure coping strategies.

Eliminate password aging, minimizing work factor and cogni-
tive load for devising and remembering new passwords. Only
require password change when the password may have been
compromised. To minimize compromise, prohibit (or at least
discourage) the users from using the same password at sites out
of your control.

Eliminating aging means that you need sufficient password
entropy to prevent a dictionary attack. Even if you don’t elimi-
nate aging, you still need to be able to quantify the entropy in
order to determine an aging interval that has acceptable risk.

So you need to implement password rules that guarantee suf-
ficient entropy across the set of user passwords. But here’s the
rub: when you let users choose their own passwords, you can’t
devise password rules that are both usable and have enough
entropy. We are publishing a paper in the near future that dem-
onstrates this.

One answer to that dilemma is to not let users choose their
passwords, but to generate passwords for them using a random
algorithm. It’s the easy, perhaps only, way to ensure entropy, and
when done right, can be usable. At least, if the random passwords
are sufficiently memorable (and typeable), they can be more
usable than requiring the user to choose a complicated, difficult-
to-remember password that he can’t write down and has to
change often.

While the cognitive load of learning the new password may be
greater (and we’re not sure that’s true), it doesn’t have to be much
greater, and can be offset by allowing the user to write it down.

18  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

SECURITY
Rethinking Password Policies

The above combined approach creates a “grand bargain” with
the user: in return for not being able to choose her own password,
the user will only have to learn the one assigned, can write it
down to aid with memorization, and will never (normally) have
to change it.

Reasonably Memorable Random Passwords
There is a standing assertion that random passwords are dif-
ficult to remember and therefore fundamentally unusable [3, 4].
However, these assertions turn on assumptions as to how those
passwords get formed: e.g., random strings of characters. We
argue that if done properly, they can be reasonably usable and
memorable.

In order to randomly generate usable passwords, consider that
not all users are the same; their criteria for acceptable passwords
can vary:

◆◆ A short, complicated password requires less typing.

◆◆ A longer alpha-only password is easy to enter via iPhone/
tablet.A very long password is easy to remember—
e.g., a passphrase.

Random generation of passwords can be acceptable when
the user is given a set of choices within the constraints of the
password entropy requirements. Giving the user a limited set of
choices also gives the user the opportunity to select a password
he finds more memorable, reducing cognitive load.

To demonstrate, consider the following set of choices:

Passphrases generated
from a word list

opinion parting theological
infrastructure lecture vividly

Lowercase alphabetic
passwords

vukizocylqhxzxiexq
qgmblqmtngtiurtybj

Alpha-numeric passwords
khjd2gjact31koo7
ntrv5xbrvdbt6d05

Mixed-case alphabetic
passwords

ywcgyRwIdUbBsL
zmbLwdAFvQuIPQ

Random passwords
im&c<Z+I)<t^
XvG[9Hm8klpN

Our experience with this system found that the passphrases are
reasonably easy to remember.

Generating memorable random passphrases requires draw-
ing from a dictionary of words that are already well familiar
to the user. The average English-speaking adult vocabulary is
20,000–50,000 words, but that list includes words the user will
recognize but not know well enough to spell or remember. Using
a dictionary of the 10,000 (or fewer) most frequent words seems
to provide passphrases that are sufficiently memorable to the user.

Conclusion
Password rules shouldn’t be used unless they’re actually effec-
tive. Our proposed approach results in measurably strong pass-
words that we think are quite usable. But our experience to date
is anecdotal; usability studies to validate our hypothesis would
be a good area for future research.

References
[1] National Security Agency, “Guide to the Secure Configu-
ration of Red Hat Enterprise Linux 5,” Revision 4.2., August
26, 2011.

[2] Anne Adams and Martina Angela Sasse, “Users Are Not
the Enemy,” Communications of the ACM, vol. 42, no. 12
(December 1999), pp. 40-46, doi: 10.1145/322796.322806.

[3] J.H. Saltzer, M.D. Schroeder, “The Protection of Infor-
mation in Computer Systems,” Proceedings of the IEEE,
vol. 63, no. 9 (September 1975), pp. 1278, 1308, doi: 10.1109/
PROC.1975.9939.

[4] Lorrie Cranor and Simson Garfinkel, Security and
 Usability (O’Reilly Media, Inc., 2005).

[5] A.-M. Horcher, G.P. Tejay, “Building a Better Password:
The Role of Cognitive Load in Information Security Train-
ing,” in Proceedings of the IEEE International Conference on
Intelligence and Security Informatics (2009), pp.113, 118.

[6] K. Allendoerfer and S. Pai, “Human Factors Consider-
ations for Passwords and Other User Identification Tech-
niques part 2: Field Study, Results and Analysis” (DOT/
FAA/TC-06/09).

[7] M. Bishop and D. Klein, “Improving System Security
Through Proactive Password Checking,” Computers and
Security, vol. 14, no. 3 (May/June 1995), pp. 233–249.

[8] A. Singer and W. Anderson, “Rethinking Password Poli-
cies” (uncut): https://www.usenix.org/publications/login/
august-2013-volume-38-number-4.

If You Use Linux, You Should Be
Reading LINUX JOURNAL

�� In-depth information
providing a full 360-
degree look at featured
topics relating to Linux

�� Tools, tips and tricks you
will use today as well as
relevant information for
the future

�� Advice and inspiration for
getting the most out of
your Linux system

�� Instructional how-tos will
save you time and money

Subscribe now for instant access!
For only $29.50 per year—less
than $2.50 per issue—you’ll have
access to Linux Journal each
month as a PDF, in ePub & Kindle
formats, on-line and through our
Android & iOS apps. Wherever you
go, Linux Journal goes with you.

SUBSCRIBE NOW AT:
WWW.LINUXJOURNAL.COM/SUBSCRIBE

™

20  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

Bill Cheswick on Firewalls
An Interview

R I K F A R R O W

Rik Farrow is the Editor of ;login:.
rik@usenix.org

Ches is an early innovator in
Internet security. He is known
for his work in firewalls, proxies,
and Internet mapping at Bell
Labs and Lumeta Corp. He is

best known for the book he co-authored with
Steve Bellovin and now Avi Rubin, Firewalls and
Internet Security: Repelling the Wily Hacker. Ches
is now looking for the next interesting thing to
do, and is open to suggestions.
ches@cheswick.com

Like many USENIX members, I first met Bill Cheswick at a conference.
Ches tended to stand out from the crowd, whether he was encouraging
people to learn juggling using beanbags or making a presentation.

Ches later became famous after he co-authored the first book about firewalls with Steve
Bellovin in 1994. This was not Ches’s first adventure in the world of security by far, as he had
been working with a firewall as early as 1987 while at Bell Labs.

Rik: Tell us about how you got involved with firewalls.

Ches: My first day at the Labs turned out to be the Christmas party in 1987. I walked up to
Dave Presotto, the author of upas, and told him I wanted to be postmaster. I told him that
networks were the wave of the future, and I wanted to learn a bit more about them.

He was delighted, and showed me the ropes. He also showed me around his application-level
firewall, a VAX 11/750 running 4.3 BSD. Sendmail was replaced by upas, and IP forwarding
was disabled. Insiders could use some software he and Howard Trickey had written to access
the Internet from inside the company. I later modified this software, changed its name to
“proxyd” because “gated” was already taken. I realized a couple decades later that this was
the first use of the word “proxy” as it is now used. I need to drop a note to the editor of the OED.

In many ways postmaster was a much more interesting job at the time. There was no spam,
which casts a gloomy gray pall over today’s email. What we did have were a sea of networks
and email addresses. In those days, my two main addresses were research!ches and
ches@att.arpa.

Rik: How did you learn about TCP/IP? Back in the late ‘80s, this was a difficult topic to learn,
with no books out yet.

Ches: Steve Bellovin and Dave Presotto had taught me the basics of TCP/IP, and I had plenty
of lab work. I was using research UNIX, soon to be called the tenth (and last?) edition, and
messing around with Plan 9, a lovely and cleaner rethink of UNIX designed from the ground up.

Then, one morning in November 1988, Marion Harris called, saying there was something bad
happening on the ARPANET. NPR confirmed this.

I had a sinking feeling: would our firewall hold up to whatever was happening? That feel-
ing has dominated my thoughts about security ever since. Besides, there would be no end to
the complaints, ribbing, and whining if the attack got through. Working in the UNIX room
toughened the skin. I rushed into work, and the whole place was abuzz.

The short answer was yes, the firewall had held. Peter Weinberger was on the phone basi-
cally saying “neener neener” to a variety of sites, especially Bellcore. Those folks had
completely rejected the idea of a firewall, and were completely bogged down with the Morris
worm. Exponential growth is very hard to control, and Robert Morris had gotten a bit of the
worm wrong. This is actually an enduring lesson: the pros behind Stuxnet had a similar
problem.

Back to that sinking feeling. How did we really do?

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 21

SECURITY
Bill Cheswick on Firewalls

There was no direct IP connectivity to the intranet through our
gateway, so the inside was safe there. But if the worm captured
the gateway machine, the kernel allowed incoming connections
to SMTP servers, most of which were running Sendmail. I ran a
scan of the burgeoning Bell Labs/AT&T intranet and found more
than 1,300 susceptible hosts.

Rik: What did you use to scan for port 25 in November 1988?

Ches: I probably used sweep, a shell script written by Mike
Muuse. It tested machines for five different vulnerabilities.

One of the worm’s attacks had been through Sendmail, a com-
mon source of security problems at the time. Dave had replaced
it, so it wasn’t an issue on the gateway.

“Best block is no be there” —Mr. Miyagi, Karate Kid 2.

We did not run any of the r* services on the gateway. No trust,
no access, so that worked. The worm also broke in via a hole in
the finger daemon. About six months before, toward the end of a
day’s hard work, I felt lazy and decided to wander around looking
at the various hosts I administered.

I checked things out on our gateway, and noticed a number of
services in /etc/inetd.conf that I was not familiar with. They ran
as root, and that’s not a good thing. Instead of diligently checking
each one out, I simply disabled the lot of them, including fingerd.
There were no users on the machine besides administrators. If
somebody didn’t like it, I could revisit the decision.

Though there were solid principles involved, to this day I con-
sider this to be Security by Luck. Luck is a handy but unreliable
tool, and does not help mitigate that sinking feeling I mentioned
before.

There was one other stroke of luck. Steve Bellovin had an unpro-
tected 56 Kb link from our intranet to Bellcore’s network, where
the worm was seething. The worm spread by using /etc/hosts
as a list of target machines. Steve’s machine at the Labs was at
the end of the list and the worm always started attacking targets
from the top of /etc/hosts. Any infected machine bogged down
completely before reaching the last entries in the /etc/hosts, so it
never reached us.

Security by Luck indeed! I had to fix this. I want security without
that sinking feeling (there’s a book title). Not confidence in secu-
rity due to hubris, but due to “no being there.” This has guided my
approach since then.

Rik: I can see how that incident could inspire you. What did you
do next?

Ches: Fresh from the uneasy victory over the Morris worm, I
decided it was time to create a new firewall. The old one was
hopelessly overloaded, and I wanted a design I could rely on. I
created a belt-and-suspenders two machine solution out of a

couple of MIPS machines. This was a very robust and high-per-
formance design. Steve pointed out that both machines ran upas,
which gave it the possibility of a common mode failure, but I had
high confidence in upas. It never did let me down.

At about this time (late 1980s) Mark Horton obtained a class A
address for AT&T from the powers-that-be by simply asking.
That was a different era. The address block lay fallow for a while.
We wanted to use it inside the growing AT&T intranet, but the
routers of the day had subnetting problems and we couldn’t
deploy it. Oddly enough, our Cray computer seemed to require a
class A network: I never did figure that one out.

So I took 12.0.0.0/8 and announced it to the Net, feeding the
packets to a non-existent Ethernet address and running
tcpdump on the traffic, which came to about 12 to 25 MB/day.
Steve analyzed that traffic and wrote a fine paper. Basically, we
were watching the death screams of attacked hosts that used IP
address-based authentication. One of the steps was to flood a cli-
ent machine with traffic so it couldn’t complain about the attack
on the associated server machine. Apparently the author of the
code thought it would be fun to use AT&T’s network address for
the spoofed packets.

This is the first packet telescope I can remember, and I think
I might even have coined the term “packet telescope,” but my
memory is fuzzy on that. I do know that monitoring unused
IP addresses remains a very useful tool, and kc [Claffy] from
CAIDA [1] gave a nice talk on current uses of the technology just
recently.

Rik: I seem to recall that you started publishing about this time.

Ches: There were a lot of PhDs writing papers at the Labs. I had
done some new work for the fancy firewall, so I wrote one and
showed it to Fred Grampp. I was delighted when he nodded his
head and said, “This is a nice paper.” So I submitted it and gave
the talk at Winter Anaheim USENIX in 1990. It was my first
paper, my zeroth being a Permuted Index for TeX and LaTeX
commands, something I still use occasionally.

Rik: How about your paper analyzing interactions with a honey-
pot you designed?

Ches: Chasing down the “attacks” was interesting. Was the
attack casual, accidental, or evil? Discerning intent is important
in security, which is where those little sticks that the border
guards used to use in Mission Impossible came from. Who was
willing to crash through a stick? The guys with the real barrier
down the road wanted to know, and with just a little lead time.

I wanted to catch an actual bad guy and watch what he did. We
eventually did, using an early honeypot, and wrote it up in An
Evening With Berferd [2]. I almost didn’t write it; it was like an

22  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

SECURITY
Bill Cheswick on Firewalls

optional English paper. I don’t like to write, but I do love to have
written.

By 1993, it was clear that firewalls were important, but the only
real coverage was in a chapter in a book from Gene Spafford and
Simson Garfinkel. I mentioned to Steve that we could probably
find a dozen papers to staple together into a decent book. He
suggested this to John Wait at Addison-Wesley, who had been
bugging Steve for a book for about a decade. John said the book
was a great idea, but we had to write it from scratch.

Thirteen English papers assigned! Steve and I worked great
together; I had never been allowed to write an English paper
with a co-author. We settled on a table of contents pretty quickly.
Chapters would bounce back and forth for a couple of days and be
nearly completed. Some sections demanded information I hadn’t
thought about. This provided incentive to fill in the knowledge
gaps.

The book came out in time for the Spring 1994 Interop. John had
estimated that we would sell 8,000 to 12,000 copies. The first
printing was 10,000 copies, and sold out in a week. They rushed
the second printing, not even waiting for us to correct three
errors. The corrections finally made it to the third printing, not
long afterward. The first edition sold more than 100,000 copies
in at least a dozen languages. As Steve once said, it was a 320-
page business card. For me, it was certainly the most important
thing I have done in my career. A decade later I’d go to a meet-
ing with some sharp techies in a big company, and they would
come up to me later and say the book got them started in network
security.

Despite a number of incentives and entreaties, we didn’t come
out with the second edition, mostly a rewrite, until 2003, with
Avi Rubin helping out.

Rik: I imagine that, with the book completed, you started work-
ing on other things, such as dealing with “split” DNS.

Ches: After the book was published, Steve and I worked to merge
DNS processing for inside and outside queries at the firewall. It
ended up in two patents (switching and filtering).

A couple things of note happened in 1996. One was the Panix
SYN packet attack. It started me thinking about how to trace
anonymous packets back through the Internet. Hal Burch joined
me the next summer and we worked on an idea: applying little
denial-of-service attacks on possible incoming packet paths, and
seeing if they perturb the packet flow. Then repeat, attempting
to trace back to the source of the packets. The DoS attacks would
be done by locating packet amplifiers on the Internet and care-
fully applying bursts of pain. We tried this on Lucent’s intranet,
and it usually worked.

The USENIX paper we wrote came back with two classes of ref-
eree comments: 1) we can’t accept this paper until the technique
is proven on the Internet, and 2) don’t you dare try this on the
Internet. This approach was certainly out-of-the-box, and much
better suggestions were made by others. Today, we don’t seem to
much care anymore: packets come from everywhere.

Around this time, my role was changing. I remember one day my
boss asked if I would do some modifications to upas to make it
respond to Sendmail switches. I also received a request to come
review the security of AT&T Worldnet, which was going beta in
six weeks. I mentioned that I came to the Labs because I didn’t
like Sendmail and besides, wouldn’t the AT&T consulting be a
more useful pursuit for the company?

Rik: What other possibilities did the success of your book create
for you?

Ches: The book’s publication opened many doors. I was invited
to speak at numerous conferences, public and less so. A recent
count showed that I have spent non-trivial amounts of time in
more than 30 countries. I had the opportunity to help a num-
ber of law enforcement groups to start coming up to speed on
cybersecurity. There were a few CIO breakfasts. Insurance
companies wanted to write hacking insurance, and were keen to
understand the worst-case scenario (the “hurricane Andrew”) of
a cyberattack.

Steve and I got an invite from the folks at Renaissance Weekend
[3]. Steve thought it was junk mail and discarded it. My wife
called and verified that yes, it is the annual get-together that the
President goes to and yes, we were invited. I have gone for most
years since then, and it has been a rich source of family interac-
tions, ideas, and new friends. Heck, I shook the President’s hand
the first year I was there. This has also been a wonderful place
to answer my science guy questions since leaving Bell Labs. And
yes, Bill Nye and I had a fine walk on the beach discussing some
of his work on the avionics on the 747.

The other thing in 1996 was my first Highlands forum. I met
people like Esther Dyson and Fred Cohen. We did a “day after
scenario” developed by the Rand corporation. It went like this:

◆◆ Imagine it is ten years from now (2006) and a series of <buzz-
word compliant> attacks seem to be happening. Evaluate the
attacks and advise the President.

◆◆ Now it is a week later and a series of <very nasty buzzwork
compliant> attacks are seen. Analyze and advise the President.

◆◆ And, finally, we are back in 1996. What should we be doing to
prepare for all this?

I had remembered the early days of the MILNET (the military’s
ARPANET), which was connected to the ARPANET through
three 56 Kb lines at one point. When bad things happened on the

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 23

SECURITY
Bill Cheswick on Firewalls

ARPANET, the military folks cut the links—the turtle pulled in
his head.

If we wanted to do this in 2006, would we know where the links
were? Besides, maps are cool, and someone should watch and
monitor connections and their changes. Who could do that?

If the Air Force pinged Finland, is that an act of war? What
about traceroute? Who could collect such data? I asked if data
provided by a corporate research project would be useful. The
answer was an emphatic yes: of course we want your free data!

Rik: I can see where this is heading: Lumeta and networking
mapping.

Ches: 1996 had brought on the “trivestiture” of AT&T into
Lucent/Bell Labs, AT&T, and NCR. I had to choose where I
wanted to go, so I made a spreadsheet using pluses and minuses,
sort of the way a teenager might choose a steady date. The score
came out 59 to 60, clearly a draw within the margin of error.
Most of my security friends, a lot of mathematicians, etc., went
to AT&T Shannon Lab. I chose to remain at Lucent with the
systems folk and scientists.

Hal Burch and I started on Internet mapping in 1997. Hal was a
crackerjack Olympic programmer who now works for Google. I
had the idea to collect connectivity data by sending traceroute-
style probes to a zillion networks, and graphing and analyzing
the results.

Graphing was going to be a problem: a typical scan would hit
100,000 nodes. I decided to use brute force and lay out the data
using a spring force algorithm. Ace programmer Hal managed to
hack together some clever optimizations to get a layout algorithm
that would produce a nice display overnight. The Lucent intranet
took much less time. The Internet layouts were amazing, if not
entirely useful. Wired published one in December 1998 [5].

I hadn’t checked the graphing literature before trying this, and
it was a good thing: at the time, the papers said that an 800-node
graph was huge. Hal’s cleverness, and Moore’s Law, had made
large layouts much more feasible. Still, I wish I had thought of
the project in 1990.

We started collecting and saving daily traceroute data in late
1998, and continued almost uninterrupted until November 2011.
I have all that data lying around, available for research use.

I also came up with a way to detect leaks in an intranet perim-
eter: you send a packet to an inside host, with the spoofed return
address of an external “mitt” machine. Packets that make it
outside may not have seen a firewall. There was a similar test for
packets coming inside.

When someone from Lucent New Ventures came around in late
1999 asking if I had any ideas for businesses, I told him about the

maps and the leaks. Research organizations should send such
queries out on a regular basis. A company would pay money for
this information.

Having a company like Lucent spin off a (hopefully) hotshot
startup was a little like watching an old fat man giving birth:
there is a lot of grunting, but one isn’t really sure what’s going to
happen.

On October 1, 2000, seven of us armed with VC money spun off
from Lucent to found Lumeta. The sell was difficult because we
were in a new category of product. Is it a security product or a
network management product? Well, both, but marketing and
maybe even the customers didn’t like that answer. We went to a
lot of VC meetings and new product shows. I saw a lot of business
ideas, many of them funded, and many of which I thought were
not so hot.

Lumeta started collecting and processing intranet maps from a
variety of the largest corporations. I would have loved to make
the data available, but it was much too sensitive. We clearly
had access to the most extensive graph data on intranets in the
world. Most of the customers were quite happy with the results,
and we always found something interesting in their networks.

The daily collection of the world’s path data continued, under the
name of the Internet Mapping Project. Before Lumeta, back in
the spring of 1999 during the NATO/Serbian war, I had focused
on collecting fine network data from the area. Steve Branigan
produced a fine graph and movie [4] of the effects of aerial bomb-
ing. We also found the Yugoslavian embassy in the US.

The daily network probes did bring a slow stream of complaints,
which faded away by the mid-2000s: by then there was simply
too much “background radiation” of evil packets on the Internet.
But after 9/11, I stopped caring. I focused some extra scans on
the obvious suspects and started collecting data.

A couple years later we met with Richard Clarke in Washington.
I had extracted every traceroute path collected over the previ-
ous six months that contained at least one Iranian address, and
mapped it, coloring rarely used links in red. He looked it over and
said he had been asking for this map for the past six months. He
asked if it was classified? Well, we were just a few people from
NJ, no clearance, etc. He called a three star general over in DoD,
and we eventually sold our product to a number of branches of
government. I am not cleared to know what they found. They told
us that our product made the Republic a little bit safer. That’s
good enough for me.

For me, Lumeta was a fine outcome for a research project. It
also was a lesson in business, and has helped me separate clever
research projects that will never be used from those with busi-
ness potential. I have used this skill a lot since then, particularly
at AT&T Shannon Lab.

24  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

SECURITY
Bill Cheswick on Firewalls

Rik: Tell us about your time at Shannon Lab.

Ches: I started at AT&T Shannon Lab in April 2007. These
were the AT&T researchers spun out of Bell Labs back in 1996,
processed through some bad times, and augmented by sharp new
additions. The security research department had been disbanded
a few years before, and most of my security colleagues had scat-
tered to various university positions.

As with Bell Labs, it was an honor and pleasure to work there.

I did do some security work there. I tried a few experiments with
passwords on smartphones. I recovered my stolen iPhone with
the help of Steve Branigan and the NJ State police. We created
a little useful case law concerning the use of WiFi localization.
It turns out that the iPhone has five radios in it, and the phone
company interacts with four of them. (Go ahead, Über geeks:
count those radios carefully!) I did not use the phone company’s
resources (other than my time) to catch him, however.

But there was something in the water at Shannon. I was gener-
ating about four patent ideas a year, plus a number of business
ideas. My patent count is about a dozen, with about six more
crawling through the system. Alas, AT&T is not fertile ground
for small new ideas, and only a couple of my efforts bore fruit.

Aside from some authentication and security patents, I created
a new kind of movie (the slow movie) and a new way to see mov-
ies (movie thumbscapes). I think the latter would make terrific
(and lucrative) wallpaper that would bring in some money and
interest for a major movie. Unfortunately, I was unable to reach a
leading filmmaker to show off the results. I also invented a new
kind of extremely soft-core pornography, but I will skip that.

Yifan Hu added a terrific new layout algorithm to graphviz,
much better than our efforts of a decade before, and laid out the
entire AT&T corporate org chart. I added labels, colors, and other
data to his positioning data to create what must be the world’s
largest org chart. We could color links by employee age, patent

production, union membership, etc. I created one for the CEO’s
office. I believe this visualization would be a valuable tool for
corporate consultants.

I stayed at Shannon for five years before I was laid off in April
2012.

Rik: What do you plan on doing in the future?

Ches: I am trying to figure out what to do next. It is clear that I
don’t fit into the usual employment slots in the usual corporate
suspects. I am hanging out at Penn as a visiting scholar, and
some projects are starting up. Teaching is a strong possibility: I
have always enjoyed it.

I am working on iTeX, a tool for bringing LaTeX documents
to the iPad, including arXiv and Project Gutenberg texts. I am
translating a number of Project Gutenberg books into LaTeX.

I am always looking to work with sharp people on interesting
projects. But I am not idle: I don’t understand where I ever had
time to go to work for 40 hours a week. I heard of one fellow who
said if he retired a second time he would have to hire an assistant
to get all the work done.

Resources
[1] The UCSD Network Telescope: http://www.caida.org/
projects/network_telescope/.

[2] An Evening with Berferd: http://www.cheswick.com/
ches/papers/berferd.pdf.

[3] Invitation-only retreats for preeminent authorities,
emerging leaders, and their families: https://www
.renaissanceweekend.org/home.htm.

[4] Effects of war on the Yugoslavian network: http://
cheswick.com/ches/map/yu/.

[5] Internet map, circa 1998: http://www.cheswick.com/
ches/map/gallery/wired.gif.

Professors, Campus Staff, and Students—
do you have a USENIX Representative on your campus?

If not, USENIX is interested in having one!
The USENIX Campus Rep Program is a network of representatives at campuses around the
world who provide Association information to students, and encourage student involvement
in USENIX. This is a volunteer program, for which USENIX is always looking for academics
to participate. The program is designed for faculty who directly interact with students. We
fund one representative from a campus at a time. In return for service as a campus repre-
sentative, we offer a complimentary membership and other benefits.

A campus rep’s responsibilities include:

n	 Maintaining a library (online and in
print) of USENIX publications at your
university for student use

n Distributing calls for papers and
upcoming event brochures, and
 re-distributing informational emails
from USENIX

n Encouraging students to apply for
travel grants to conferences

n Providing students who wish to
join USENIX with information and
 applications

n Helping students to submit research
 papers to relevant USENIX conferences

n Providing USENIX with feedback and
 suggestions on how the organization
can better serve students

In return for being our “eyes and ears” on campus, representatives receive a complimentary
membership in USENIX with all membership benefits (except voting rights), and a free con-
ference registration once a year
(after one full year of service as a campus rep).

To qualify as a campus representative, you must:

n Be full-time faculty or staff at a four year accredited university

n Have been a dues-paying member of USENIX for at least one full year in the past

For more information about our Student Programs, contact
Julie Miller, Marketing Communications Manager, julie@usenix.org

www.usenix.org/students

26  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

Setting the Stage for a Software
Liability Discussion
M I C H A E L B . S C H E R

Mike Scher is VP and General
Counsel with the network se-
curity firm Nexum. An attorney
and security technologist by
trade, and an erstwhile legal

anthropologist, his focus is on risk mitigation,
from the legal to the social, and the techni-
cal to the procedural. Mike has been working
where the policy tires meet the implementa-
tion pavement since 1993.
mscher@nexuminc.com

Software liability isn’t what most people seem to think it is. It varies
by jurisdiction, market, and more. The current state of affairs—nasty
EULAs on the one hand, and dread of liability for ordinary bugs on

the other—is probably less than optimal. A patchwork of state, federal, and
“judge-made” law is inconsistent by its very nature, varying in complex ways
for each situation. In this article, I try to equip the reader with some key concepts
around product liability from the perspective of an attorney and security geek.

Among friends and coworkers (on the systems and security side of the industry), and among
clients and partners, there is renewed interest in questions of liability for software in its
many forms. A lot of the talk addresses controlling risk from a technical or legal perspective,
and some addresses how things “ought to be” from a technical or legal perspective. They are
frustrated and looking for change, but don’t think new laws or regulations will do anything
but make matters worse.

Many of them appear to have assumptions about the forms of liability operating today—
assumptions that are at odds with how the various areas of liability in fact operate. Ulti-
mately, it is critical that discussions about law build on an accurate sense of, generally, what
the law is and how it operates. Bad policies, like bad arguments, are built on false premises.
This article is an effort to help lay the conceptual groundwork for developers and sysadmins
to engage effectively in discussions on future policy and law regarding software liability,
security, safety, and responsibility. My take is US-centric, but the principles should stand one
in good stead broadly, and some references here may help others explore the state of the law
outside the US.

As with the 2006 ;login: article on negligence [1], “The content and positions contained in
this article should not be taken as legal advice—the discussion is simply far too general and
the subject matter too complex to safely use that way.” The purpose is to make readers more
conversant in the issues to apply that knowledge to policy discussions regarding their own
areas of expertise.

Negligence Quick Review
Some seem to think we are headed for a negligence standard when we discuss the possibility
of liability for flaws in software. A negligence standard is sort of the US default liability stan-
dard for anything not specifically and exclusively legislated, regulated, or otherwise under a
different standard through common law.

In short, under a negligence standard, one need do the “reasonable” thing. Applied to soft-
ware, “reasonable” has a lot to do with what a reasonable end-user should expect—which has
a lot to do with industry standard practices, but (see again [1]) sometimes industry standards
themselves aren’t (legally speaking) “reasonable.” Negligence is always “there,” but licens-
ing agreements, including shrink-wrap style agreements, can disclaim a lot of that liability,
for almost anything short of reckless or willfully harmful conduct. Because shrink-wrap
licenses vary in the extent to which they are enforceable (by content and by jurisdiction),
only customers in a strong negotiation position relative to the licensor will consistently
have the ability to shift risk back onto the licensor/reseller. The rest of us end-users might

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 27

SECURITY
Setting the Stage for a Software Liability Discussion

just have to take it as given or drive on. Due to the economics of
combining contracts with torts litigation, practical liability from
provider to end-user can disappear in a puff of EULA.

Warranties
With regard to negligence, the industry handles risk today
through EULAs applying to licensed software. EULAs disclaim
virtually all errors, as well as many of the warranties stemming
from states’ common law and statutes governing the sale of
goods, such as the broadly adopted Uniform Commercial Code
(UCC) Article 2. Most software isn’t “sold” as a “good”—rather, it
is licensed. Thus, as some scholars and practitioners will rapidly
point out, UCC Article 2 doesn’t even apply to many software
transactions [2]. Readers may recall that the 1990s saw the
controversial Uniform Computer Information Transactions
Act (UCITA), which started as an outgrowth of UCC Article 2
warranties for goods. It proposed broad warranties for licensed
software, but allowed virtually all warranties to be disclaimed.
Only two states have adopted UCITA in any form [3, 4]. Some
courts and a few states have declared all software to be a good
subject to UCC Article 2, and sometimes software is delivered
incorporated in a good that is subject to warranties. Still, EULAs
and similar agreements disclaim many warranties, open-
ing questions regarding general consumer protection law and
contracts of adhesion, the answers to which, of course, vary by
jurisdiction; however, warranty actions are not how most serious
harms caused by product failure are handled.

Product Liability: Software and “the Market”
We’re used to using free and commercial software to perform
important functions—yet, when introduced, such software may
be rife with functional problems that can corrupt data, cause
halting, open a system to compromise, or bring about other sig-
nificant issues. The discovery of security issues in software is a
regular occurrence across most popular packages.

The market accepts file corruption and routine rebooting in
early edition software, including some operating systems, sug-
gesting that the marketplace has a period of adoption elastic-
ity in which the benefit of inexpensive adoption outweighs
the issues. At some point, in theory, mounting competition
and pressure for stability and security influence the package
producer. Even as we seem to expect the market to perform that
function, the notion that critical-use software could fail as badly
as the latest app we dropped on our smartphone is an alarming
one—especially since consumer market-pressure correction
comes after adoption. Still, we’re not crazy for thinking people
actively making choices can influence quality. We as a society
click “Accept” to low standards for many reasons, some histori-
cal, some market structural, and some as part of the cost of doing
business and keeping software prices low.

That last sounds like almost any competitive commercial goods-
producing sphere: we want prices as low as possible, and are
willing to accept some drop in quality in exchange, but we still
want those goods to be without significant defect. The discus-
sion around software liability hinges on that point: what form
will liability take and where is the line that will permit bounti-
ful software development while steering us away from a caveat
emptor marketplace? We’ve discussed negligence for acts and
omissions, and how warranty may apply to goods. The US (and
much of the world) handles product liability for harms suffered
from “defective goods” differently from other forms of liability,
and quite differently from the way we handle most licensed
software today.

Strict Liability and Products
Ordinary negligence can be a case-by-case, time-consuming,
and not-always-predictable process, to say the least. Modern
product liability ultimately posits we shouldn’t have court
cases looking at the micro-facts of each $100 buyer’s case, that
a buyer should be able to have a base-level confidence that
products released into the marketplace are without “defect” to
the extent of the product’s “intended use.” Due diligence and
proximate causation are two key issues in negligence—did
defendant’s behavior fall below a reasonable standard and, if so,
did that cause a foreseeable harm in a manner to which liability
attaches?

In product liability, the causation question is often simpler. The
complicated question is whether the root problem is a “defect.”
Product liability is inherently a strict liability regime, not a “due
diligence” one. Once there is a harm, and a defect leading to the
harm is identified, the product maker (and others in the chain
of sale) are generally held liable. The definition of “defect” itself
subsumes many issues similar to negligence. Because the defect
affects many in similar fashion, and because each affected
individual’s contributory negligence need not be weighed on a
case-by-case basis, product liability cases are generally brought
as class actions (thus avoiding spending courts’ time for each
$100 case, permitting class-wide disposition of the matter, and
allowing the company and those affected to move on).

Let’s take a quick look at how the Restatement of the Law Third,
Torts: Products Liability talks about the key term “defect” in
goods. There are three forms of defect, broadly defined [5].

First, manufacturing defects, “when the product departs from its
intended design, even if all possible care was exercised.” Note
that negligence isn’t the issue with this form of defect; it focuses
on the market and the good, not the maker’s degree of care. It is
possible to have a product be defective and its maker liable for
harm even if all reasonable care was exercised. As a matter of public
policy, one could say the sale of such a good is inherently unreason-
able, but again, the negligence standard simply does not apply [6].

28  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

SECURITY
Setting the Stage for a Software Liability Discussion

Second are design defects, “when the foreseeable risks of harm
posed by the product could have been reduced or avoided by the
adoption of a reasonable alternative design, and failure to use
the alternative design renders the product not reasonably safe.”
Here the focus is on both the maker and the market. Liability
for failing to use an alternative design hinges to a degree on the
reasonable nature of the alternative design, and in that aspect is
reminiscent of negligence questions, only to the extent of exam-
ining the availability and viability of alternatives.

Third are inadequate instructions or warnings defects, “when
the foreseeable risks of harm posed by the product could have
been reduced or avoided by reasonable instructions or warnings,
and their omission renders the product not reasonably safe.”
We’ve all seen what we consider ridiculous instructions (e.g.,
“do not eat” on silica packets). Here the focus is on the maker
interacting with the intended market—which market, from the
news, will seem to many readers to have an ever-decreasing
mentality. Many of the cases making news as if of the third type
are actually of the second. The press tends to repeat these PR
pitches uncritically. What, the press carry water for a PR firm?
How unreasonable!

Software Liability Generally, Today
Depending on deal size, at the corporation level, an end-user
company can push to have UCC Article 2 warranties explicitly
apply, and go well beyond that, assuming the software company
is eager for the business. That’s a contractual engagement where
sophisticated parties each with some degree of negotiating
power negotiate a deal on price and license/liability terms.

Consumer-facing software is currently subject to a patchwork
of liability standards, even at the federal level, with a negligence
standard applying only to the extent EULAs can’t disclaim it,
which means most software won’t see a negligence suit in some
jurisdictions (but again, reckless or other egregious conduct
generally can’t be disclaimed). Warranties are a little harder to
disclaim, again varying by jurisdiction and case specifics, but
EULA language disclaims them broadly anyway.

When UCITA was proposed, a few states drafted “anti-UCITA”
statutes that declared software a “good” subject to UCC Article
2, even if licensed, and some courts have also held software
should be treated as a good. When software is licensed and
treated not as a good, UCC Article 2 warranties don’t apply
(although when “sold” rather than licensed, it is a “good” in most
jurisdictions). Even if and where UCC warranties for sold goods
apply to licensed software, they may be subject to disclaimer in
EULAs, subject to courts’ interpretation of contracts of adhesion
in the context of EULAs [7].

For example, some software licenses disclaim just about every-
thing—even violation of intellectual property rights, which could
see the end-user sued for patent violation and left to deal with it.

Such EULAs essentially say, “this does more or less what we say
it does; otherwise, use at own risk. Pay here.” In some jurisdic-
tions, software liability is today essentially under a contracts
regime, subject to some consumer protection law related to
contracts made between parties in unequal bargaining posi-
tions. Thus, with negligence and warranty generally disclaimed,
subject perhaps to a complicated court battle, some consumers
are left to pay for “your problem—deal with it” contract terms
on software because they are in a significantly unequal bar-
gaining position with the software producer or seller. Adding
further complication, some jurisdictions treat such contracts as
unenforceable.

Software liability can thus take the form of liability in negli-
gence, in products liability, in contract (license terms providing
a broad range of risk-shifting), and consumer or inter-business
contracts for goods (warranty terms, explicit and implied). One
almost needs to apply multivariable differential equations to
solve for any particular jurisdiction along three major axes, each
containing subordinate axes [8, 9]:

1. Liability regime: negligence, products liability, contract, warranty

2. Sold as: license or good

3. Shrink/clickwraps: enforceable or not, and to what degree

All that, without even looking at the complexities of other areas
of federal and constitutional law, let alone criminal law.

The Future Isn’t What It Used to Be
The complexity in liability for software calls out for a consid-
ered standard, even if it is one with broad flexibility. Courts are
slowly, but not broadly, rejecting the ability to disclaim warranty
in consumer software. But court-considered law is going to be
inconsistent by the nature of the market and jurisdiction.

If we push toward a model for software liability, what could it
be? If modeled on “goods,” would that just be UCC-type warranty
plus negligence law, and how much effect should a shrink/click-
wrap have? Should we select a products strict liability regime? Is
it easier for the industry to measure its “reasonable” behavior or
to determine whether a product has “defects” (under the defini-
tions above)?

When software is incorporated in hardware, the combination
is sold “as a good” subject to UCC Article 2, with failure due to
“defect” likely subject to product liability law. The reasons for
that liability include that courts are presented with a prod-
uct that failed, not an app (“plaintiff’s microwave burst into
flames”), even when software failure is the root cause. As a
matter of public policy, it makes sense because the end-user is
several steps removed from the software maker, and thus can’t
measure risk (the product manufacturer does that) or evaluate
license terms (which, between a manufacturer and software
supplier, don’t look like what you and I normally get in EULAs).

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 29

SECURITY
Setting the Stage for a Software Liability Discussion

Pressure to control risk is thus between supplier and manufac-
turer. So governed, a market risk-allocation still takes place,
backed by Errors and Omissions/cyber liability insurance on the
one hand, and products liability insurance on the other.

Some of my colleagues posit product liability for software will harm
the industry. Yet the dizzying matrix of liability on software
hasn’t stymied software development in the US, from FOSS to
mega-commercial. Software makers for products aren’t running
scared despite contracts between them and the product maker
shifting risk onto them, from patent infringement to bodily harm.

To those who create software, a key concern is that the public
does not understand the complexity of software, the mathemati-
cal impossibility of proving a system, the problems of design
versus manufacture. There is concern that the vibrant and
effective free software movement will be constrained. After all,
haven’t we seen the industry forced to improve in a market with
viable, quality competition? These are valid concerns and any
solution should distinguish among the various forms of license
and market model (“sold,” licensed for fee, FOSS). All complex
systems are subject to subtle defect. Perfection in any form is
impossible, its approximation expensive, and we’re back to a cost
versus quality discussion. Markets are supposed to be good at
handling that kind of balance, though they tend to do so after
harms appear.

To those outside the industry, it can seem like software makers
want a “have their cake and eat it too” liability regime where they
can both claim their software is perfect (e.g., “unbreakable”) and
be virtually without liability should it break, causing harm. That
is also a valid concern and sits at the crossroads of a broad range
of consumer-protection law.

Should the industry be satisfied with the current patchwork lia-
bility? Certainly, end-users of software incorporated in antilock
braking systems probably would prefer the system not require
a critical patch to prevent catastrophe 3-4 times a year (I am
being generous). Such issues as they relate to the end-user are
governed by products liability today. Could a reasonable dividing
line for the form liability takes be the incorporation of software
in a hard good sold as product? Perhaps a “shipped-with” divider
between sold-as-good and “licensed”?

Could a manufacturer, rather than selling a good that incorpo-
rates software it has licensed, force the end-user to download
and “relicense” the braking and other software on first “key-up”?
Imagine starting up a new car and clicking through 20 EULAs
(or one egregious one), waiving—subject to each state’s consumer
protection law, subject to each circuit’s take on licensing vs.
purchasing—all disclaimable liability for anything but mechani-
cal failure. Those who have purchased provider-tied, app-laden
smartphones have probably had a whiff of this experience.

These are the discussions we should be having. I hope this surface
treatment of negligence, warranty, and product liability has helped
arm you with terms and tools to better shape discussion of what
“ought” to be, and to understand the complexity of how it “is” today.

References
[1] Michael Scher, “On Doing ‘Being Reasonable’,” ;login:,
vol. 31, no. 6, December 2006.

[2] For a brief discussion of software and UCC Article 2, see
http://technologylicensinglitigation.com/applying-the-ucc
-to-software-license-agreements/.

[3] For an excellent history, discussion, and description of
UCITA, see http://www.jamesshuggins.com/h/tek1/ucita.htm.

[4] For a contemporaneous response to the UCC 2B proposal,
see http://www.badsoftware.com/uccsqa.htm.

[5] American Law Institute, summary of Restatement of the
Law Third, Torts: Products Liability: http://www.ali.org/
index.cfm?fuseaction=publications.ppage&node_id=54.

[6] See, for humorous effect, http://snltranscripts.jt.org/
76/76jconsumerprobe.phtml.

[7] Complex issues regarding licenses, EULAs, contracts
of adhesion, and unconscionability are at play. A good sum-
mary of the development of cases through 2008 can be found
at http://www.bicklaw.com/Publications/Unconscionable
TermsandE-contracts.htm, and a discussion of click-
through/browse-through terms can be found at https://
ilt.eff.org/index.php/Contracts:_Click_Wrap_Licenses.

[8] In 1999, Clark Turner and Debra Richardson wrote
“Software Defect Classes and No-Fault Liability,” presenting
an early discussion of the complexity of applying products-
style “defect” and liability to software: http://www.users
.csc.calpoly.edu/~csturner/fulltechreport.pdf.̀

[9] For a similar discussion of the complexity of determin-
ing such issues, see Lloyd Rich, “If You Use A Shrinkwrap
License It May Not Be Enforceable”: http://corporate.findlaw
.com/business-operations/if-you-use-a-shrinkwrap-license
-it-may-not-be-enforceable-mass.html.

Other Resources:
Legal Information Institute, Products Liability: http://
www.law.cornell.edu/wex/Products_liability.

HG.org, Legal Resources, Product Liability Law: http://
www.hg.org/product-liability.html.

Macrothink Institute, “A Managerial Guide to Products
Liability”: http://www.macrothink.org/journal/index.php/
ijld/article/view/1773/1458.

30  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

SYSADMINEnterprise Logging
D A V I D L A N G

David Lang is a Staff IT Engineer
at Intuit, where he has spent
more than a decade working
in the Security Department
for the Banking Division. He

was introduced to Linux in 1993 and has been
making his living with Linux since 1996. He
is an Amateur Extra Class Radio Operator
and served on the communications staff of
the Civil Air Patrol California Wing, where his
duties included managing the statewide digital
wireless network. He was awarded the 2012
Chuck Yerkes award for his participation on
various open source mailing lists.
david@lang.hm

W hen the topic of logging comes up, logs are generally recognized
to be useful and that having a centralized log system is “industry
best practice,” and it’s even required by most regulatory oversight

plans (PCI, HIPAA). But figuring out how to get started in setting up a good
logging system is hard, especially if you are already a good size organization
when the topic is raised. If you start off by talking to vendors, getting quotes
in the seven figure range is easy. This article is an introduction to logging,
outlining an inexpensive architecture that can scale up to large log volumes,
and providing pointers to a few basic tools to quickly and cheaply get value
out of the logs beyond just satisfying audit requirements. Future articles will
dive deeper into specific aspects of logging.

Benefits of an Enterprise Logging Plan
Getting started with logging in an enterprise can be as much a political/management issue
over the effort and equipment involved as it is a technical issue of deciding what to do, so it’s
worth starting the discussion by reviewing the basic business benefits.

Logs record what happened. This seems like a trivial statement, but it’s easy to get confused
and think that logs mean more. Many things can go wrong, and having logs available helps
you figure out what so that you can decide how to recover and prevent it from happening
again. Examples of problems that you may need to investigate are misbehaving software,
outside attacks, insider tampering, hitting system performance limits, and hardware failures
(disk/memory/network errors).

Logs let you figure out how frequently things have happened, and this information can be
used for utilization reports and capacity planning. Logs can also be analyzed to produce
reports that show user behavior , which can then be used for marketing, product develop-
ment, and detecting “odd” behavior that may indicate attacks. Logs can satisfy audit require-
ments by indicating who did what and when they did it (for both internal and external users).

Logs are invaluable for monitoring. Nothing can replace what the apps report about their
own operations. If an app logs a message at 3:02 a.m. “unable to create file X No space left on
device,” saying that there’s no problem does you no good because Nagios reported lots of disk
space available at 3:00 and 3:10.

Collect Log Messages in a Single, Centralized Infrastructure
You most care about logs when something is (or has gone) wrong on the box where they were
generated. Having a copy of the logs elsewhere lets you still see the logs. With cloud comput-
ing, this is even more critical than in a normal datacenter because a system is far more likely
to go down, and when it does, you may never be able to get at its file system again.

By combining all the logs, you gain the ability to see what’s happening across systems, to
offload the log analysis from the systems that are serving your users, and to implement your
tools and policies consistently across the enterprise. Protecting the logs from tampering if
they’re in one place rather than on every system is far easier.

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 31

SYSADMIN
Enterprise Logging

Most compliance programs (PCI, HIPAA, etc.) require that
you collect your logs in some central location. They don’t say
why, but the underlying reasons boil down to the advantages
mentioned above.

You Should Try to Gather ALL Possible Log Messages
Because your logs are a record of what happened on your systems
at some time in the past, you are usually not going to have a
chance to tweak the logs to support the current problem you are
dealing with. Some logs are more important than others, but you
can always throw away or ignore logs that you have gathered,
whereas you cannot go back in time and collect something that
you didn’t gather.

You should start with the premise that you will gather every log
generated by every device, system, and application and only trim
back if you find that you cannot support this. You cannot and
should not process every log message the same way. Today’s sys-
tem performance is such that everyone except the largest com-
panies can gather their logs into a single feed at a surprisingly
low cost. Analyzing logs can be very expensive, so you will want
to filter the logs as they go into your analysis tools, but different
types of analysis will want different logs, so start off planning to
gather everything.

Getting Started
Once you have decided to build an Enterprise-wide centralized
logging system, you must determine the requirements you need
it to satisfy.

Suggested Requirements for Enterprise Logging
 System
Vendor-Neutral Infrastructure
A good logging system will end up being used by just about every
part of your organization. Any system you deploy is going to need
to be changed at some point. If you build your logging infrastruc-
ture around a single vendor, changing it will be extremely pain-
ful. If you build it around standards, you can switch out portions
of it at a time. While you are in the middle of migrating, you may
not be able to take advantage of some features that only exist in
one software package, but this will just temporarily degrade the
system, not split it into two parallel systems.

Gather/Deliver the Logs in Near-Real Time
Many uses of logs require that you act on the logs shortly after
they are generated. Any scheme that gathers logs nightly or
hourly will not work for those uses, but if you gather the logs in
near-real time you can support all the uses that will work with
the batched gathering.

Run All Systems on the Same Time Zone
Running all your systems on UTC time is best, but even if you
just pick the time zone of your main datacenter or office and use

that everywhere, you are far better off than if each datacenter
has systems running in its local time zone.

In theory this isn’t a problem because all timestamps should
include time zone information, but in practice, time zone infor-
mation is frequently dropped; having timestamps from differ-
ent time zones will confuse analysis of logs (including manual
analysis).

The reason UTC is better than local time is that when rolling
logs, storing them with filenames that have the timestamp as
part of the filename is common; backwards adjustments due to
daylight savings will cause you to overwrite and lose log files.

Fix Malformed Logs
Many devices (for example, Cisco Routers) have errors in logs
that they send out. Fixing these errors early in the logging infra-
structure makes it much easier to make use of the logs.

Add/Correct Log Metadata
Examples of metadata that can be useful to add/fix in log mes-
sages are timestamps, sources, and the office a log comes from.
If you are in an enterprise large enough to have hostnames and
IP addresses reused in different areas (e.g., think of how many
workers who are telecommuting from home offices will be using
192.168.1.x IP addresses), adding additional information to the
log message to be able to differentiate the duplicates can be
extremely valuable.

No Modification Is Possible on Network Equipment and
Appliances
This is less a requirement than a recognition of the reality that
you cannot change how some devices send logs, so any scheme
that requires that you run specific software on the system that’s
generating the log message cannot work as an enterprise-wide
approach, no matter how well it works in a narrower deployment.

Minimize Configuration, Non-Default Software, and Load
on the Systems Generating the Logs
While logs are valuable, if logging or administration of logging
interferes significantly with the primary purpose of a device,
odds are that the logging is going to suffer. The more work you
have to do on each system, the higher the odds that the work isn’t
going to happen consistently, and you will end up with a gap in
your logs that you are not aware of. Knowing that you are not
receiving something that you would like to get is hard.

“Best Effort” Delivery of Logs
When you first think of the question “under what conditions is
it OK to lose a log message,” the normal reaction is “never.” The
problem with this is that the alternative to losing a log message
when something goes wrong is to have the system stop. So the
real question you must ask is, “Is this log message so critical that
I would rather have the process/system stop working than have
any possibility of losing the message?”

32  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

SYSADMIN
Enterprise Logging

The answer to this is almost always “No, but I really would like
to avoid losing logs if I can”; the rest of this article assumes that
this is the case. There are ways to use modern logging daemons
to deal with the ultra-reliable logging requirement (what I call
“audit grade” logs), but it complicates the system and has horrible
effects on performance (I have run tests in which I have mea-
sured greater than 1000x difference between “audit grade” and
“best effort” performance).

Syslog, the De Facto Standard for Log Processing
The traditional UNIX tool for logs is syslog. Any log processing
tool that has any pretension of being a general purpose tool is
able to handle syslog messages. This makes syslog an obvious
starting point; however, syslog has a poor reputation as a serious
log tool because the versions of syslog that were the default on
UNIX systems for the first couple of decades of syslog’s exis-
tence have had a combination of ultra-safe and ultra-unsafe
defaults that have limited log rates from tens to low hundreds of
logs per second, truncated messages at 1k characters, and either
blocked system operation or silently dropped logs beyond these
rates. Additionally, filtering in traditional syslog was complex
and dependent on the originator of the log messages properly tag-
ging each message; however, current logging daemons bear about
as much resemblance to the traditional syslog that Eric Allman
created as a quick hack for dealing with Sendmail logs as the
cars in a Barrett-Jackson auction have with the cars that were
on a Ford dealer’s lot in the heyday of the Model T. Most people,
including many who deal with logs, do not realize that this has
changed. There are now several additional logging implementa-
tions available for use, all of which are drastic improvements in
performance and capability compared to the traditional syslog
software, while still retaining software and network compat-
ibility with traditional syslog. Since 2007, most Linux distros
have switched to rsyslog as their default syslog daemon, and the
rate of change over the past five years is staggering. Red Hat
Enterprise 5.x ships with rsyslog3.22.2, but rsyslog 7.4 rolled out
in June 2013. Additionally, syslog-ng, nxlog, and logstash are all
free tools to consider if you dislike rsyslog. (Commercial syslog
daemons, including a commercial version of syslog-ng, are also
available.) Both rsyslog and syslog-ng now can handle more than
one million logs per second, and all of these tools support a wide
range of filtering and communication options. Combined with
the fact that these all support the traditional syslog protocols
means that you can choose whichever one you want, and switch
from one to the other on your core infrastructure without having
to change anything on your systems that are generating the logs.

As a logging protocol, syslog has the (dis)advantage that histori-
cally it has been poorly defined. Syslog has been around since the
‘80s with an RFC written for it in 2001 (and a follow-up in 2009),
but the reality remains that you can throw just about anything
at syslog and it will handle it in some form. This leads to the

natural result that a lot of equipment (including from top name
vendors) and software is generating syslog messages that don’t
comply with any RFC, but the modern logging daemons are all
flexible enough to be able to deal with the messages in a (rela-
tively) sane manner. This great flexibility means that syslog is
easy to get data into, and can deal with just about anything.

A recent development in the syslog world is the support across
the many different logging daemons for JSON-structured logs.
While this is primarily being driven by people who dream that
all logs will be formatted to some standard, making it trivial for
any application to parse and understand the log contents, this
capability is absolutely wonderful for enterprise logging even
if no such standard ever emerges [1]. This is because it makes it
possible to take the original unstructured syslog message, wrap
it in JSON and then add additional fields to hold information to
the log message that is sent upstream. This maintains the sepa-
ration between the original message and the new fields, allowing
you to hand the original message to an analysis tool that doesn’t
know about the new fields or format. This added information
can include, for example, the environment the log was generated
in, so that you can alert differently depending on whether the
log was generated from a development machine or a production
machine without needing separate logging systems.

Architecture

The architecture should be able to handle a large enterprise with
hundreds of thousands of systems across multiple datacenters.
Smaller organizations can collapse the different layers in Figure
1 if appropriate. All of this infrastructure can be virtualized or
cloud based, but performance or data sensitivity concerns may
cause your organization to decide that parts of it should be kept
in-house.

The Log Originators
Log Originators are all your normal servers, appliances, storage
devices, switches, routers, firewalls, etc. These systems all send
their logs to the closest Edge Aggregation systems, usually via
UDP syslog.

For applications that cannot send their logs directly to syslog,
you have several options to watch and scrape the logs from files

Figure 1: The best design for an enterprise logging infrastructure is divided
into four main layers, which serve as clear boundaries between the logging
responsibilities of the different systems in your enterprise.

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 33

SYSADMIN
Enterprise Logging

to send them upstream. The syslog daemons mentioned above all
have some capability to gather logs from local files, plus there are
other, simpler tools that can do the job.

Noting that all the systems that you use for the rest of your
logging infrastructure are also Log Originators and should
be sending their locally generated log messages off to an Edge
Aggregation system is important.

The Edge Aggregators
Edge Aggregation systems perform many different tasks: gather
logs from local machines, fix malformed logs and add metadata,
and queue logs as needed for reliable delivery to Core Aggrega-
tion systems.

Gather Logs From All Local Machines
There are many edge systems, distributed around the organiza-
tion. The number of Edge Aggregation systems you deploy is a
balancing act involving cost, complexity (the number of systems
to manage), load on each system, and the reliability of delivering
logs to the Edge Aggregators from your other systems.

◆◆ The closer the Edge systems are to the systems generating the
logs, the more reliable your logs are going to be. While UDP
syslog is extremely reliable over a local LAN switch, once you
start sending it through links that can be bottlenecks (routers,
firewalls, WANs, etc.), the chance of losing logs due to conges-
tion, equipment failure, routing errors, ACL errors, etc. starts
climbing rapidly.

In theory the answer is to use a more reliable transport than
UDP syslog; however, many systems and appliances can only talk
UDP syslog, so even if you change all your servers to a more reli-
able transport, you have only solved part of the problem. Deploy-
ing the Edge Aggregation systems close to the sources of the logs
in HA pairs will let you survive system and network failures and
congestion with the minimum loss of logs. The Heartbeat and
Pacemaker projects [2] provide the tools to make implementing
HA on a pair of Linux systems trivial.

At the very least, you should have Edge Aggregators before any
WAN hops. I try hard to have a set of Edge Aggregation systems
connected so that logs never have to go through a router or fire-
wall before they will hit an Edge Aggregation system. In some
extreme cases, I have used Edge Aggregation systems that have
as many as 22 Ethernet ports on them (5x 4-port cards plus 2 on
the motherboard) to allow me to connect directly to the different
networks.

Fix Malformed Logs/Add Metadata
Fixing the logs and adding metadata should be done as close to the
source of the logs as possible. There are several reasons for this:

◆◆ It limits the scope of one-off fixes that you may need to do for
particular devices.

◆◆ Testing every message to see whether it needs to be fixed is
expensive. Modifying a message is less expensive, but still not
free. Doing this on the Edge Aggregators scales well.

◆◆ The Edge Aggregators know the actual source IP of the Log
Originators, while systems further on only know what’s in the
message.

◆◆ The Edge Aggregators can have hard-coded values based on
where they are in the network.

Queue Logs for Reliable Delivery to Core Aggregation
Systems
Because there are relatively few Edge Aggregation systems, any
effort you spend on them has a much higher cost-benefit ratio
than work done on the Log Origination systems. Because these
systems do not have to be used for anything else, you can replace
your OS defaults with newer or different versions of logging
software, and they can afford to expend more effort to deliver
messages. If the messages are being delivered over a WAN link
that goes down, these systems are perfectly positioned to queue
messages to be delivered later. This is not mandating full “audit
grade” reliability, but simply using one of the network protocols
that will detect outages such as TCP syslog or Reliable Event
Logging Protocol (RELP). Think about the safety of the links
you are sending the logs over; you may want to encrypt the data
before it is sent.

The Core Aggregation System
This farm of Edge Aggregator systems handles your entire log
feed. Its purpose is to provide a single logical destination to
which all the Edge Aggregation systems can deliver their mes-
sages, and a single logical source for distributing the logs out to
the various Analysis Farms.

Logically, this is a single system (implemented as a load-bal-
anced cluster of boxes as needed). If you only have one datacen-
ter, you can easily collapse this functionality into your Edge
Aggregators by multi-homing them with one leg on a network you
use for your Analysis Farms. If you have multiple datacenters
with a disaster recovery set of Analysis Farms, you will want to
spread it across two datacenters that have Analysis Farms. The
logs from each half of the Core Aggregator cluster should be sent
to the other half so that both sets of Analysis Farms will see the
full set of logs. The other option is to have multiple Core Aggre-
gation clusters and have your Edge Aggregators send (and queue)
logs to every Core cluster.

Because this farm of systems is handling the full log feed, a large
enterprise will need to have these systems doing as little work as
possible. Ideally, they should not be doing any processing of the
log messages other than aggregating and delivering them.

34  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

SYSADMIN
Enterprise Logging

When delivering a large volume of logs to many destinations
(many different Analysis Farms), the resulting traffic can strain
your network (as well as the systems doing the sending). One
good way of dealing with this problem is to use Multicast MAC
as I described in a 2012 LISA paper [3].

The Analysis Farms
Analysis Farms are the systems that do something with the logs,
and because that includes lots of different things (especially in a
large organization), doing this analysis can take many systems’
worth of resources. So it’s a good idea to think of the different
sets of functionality as separate farms, even if you start off
implementing multiple sets of functionality on one box (or an HA
pair of boxes). This approach makes it much easier to split things
apart as your needs grow.

In a large enterprise, it may not be reasonable for everyone who
needs to see some logs to be able to do so. Depending on the
capabilities of the tools that you use, you may opt to implement
such restrictions in each tool, or you may choose to have multiple
Analysis Farms of the same type, but filter the logs so that a
given farm only contains the subset of logs that the users of that
farm are allowed to have access to.

The following are a handful of basic functions that you need to
have as part of your Analysis Farms.

Log Archiving
This can be as trivial as an HA pair of systems that just receives
the logs and writes them to disk in simple gzip files for long-term
data retention. In a more demanding environment, you could
have these systems digitally sign the log files to make them
tamper-resistant, encrypt the archives, and store the archives
off-site.

Log Message Alerts
You can get started with Simple Event Correlator (SEC) on an
HA pair of systems, and as your load climbs you can split the
logs across different machines along the lines described in this
LISA 2010 paper [4]. It’s a very good idea to feed the alerts that
are generated back into the system as new log messages that all
other Analysis Farms can then see.

Reporting on Log Contents
Start by using rsyslog filtering to split logs into different files per
application and then have simple scripts crunch these smaller
files periodically. (I do hourly and daily reports this way.)
SEC can also be useful for reporting. You can use a combina-
tion of Calendar rules and simple content matching rules to
count occurrences of matches and output the counts at regular
intervals.

Searching Logs
At low volumes, you can get by with zgrep, but as log volumes
increase, this becomes unwieldy as a general purpose search
tool; however, it’s still great when looking at a small time window
for specific data, especially when combined with rsyslog filter-
ing to create files that only contain a given type of log. This is
where Hadoop, Cassandra, ElasticSearch (all free), and Splunk
(commercial) come into play.

Other Uses
Beyond the basic functions outlined above, Analysis Farms pro-
vide endless possibilities for other uses, among them:

◆◆ Artificial ignorance reporting

◆◆ Machine learning

◆◆ Predictive modeling

◆◆ Automated reactions

The really nice feature of this architecture is that you can add/
remove Analysis Farms without having to reconfigure anything
beyond the Core Aggregators (and if you use the Multicast MAC
approach to distribute the data, you don’t even have to recon-
figure those). This lets you experiment freely with different
tools without disrupting anything else. It also makes it hard
for someone to generate a new set of logs and only send it to the
analysis tool that they care about without it going to other groups
(an app team forgetting to send the logs to the security team, for
example).

Here’s an example of a simple trick that you can implement to
get a lot of value immediately. I like to add vmstat and iostat
data to the logs. This both produces a tremendously dense set
of performance related data with little impact to the systems
and provides a heartbeat that you can use to detect if anything
(including system failure) interrupts the logs. Doing this can be
as simple as adding

nohup vmstat 60 |logger -t vmstat 2>&1 >/dev/null &

nohup iostat -xk 60 |logger -t iostat 2>&1 >/dev/null &

to your startup scripts. And a simple config to SEC similar to:

type=Single

ptype=perlfunc

pattern=sub {@test=split(‘ ‘, substr($_[0],16)); if ($test[1] =~

/vmstat/) { return $test[0];} }

desc=vmstat_$1

action=create vmstat_heartbeat_$1 180 (shellcmd sendmessage

“$1”)

continue=takenext

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 35

SYSADMIN
Enterprise Logging

Conclusion
The value that you get out of a logging system is related far more
to the effort that you put into the system than the amount of
money you spend on the system. You can get a lot of value quickly
without spending a significant amount of money. I hope that this
article helps provide a road map that you can use to get started
dealing with your logs regardless of how much data you end up
dealing with as your system grows.

References
[1] http://json-ld.org/, http://cee.mitre.org/, https://
fedorahosted.org/lumberjack/.

[2] http://linux-ha.org/wiki/Heartbeat and
http://clusterlabs.org.

[3] David Lang, “ Building a 100K log/sec Logging Infra-
structure”: https://www.usenix.org/conference/lisa12/
building-100k-logsec-logging-infrastructure.

[4] Paul Krizak, “Log Analysis and Event Correlation Using
Variable Temporal Event Correlator (VTEC)”: http://static
.usenix.org/events/lisa10/tech/full_papers/Krizak.pdf.

xkcd

xkcd.com

36  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

PROGRAMMINGCuckoo Filter: Better Than Bloom
B I N F A N , D A V I D G . A N D E R S E N , A N D M I C H A E L K A M I N S K Y

Bin Fan is a Ph.D. student in the
Computer Science Department
at Carnegie Mellon University.
His research interests include
networking systems, storage

systems, and distributed systems. He is in
the Parallel Data Lab (PDL) at CMU and also
works closely with Intel Labs.
binfan@cs.cmu.edu

Michael Kaminsky is a Senior
Research Scientist at Intel
Labs and an adjunct faculty
member in the Computer Sci-
ence Department at Carnegie

Mellon University. He is part of the Intel
Science and Technology Center for Cloud
Computing (ISTC-CC), based in Pittsburgh,
PA. His research interests include distributed
systems, operating systems, and networking.
michael.e.kaminsky@intel.com

David G. Andersen is an Asso-
ciate Professor of Computer
Science at Carnegie Mellon
University. He completed his
S.M. and Ph.D. degrees at MIT,

and holds BS degrees in Biology and Computer
Science from the University of Utah. In 1995,
he co-founded an Internet Service Provider in
Salt Lake City, Utah.  dga@cs.cmu.edu

High-speed approximate set-membership tests are critical for many
applications, and Bloom filters are used widely in practice, but do
not support deletion. In this article, we describe a new data struc-

ture called the cuckoo filter that can replace Bloom filters for many approxi-
mate set-membership test applications. Cuckoo filters allow adding and
removing items dynamically while achieving higher lookup performance,
and also use less space than conventional, non-deletion-supporting Bloom
filters for applications that require low false positive rates (ϵ< 3%).

Set-membership tests determine whether a given item is in a set or not. By allowing a small
but tunable false positive probability, set-membership tests can be implemented by Bloom
filters [1], which cost a constant number of bits per item. Bloom filters are efficient for repre-
senting large and static sets, and thus are widely used in many applications from caches and
routers to databases; however, the existing items cannot be removed from the set without
rebuilding the entire filter. In this article, we present a new, practical data structure that is
better for applications that require low false positive probabilities, handle a mix of “yes” and
“no” answers, or that need to delete items from the set.

Several proposals have extended classic Bloom filters to add support for deletion but with
significant space overhead: counting Bloom filters [5] are four times larger and the recent
d-left counting Bloom filters (dl-CBFs) [3, 2], which adopt a hash table-based approach, are
still about twice as large as a space-optimized Bloom filter. This article shows that support-
ing deletion for approximate set-membership tests does not require higher space overhead
than static data structures like Bloom filters. Our proposed cuckoo filter can replace both
counting and traditional Bloom filters with three major advantages: (1) it supports add-
ing and removing items dynamically; (2) it achieves higher lookup performance; and (3) it
requires less space than a space-optimized Bloom filter when the target false positive rate
ϵ is less than 3%. A cuckoo filter is a compact variant of a cuckoo hash table [7] that stores
fingerprints (hash values) for each item inserted. Cuckoo hash tables can have more than
90% occupancy, which translates into high space efficiency when used for set membership.

Bloom Filter Background
Standard Bloom filters allow a tunable false positive rate ϵ so that a query returns either
“definitely not” (with no error) or “probably yes” (with probability ϵ of being wrong). The
lower ϵ is, the more space the filter requires. An empty Bloom filter is a bit array with all bits
set to “0”, and associates each item with k hash functions. To add an item, it hashes this item
to k positions in the bit array, and then sets all k bits to “1”. Lookup is processed similarly,
except it reads k corresponding bits in the array: if all the bits are set, the query returns posi-
tive; otherwise it returns negative. Bloom filters do not support deletion, thus removing even
a single item requires rebuilding the entire filter.

Counting Bloom filters support delete operations by extending the bit array to a counter
array. An insert then increments the value of k counters instead of simply setting k bits, and
lookup checks whether each of the required counters is non-zero. The delete operation dec-
rements the values of the k counters. In practice the counter usually consists of four or more

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 37

PROGRAMMING
Cuckoo Filter: Better Than Bloom

bits, and a counting Bloom filter therefore requires four times
more space than a standard Bloom filter.

The work on d-left counting Bloom filters (dl-CBFs) [2, 3] is
intellectually closest to our cuckoo filter. A dl-CBF constructs a
hash table for all known items by d-left hashing [6], but replaces
each item with a short fingerprint (i.e., a bit string derived from
the item using a hash function). The dl-CBFs can reduce the
space cost of counting Bloom filters, but still require twice the
space of a space-optimized Bloom filter.

Cuckoo Filter
The cuckoo filter is a compact data structure for approximate
set-membership queries where items can be added and removed
dynamically in O(1) time. Essentially, it is a highly compact
cuckoo hash table that stores fingerprints (i.e., short hash val-
ues) for each item.

Basic Cuckoo Hash Table
Cuckoo hashing is an open addressing hashing scheme to con-
struct space-efficient hash tables [7]. A basic cuckoo hash table
consists of an array of buckets where each item has two candi-
date buckets determined by hash functions h1(·) and h2(·) (see
Figure 1). Looking up an item checks both buckets to see whether
either contains this item. If either of its two buckets is empty,
we can insert a new item into that free bucket; if neither bucket
has space, it selects one of the candidate buckets (e.g., bucket 6),
kicks out the existing item (“a”), and re-inserts this victim item
to its own alternate location (bucket 4). Displacing the victim
may also require kicking out another existing item (“c”), so this
procedure may repeat until a vacant bucket is found, or until a
maximum number of displacements is reached (e.g., 500 times
in our implementation). If no vacant bucket is found, the hash
table is considered too full to insert and an expansion process is
scheduled. Though cuckoo hashing may execute a sequence of
displacements, its amortized insertion time is still O(1). Cuckoo
hashing ensures high space occupancy because it can refine
earlier item-placement decisions when inserting new items.

Proper configuration of various cuckoo hash table parameters
can ensure table occupancy more than 95%.

Dynamic Insert
When inserting new items, cuckoo hashing may relocate exist-
ing items to their alternate locations in order to make room
for the new ones. Cuckoo filters, however, store only the items’
fingerprints in the hash table and therefore have no way to read
back and rehash the original items to find their alternate loca-
tions (as in traditional cuckoo hashing). We therefore propose
partial-key cuckoo hashing to derive an item’s alternate location
using only its fingerprint. For an item x, our hashing scheme
calculates the indexes of the two candidate buckets i1 and i2 as
follows:

i1= HASH(x),

i2= i1 ⊕HASH(x′s fingerprint).

Eq. (1)

The exclusive-or operation in Eq. (1) ensures an important prop-
erty: i1 can be computed using the same formula from i2 and the
fingerprint; therefore, to displace a key originally in bucket i (no
matter whether i is i1 or i2), we can directly calculate its alter-
nate bucket j from the current bucket index i and the fingerprint
stored in this bucket by

j = i ⊕HASH(fingerprint).

Eq. (2)

Hence, insertion can complete using only information in the
table, and never has to retrieve the original item x.

Note that we hash the fingerprint before it is XOR-ed with the
index of its current bucket, in order to help distribute the items
uniformly in the table. If the alternate location is calculated by “i
⊕Fingerprint” without hashing the fingerprint, the items kicked
out from nearby buckets will land close to each other in the table,
assuming the size of the fingerprint is small compared to the
table size. Hashing ensures that items kicked out can land in an
entirely different part of the hash table.

Does Partial-Key Cuckoo Hashing Ensure High
 Occupancy?
 The values of i1 and i2 calculated by Eq. (1) are uniformly distrib-
uted, individually. They are not, however, necessarily indepen-
dent of each other (as required by standard cuckoo hashing).
Given the value of i1, the number of possible values of i2 is at most
2f where each fingerprint is f bits; when f ≤ log2r where r is the
total number of buckets, the choice of i2 is only a subset of all the
r buckets of the entire hash table. For example, using one-byte
fingerprints, given i1 there are only up to 2f=256 different pos-
sible values of i2 across the entire table; thus i1 and i2 are depen-
dent when the hash table contains more than 256 buckets. This
situation is relatively common, for example, when the cuckoo

Figure 1: A cuckoo hash table with eight buckets

38  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

PROGRAMMING
Cuckoo Filter: Better Than Bloom

filter targets a large number of items but a moderately low false
positive rate.

The table occupancy, though, can still be close to optimal in most
cases (where optimal is when i1 and i2 are fully independent). We
empirically show in the Evaluation section that this algorithm
achieves close-to-optimal load when each fingerprint is suffi-
ciently large.

Dynamic Delete
With partial-key cuckoo hashing, deletion is simple. Given an
item to delete, we check both its candidate buckets; if there is a
fingerprint match in either bucket, we just remove the finger-
print from that bucket. This deletion is safe even if two items
stored in the same bucket happen to have the same fingerprint.
For example, if item x and y have the same fingerprint, and both
items can reside in bucket i1, partial-key cuckoo hashing ensures
that bucket i2 = i1 ⊕HASH(fingerprint) must be the other candi-
date bucket for both x and y. As a result, if we delete x, it does not
matter if we remove the fingerprint added when inserting x or
y; the membership of y will still return positive because there is
one fingerprint left that must be reachable from either bucket
i1 and i2.

Optimizing Space Efficiency
Set-Associativity: Increasing bucket capacity (i.e., each bucket
may contain multiple fingerprints) can significantly improve
the occupancy of a cuckoo hash table [4]; meanwhile, comparing
more fingerprints on looking up each bucket also requires longer
fingerprints to retain the same false positive rate (leading to
larger tables). We explored different configuration settings and
found that having four fingerprints per bucket achieves a sweet
point in terms of the space overhead per item. In the following,
we focus on the (2,4)-cuckoo filters that use two hash functions
and four fingerprints per bucket.

Semi-Sorting: During lookup, the fingerprints (i.e., hashes) in a
single bucket are compared against the item being tested; their
relative order within this bucket does not affect query results.
Based on this observation, we can compress each bucket to save
one bit per item, by “semi-sorting” the fingerprints and encoding
the sorted fingerprints. This compression scheme is similar to

the “semi-sorting buckets” optimization used in [2]. Let us use
the following example to illustrate how the compression works.

When each bucket contains four fingerprints and each finger-
print is four bits, an uncompressed bucket occupies 16 bits; how-
ever, if we sort all four four-bit fingerprints in this bucket, there
are only 3,876 possible outcomes. If we precompute and store
all of these 3,876 16-bit buckets in an extra table, and replace
the original bucket with an index into the precomputed table,
each bucket can be encoded by 12 bits rather than 16 bits, saving
one bit per fingerprint (but requiring extra encoding/decoding
tables).

Comparison with Bloom Filter
When is our proposed cuckoo filter better than Bloom filters?
The answer depends on the goals of the applications. This sec-
tion compares Bloom filters and cuckoo filters side-by-side using
the metrics shown in Table 1 and several additional factors.

Space efficiency: Table 1 compares space-optimized Bloom
filters and (2,4)-cuckoo filters with and without semi-sorting.
Figure 2 further shows the trend of these schemes when varies
from 0.001% to 10%. The information theoretical bound requires
log2(1/ϵ) bits for each item, and an optimal Bloom filter uses 1.44
log2(1/ϵ) bits per item, or 44% overhead. (2,4)-cuckoo filters with
semi-sorting are more space efficient than Bloom filters when
< 3%.

Number of memory accesses: For Bloom filters with k hash
functions, a positive query must read k bits from the bit array.
For space-optimized Bloom filters that require k=log2(1/ϵ), when
ϵ gets smaller, positive queries must probe more bits and are
likely to have more cache line misses when reading each bit. For
example, k equals 2 when ϵ = 25%, but the value quickly grows
to 7 when ϵ = 1%, which is more commonly seen in practice. A
negative query to a space optimized Bloom filter reads 2 bits on
average before it returns, because half of the bits are set [8]. In
contrast, any query to a cuckoo filter, positive or negative, always
reads a fixed number of buckets, resulting in two cache line
misses.

Static maximum capacity: The maximum number of entries a
cuckoo filter can contain is limited. After reaching the maxi-

memory references lookup

Bits per item Load factor α Positive query Negative query

Space-optimized Bloom filter 1.44 log2(1/ϵ) − log2(1/ϵ) 2

(2,4)-cuckoo filter (log2(α/ϵ)+3)/α 95.5% 2 2

(2,4)-cuckoo filter w/ semi-sort (log2(α/ϵ)+2)/α 95.5% 2 2

Table 1: Space and lookup cost of Bloom filters and two cuckoo filters

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 39

PROGRAMMING
Cuckoo Filter: Better Than Bloom

mum load factor, insertions are likely to fail and the hash table
must expand in order to store more items. In contrast, one can
keep inserting new items into a Bloom filter at the cost of an
increasing false positive rate. To maintain the same target false
positive rate, the Bloom filter must also expand.

Limited duplicate insertion: If the cuckoo filter supports
deletion, it must store multiple copies of the same item. Inserting
the same item kb+1 times will cause the insertion to fail. This
is similar to counting Bloom filters where duplicate insertion
causes counter overflow. In contrast, there is no effect from
inserting identical items multiple times into Bloom filters, or a
non-deletable cuckoo filter.

Evaluation
We implemented a cuckoo filter in approximately 500 lines of
C++ (https://github.com/efficient/cuckoofilter). To evaluate its
space efficiency and lookup performance, we ran micro-bench-
marks on a machine with Intel Xeon processors (L5640@2.27
GHz, 12 MB L3 cache) and 16 GB DRAM.

Load factor: As discussed above, partial-key cuckoo hash-
ing relies on the fingerprint to calculate each item’s alternate
buckets. To show that the hash table still achieves high occu-
pancy even when the hash functions are not fully independent,

we built (2,4)-cuckoo filters using fingerprints of different sizes
and measured the maximum load factor. We varied the finger-
print size from 2 bits to 16 bits, and each filter consists of 225
(32 million) buckets. Keys are inserted to an empty filter until
a single insertion relocates existing fingerprints more than 500
times (our “full” condition); then we stop and measure the mean
and variance of achieved load factor α. As shown in Table 2,
when the fingerprint is smaller than six bits, the table utilization
is low, because the limited number of alternate buckets causes
insertions to fail frequently. Once fingerprints exceed six bits,
α approaches the optimal (i.e., that achieved using two fully
independent hash functions).

Space efficiency: We measured the achieved false positive
rates of Bloom filters and (2,4)-cuckoo filters with and with-
out the semi-sorting optimization. When the Bloom filter uses
13 bits per item, it can achieve its lowest false positive rate of
0.20% with nine hash functions. With 12-bit fingerprints, the
(2,4)-cuckoo filter uses slightly less space (12.53 bits/item), and
its achieved false positive rate is 0.19%. When semi-sorting is
used, a (2,4)-cuckoo filter can encode one more bit for each item
and thus halve the false positive rate to 0.09%, using the same
amount of space (12.57 bits/item).

Lookup Performance: After creating these filters, we also
investigated the lookup performance for both positive and nega-
tive queries. We varied the fraction p of positive queries in the
input workload from p=0% to 100%, shown in Figure 3. Each
filter occupies about 200 MB (much larger than the L3 cache).
The Bloom filter performs well when all queries are negative,
because each lookup can return immediately after fetching the
first “0” bit; however, its performance declines quickly when
more queries are positive, because it incurs additional cache
misses as it reads additional bits as part of the lookup. In con-
trast, a (2,4)-cuckoo filter always fetches two buckets in parallel,
and thus achieves about the same, high performance for 100%
positive queries and 100% negative queries. The performance
drops slightly when p=50% because the CPU’s branch prediction
is least accurate (the probability of matching or not matching is

Figure 2: False positive rate vs. space cost per element. For low false posi-
tive rates (< 3%), cuckoo filters (CF) require fewer bits per element than
the space-optimized Bloom filters (BF). The load factors to calculate space
cost of cuckoo filters are obtained empirically.

Figure 3: Lookup performance for a space-optimized Bloom filter and a
(2,4)-cuckoo filter with a single thread. Each point is the average of 10 runs.

f (bits) mean of α (gap to optimal) variance of α

2 17.53%, (-78.27%) 1.39%

4 67.67%, (-28.13%) 8.06%

6 95.39%, (-0.41%) 0.10%

8 95.62%, (-0.18%) 0.18%

12 95.77%, (-0.03%) 0.11%

16 95.80%, (0.00%) 0.11%

Table 2: Load factor achieved by different f with (2,4)-cuckoo filter. Each
point is the average of 10 runs.

40  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

PROGRAMMING
Cuckoo Filter: Better Than Bloom

exactly 1/2). A (2,4)-cuckoo filter with semi-sorting has a similar
trend, but it is slower due to the extra encoding/decoding over-
head when reading each bucket. In return for the performance
penalty, the semi-sorting version reduces the false positive rate
by half compared to the standard (2,4)-cuckoo filter. However,
the cuckoo filter with semi-sorting still outperforms Bloom
filters when more than 50% queries are positive.

References
[1] B.H. Bloom, “Space/Time Trade-Offs in Hash Coding
with Allowable Errors,” Communications of the ACM, vol. 13,
no. 7 (1970), pp.422-426.

[2] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh,
and G. Varghese, “Bloom Filters via D-Left Hashing and
Dynamic Bit Reassignment,” in Proceedings of the Allerton
Conference on Communication, Control and Computing,
2006.

[3] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and
G. Varghese, “An Improved Construction for Counting Bloom
Filters,” 14th Annual European Symposium on Algorithms,
2006, pp. 684-695.

[4] U. Erlingsson, M. Manasse, and F. McSherry, “A Cool and
Practical Alternative to Traditional Hash Tables, Seventh
Workshop on Distributed Data and Structures (WDAS 2006),
CA, USA, pp. 1-6.

[5] L. Fan, P. Cao, J. Almeida, and A.Z. Broder, “Summary
Cache: A Scalable Wide-Area Web Cache Sharing Protocol,”
IEEE/ACM Transactions on Networking, vol. 8, no. 3 (June
2000), pp. 281-293, doi: 10.1109/90.851975.

[6] M. Mitzenmacher and B. Vocking, “The Asymptotics of
Selecting the Shortest of Two, Improved,” Proceedings of the
Annual Allerton Conference on Communication Control and
Computing (1999), vol. 37, pp. 326-327.

[7] R. Pagh and F. Rodler, “Cuckoo Hashing,” Journal of Algo-
rithms, vol. 51, no. 2 (May 2004), pp.122-144.

[8] F. Putze, P. Sanders, and S. Johannes, “Cache-, Hash- and
Space-Efficient Bloom Filters,” Experimental Algorithms
(Springer Berlin / Heidelberg, 2007), pp. 108-121.

USENIX Board of Directors
Communicate directly with the USENIX
Board of Directors by sending email to
board@usenix.org.
P R E S I D E N T
Margo Seltzer, Harvard University
margo@usenix.org
V I C E P R E S I D E N T
John Arrasjid, VMware
johna@usenix.org
S E C R E T A R Y
Carolyn Rowland
carolyn@usenix.org
T R E A S U R E R
Brian Noble, University of Michigan
noble@usenix.org
D I R E C T O R S
David Blank-Edelman, Northeastern
 University
dnb@usenix.org
Sasha Fedorova, Simon Fraser University
sasha@usenix.org
Niels Provos, Google
niels@usenix.org
Dan Wallach, Rice University
dwallach@usenix.org
C O - E X E C U T I V E D I R E C T O R S
Anne Dickison
anne@usenix.org
Casey Henderson
casey@usenix.org

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 41

SYSTEMSA Short Primer on Causal Consistency
W Y A T T L L O Y D , M I C H A E L J . F R E E D M A N , M I C H A E L K A M I N S K Y ,
A N D D A V I D G . A N D E R S E N

Wyatt Lloyd is a Postdoctoral
Researcher at Facebook and will
begin a position as an Assistant
Professor at the University of
Southern California in 2014.

His research interests include the distributed
systems and networking problems that underlie
the architecture of large-scale Web sites, cloud
computing, and big data. He received his Ph.D.
from Princeton University in 2013 and his BS
from Penn State University in 2007, both in
Computer Science.  Wyatt.Lloyd@gmail.com

The growing prevalence of geo-distributed services that span mul-
tiple geographically separate locations has triggered a resurgence of
research on consistency for distributed storage. The CAP theorem

and other earlier results prove that no distributed storage system can simul-
taneously provide all desirable properties—e.g., CAP shows this for strong
Consistency, Availability, and Partition tolerance—and some must be sacri-
ficed to enable others. In this article, we suggest causal consistency repre-
sents an excellent point in this tradeoff space; it is compatible with strong
performance and liveness properties while being far easier to reason about
than the previously-settled-for choice: “eventual” consistency.

Geo-distributed services are growing in popularity because they can survive datacenter fail-
ures and because they move services closer to end users, which lowers page load time and in
turn drives up user engagement. For example, companies such as Facebook distribute their
service across datacenters on the West Coast, East Coast, and Europe. The recent work in
this space includes systems such as PNUTS [2], Walter [11], Gemini [6], Spanner [3], MDCC
[5], and Bolt-on [1], as well as our own work on COPS [7] and Eiger [8].

So why does the increasing number of geo-distributed services make consistency a hot
topic? Because there is a fundamental, unavoidable tradeoff between having guaranteed
low-latency access (which we define as not having to send packets back-and-forth across
the country) and making sure that every client sees a single ordering of all operations in the
system (strong consistency) [7]. Guaranteed low latency is important because it keeps page
load times low. Consistency is important because it makes systems easier to program. In our
first work on this subject, COPS, we coined a term for low-latency-favoring systems: ALPS
(“Availability, Low-latency, Partition tolerance, and Scalability”). This tradeoff is unavoid-
able as readers familiar with the famous CAP theorem might remember. Here’s an example:

Consider concurrent writes and reads at two different datacenters. If you want both the
write to have low latency and the read to have low latency, then you must satisfy them faster
than the information can propagate to the other datacenter. In some circumstances, for
example, a client might write data to the West Coast datacenter just before another client
reads that object from the East Coast datacenter. The East Coast read will return stale infor-
mation (i.e., it won’t reflect that write that actually happened first) because, although the
write completed on the West Coast, it hasn’t propagated to the other datacenter. You could
avoid this behavior and make the write take longer (wait for it to propagate to the East Coast)
or the read take longer (fetch the data from the West Coast), but you cannot have both.

This tradeoff is pretty well understood, and is one of the several reasons behind the increas-
ing prevalence of “eventual consistency,” popularized by Amazon’s Dynamo [4]. The other, of
course, is availability: in this example, if the two datacenters cannot communicate, at least
one of them must stop processing requests. Eventual consistency allows the datacenters to
each return local results, rapidly, even if the other one is down. What it sacrifices, of course,
is consistency: queries at different datacenters may see different results, in different order.

Michael J. Freedman is
an Associate Professor
of Computer Science at
Princeton University, with a
research focus on distributed

systems, networking, and security.
Recent honors include a Presidential Early
Career Award (PECASE), as well as early
investigator awards through the NSF and
ONR, a Sloan Fellowship, and DARPA CSSG
membership.  mfreed@cs.princeton.edu

Michael Kaminsky is a Senior
Research Scientist at Intel
Labs and is an adjunct faculty
member of the Computer
Science Department at

Carnegie Mellon University. He is part of the
Intel Science and Technology Center for Cloud
Computing (ISTC-CC), based in Pittsburgh,
PA. His research interests include distributed
systems, operating systems, and networking.
michael.e.kaminsky@intel.com

David G. Andersen is an Asso-
ciate Professor of Computer
Science at Carnegie Mellon
University. He completed his
S.M. and Ph.D. degrees at MIT,

and holds BS degrees in Biology and Computer
Science from the University of Utah. In 1995,
he co-founded an Internet Service Provider in
Salt Lake City, Utah.  dga@cs.cmu.edu

42  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

SYSTEMS
A Short Primer on Causal Consistency

This is where causality comes in: you can provide something
better than “eventual” consistency without sacrificing availabil-
ity or low latency. That something is causal consistency, and it
has been proved that no stronger form of consistency exists that
can also guarantee low latency [9].

What Is Causal Consistency?
Causal consistency means that two events that are “causally”
related (or potentially so) must appear in the same order. In other
words, if action B occurred after action A (either because a user
did A and then B, or because a different user saw A and then did
B), then B must appear after A. As a concrete example, consider
replying to a snarky comment on someone’s Facebook post: your
reply should be causally ordered after the snark. And, indeed,
this is exactly what causally consistent replication can provide:
your reply will never appear to have happened before the snark
that triggered it.

Causal Consistency Is Good for Users
Causal consistency improves user experience because with
it actions appear to everyone in the correct order. A common
scenario where causality is important, but often isn’t provided, is
comments on social network posts, which sometimes appear out
of order.

Consider this stream of posts:

Oh no! My cat just jumped out the window.
[a few minutes later] Whew, the catnip plant broke her fall.
[reply from a friend] I love when that happens to cats!

It looks a little weird if what shows up on someone else’s screen is:

Oh no! My cat just jumped out the window.
[reply from a friend] I love when that happens to cats!

There are even better examples, widely used, when talking about
access control:

[Removes boss from friends list]
[Posts]: “My boss is the worst, I need a new job!”

If these two actions occur in the wrong order, then my post will
not have been hidden from my boss as intended. Bad news bears.

Causal Consistency Is Good for Programmers
A stronger consistency model restricts the potential orderings of
events that can show up at a remote datacenter. This simplifies
the reasoning required of a programmer. Imagine two causally
related events: Creating a new photo album and then uploading
an image to it. If those events are replicated out-of-order, your
code might have to try to cope with the idea of an image being
uploaded to a nonexistent photo album. Or crash, because you
never expected it to happen. In contrast, in a causally consis-
tent system, you might never see the photo upload (or it could be

delayed), but it will always occur after the creation of the album.
This is the big win from causal consistency for programmers:
They do not need to reason about out-of-order actions. Easier
code, happier programmers.

What Are the Limitations of Causal Consistency?
Causal consistency is achievable with low latency, and it benefits
users and programmers. But it has three drawbacks that practi-
tioners should be aware of.

Drawback #1: Can only capture causality it sees. Actions
that take place outside of the system are not seen and, unfortu-
nately, not ordered by the system. A common example of this is a
phone call: if I do action A, call my friend on another continent to
tell her about A, and then she does action B, we will not capture
the causal link between A and B.

Drawback #2: Cannot always enforce global invariants.
Each datacenter in a causally consistent system is optimistic in
that writes return once they are accepted in the local datacen-
ter. This optimism makes it impossible to allow writes at every
datacenter and guarantees global invariants, such as enforcing
the rule that bank accounts never drop below 0 dollars.

True global invariants, however, may be rarer than you think.
E-commerce is an often cited example, but online stores often
handle stock that falls below 0 by issuing back orders for any
sales that cannot be filled immediately. And readers familiar
with the recent string of concurrent withdrawal attacks where
bandits withdrew $40 million from 12 accounts [10] will recog-
nize that even banks rarely enforce global invariants.

Drawback #3: Programmers must reason about concurrent
writes. The optimism inherent in causality (when accepting
writes at all datacenters) that prevents causal systems from
enforcing global invariants also allows there to be concurrent
writes to the same data. For instance, a person on the West
Coast could update a data item while a person on the East Coast
is simultaneously updating that same data item. What should a
datacenter do when it has both updates? One common strategy—
called the last-writer-wins rule or Thomas’s write rule—is to
pick one update arbitrarily and have it overwrite the other. This
simple procedure is often sufficient: e.g., a social network user
can only have one hometown.

There are situations, however, where a more complicated proce-
dure is necessary. For instance, consider a friend request on the
East Coast being accepted concurrently with a friend request on
the West Coast. Each accepted friend request should increase
the count of a user’s friends by one (for a total of +2), but if we use
the last-writer-wins rule, one update will overwrite the other
(for only +1). Instead, we need programmers to write special
functions to merge the concurrent updates together (that add the
+1s together).

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 43

SYSTEMS
A Short Primer on Causal Consistency

Reasoning about concurrent writes is the main difficulty with
using causal consistency for programmers. Specifically, they
must ask “are overwrite semantics sufficient?” and if they are
not, they must write special functions that preserve the seman-
tics they need.

References
[1] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, Ion Stoica,
“Bolt-on Causal Consistency,” SIGMOD, June 2013.

[2] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava,
Adam Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick
Puz, Daniel Weaver, and Ramana Yerneni, “PNUTS: Yahoo!’s
Hosted Data Serving Platform,” VLDB, August 2008.

[3] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew
Fikes, Christopher Frost, J.J. Furman, Sanjay Ghemawat,
Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson
Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexan-
der Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean
Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal
Szymaniak, Christopher Taylor, Ruth Wang, and Dale Wood-
ford, “Spanner: Google’s Globally Distributed Database,” OSDI,
October 2012.

[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.
Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W.
Vogels, “Dynamo: Amazon’s Highly Available Key-Value Store,”
SOSP, October 2007.

[5] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Mad-
den, and Alan Fekete, “MDCC: Multi-Datacenter Consistency,”
EuroSys, April 2013.

[6] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke,
Nuno Preguiça, and Rodrigo Rodrigues, “Making Geo-Repli-
cated Systems Fast as Possible, Consistent When Necessary,”
OSDI, October 2012.

[7] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and
David G. Andersen, “Don’t Settle for Eventual: Scalable Causal
Consistency for Wide-Area Storage with COPS,” SOSP, October
2011.

[8] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and
David G. Andersen, “Stronger Semantics for Low-Latency Geo-
Replicated Storage,” NSDI, April 2013.

[9] Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin, “Consis-
tency, Availability, and Convergence,” Technical Report TR-11-
22, University of Texas at Austin, Department of Computer
Science, 2011.

[10] Marc Santora, “In Hours, Thieves Took $45 Million in
A.T.M. Scheme,” New York Times, May 5, 2013.

[11] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jin-
yang Li, “Transactional Storage for Geo-Replicated Systems,”
SOSP, October 2011.

Conclusion
Causal consistency is a better-than-eventual consistency model
that still allows guaranteed low latency operations. It captures
the causal relationships between operations and ensures that
everyone sees operations in that order. This makes Web sites
more intuitive for users, because their actions appear, and are
applied, in the order they intended. Causal consistency also
makes programming simpler by eliminating the need for pro-
grammers to reason about out-of-order operations.

44  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

Arrakis: The Operating System as
Control Plane
S I M O N P E T E R A N D T H O M A S A N D E R S O N

Simon Peter is a post-doctoral
research associate at the
University of Washington,
where his research focus is
on operating systems and

networks. Simon holds a Ph.D. in Computer
Science from ETH Zurich, Switzerland, and is a
founding member of the Barrelfish multi-core
operating system research project. Simon has
worked on many OS-related topics, including
multi-core scheduling, distributed file systems,
and distributed tracing, and contributes to
various OS projects, including the Linux
kernel, the GRUB2 boot loader, and the Debian
distribution. simpeter@cs.washington.edu

Thomas Anderson is the
Robert E. Dinning Professor
of Computer Science and
Engineering at the University
of Washington. Professor

Anderson is an ACM Fellow, and he has
won the IEEE Koji Kobayashi Computers and
Communications Award, the ACM SIGOPS
Mark Weiser Award, the IEEE Communications
Society William R. Bennett Prize, the NSF
Presidential Faculty Fellowship, and the Alfred
P. Sloan Research Fellowship.
tom@cs.washington.edu

The recent trend toward hardware virtualization enables a new
approach to the design of operating systems: instead of the operating
system mediating access to the hardware, applications run directly

on top of virtualized I/O devices, where the OS kernel provides only control
plane services. This new division of labor is transparent to the application
developer, but allows applications to offer better performance, security, and
extensibility than was previously possible. After explaining the need for such
an operating system design, we discuss the hardware and software chal-
lenges to realizing it and propose an implementation—Arrakis.

Consider a Web application, where one part executes within a Web service and another runs
on the machine of an end user. On the service side it is important for operations to happen as
efficiently as possible. Short response times are important to keeping users happy with the
provided service, and if the application is executing in the cloud, the operator pays for the
resources consumed. Users, on the other end, want to be as safe as possible from potentially
buggy or malicious code that is now downloaded simply when they go to a Web page.

Unfortunately, today’s operating systems are not designed to handle either of these cases
efficiently. On the server side, the Web application might be created using multiple compo-
nents, such as a MySQL database, an Apache Web server, and a Python language runtime,
executing on top of an operating system like Linux. Figure 1 shows such an architecture.
For every packet we handle on the network or database entry we read from the disk, we must
invoke the Linux kernel and go through the various mechanisms it provides. This involves
checking access permissions on system calls, data copies between user and kernel space,
synchronization delays in shared OS services, and queues in device drivers to facilitate
hardware multiplexing. Furthermore, hardware is typically virtualized in the cloud, and
virtualization often requires another layer of multiplexing using another set of device drivers
in the virtual machine monitor (VMM). Only after that is the I/O operation forwarded to the
real hardware. As I/O performance keeps accelerating at a faster pace than single-core CPU
speeds, this kind of interposition skews the I/O bottleneck to the operating system, which is
mediating each application I/O operation in order to safely multiplex the hardware.

On the end-user side, we want fine-grained sandboxes to protect us from potentially harmful
surprises from remote code of untrusted vendors, such as bugs and security holes. Systems
such as Native Client (NaCl [6]) go to great lengths to provide a secure execution environ-
ment, while allowing the use of shared browser services, like the JavaScript runtime. Their
task would be much simpler with the right level of hardware and OS support.

Driven by the commercial importance of cloud computing, hardware vendors have started
to offer devices with virtualization features that can bypass the virtual machine monitor for
many common guest OS operations. Among these are CPU virtualization, which has been
around for several years, and I/O virtualization, which has entered the market recently. For
example, an IOMMU makes device programming from a guest operating system safe, while
Single-Root I/O Virtualization (SR-IOV) allows devices to do their own multiplexing and
virtualization. Which hardware features are needed to improve the performance of our Web
application beyond just bypassing the VMM?

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 45

SYSTEMS
Arrakis: The Operating System as Control Plane

Hardware Support for User-Level Operating
Systems
An inspiration for this work is the recent development of virtu-
alizable network interfaces, such as the Intel X520 10 Gigabit
Ethernet controller. These interfaces provide a separate pool of
packet buffer descriptors for each virtual machine. The network
interface demultiplexes incoming packets and delivers them
into the appropriate virtual memory location based on the buffer
descriptors set up by the guest operating system. Of course, the
VMM still specifies which guest VMs are assigned to which
virtual network device. Once the setup is done, however, the data
path never touches the VMM. We would like to be able to demul-
tiplex packets directly to applications, based on IP addresses and
port numbers. For this to work, the network device needs to be
more sophisticated, but Moore’s Law favors hardware complex-
ity that delivers better application performance, so such features
are likely to be added in the future.

Entering the market now are hard disk controllers that allow
hard disk partitions to be imported directly as virtual disks to
guest operating systems. What we need is something more: the
ability to give any application direct access to its own virtual
disk blocks from user space. Unlike a fixed disk partition,
applications could request the kernel to extend or shrink their
allocation, as they are able to do for main memory today. The
disk device maps the virtual disk block number to the physical
location. Flash wear leveling and bad block remapping already
support this type of virtualization. As with the network inter-
face, the disk hardware would then read and write disk data
directly to application memory.

An interesting research question we are investigating is whether
we can efficiently simulate this model on top of existing hard-
ware. The idea is to create a large number of disk partitions,
which are then allocated as needed to different applications.
Application data is spread across different partitions, but the
application library synthesizes these partitions into a logical
whole seen by the higher level code.

Power management can also be virtualized [4]. At the applica-
tion level, knowing which devices need to be powered on and

which can be put into low-power mode is easier. Applications
are likely to know more about their present and future usage of a
device, and therefore are capable of smarter power management
than a device driver running within a traditional kernel.

Finally, Intel now supports multiple levels of (multi-level) page
translation (Extended Page Tables [5]). The intent of this is to
support direct read-write access by a guest operating system to
its own page tables, without needing to trap into the hypervisor
to reflect every change into the host kernel shadow page table
seen by hardware. While useful for operating system virtual-
ization, page translation hardware can also be used for a raft
of application-level services, such as transparent, incremental
checkpointing, external paging, user-level page allocation, and
so forth.

Arrakis: The Operating System Is the
Control Plane
What is required on the software side to allow applications
direct hardware I/O? Ideally, we would like a world in which the
operating system kernel is solely responsible for setting up and
controlling data channels to hardware devices and memory. The
hardware delivers data and enforces resource and protection
boundaries on its own. Applications receive the full power of the
unmediated hardware. To make this possible, we partition the
operating system into a data plane and a control plane. This is in
analogy to network routing, where the router OS is responsible
for setting up data flows through the router that can occur with-
out any software mediation.

Figure 2 shows this division in the Arrakis operating system.
In Arrakis, the operating system (control plane) is only respon-
sible for setting up hardware data channels and providing an
interface to applications to allow them to request and relin-
quish access to I/O hardware, CPUs, and memory. Applications
are able to operate directly on the unmediated hardware (data
plane).

Direct hardware access may be made transparent to the applica-
tion developer, as needed. We can link library operating systems
into applications that can provide familiar abstractions and

Figure 1: Application I/O paths for a virtualized Web service. Figure 2: Arrakis I/O architecture

46  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

SYSTEMS
Arrakis: The Operating System as Control Plane

mechanisms, such as the POSIX system call interface, thread
scheduling, inter-processor communication, virtual memory
management, file systems, and network stacks. These light-
weight library operating systems execute within the same
protection domain as the application.

The most important abstraction we are providing in Arrakis is
that of an application container. An application container is a
protection domain that provides a small interface to the Arrakis
kernel to request the setup and tear down of unmediated chan-
nels to I/O hardware and memory, but otherwise provides the
hardware itself. Figure 3 shows two such application containers.
The Arrakis kernel is solely responsible for providing the mecha-
nisms to allow allocating hardware resources to these contain-
ers, and, to allow applications to communicate, an interface
to share memory, as well as a mechanism for directed context
switches, akin to lightweight remote procedure calls (LRPC [1]),
which facilitates low latency communication on a single core.

Use Cases
A number of applications can benefit from Arrakis’ design,
among them Web applications, databases, cloud computing, and
high-performance computing (HPC) applications. We look back
at Figure 3 and discuss two concrete examples of Web browsers
and cloud applications within this section.

High-Performance Cloud Infrastructure
In Arrakis, we are able to execute the TCP/IP stack and network
card device driver all within the same application and eliminate
any system call protection boundary crossings, packet demulti-
plexing code, and kernel copy in/out operations that are typically
required in a monolithic operating system. What’s more, we can
customize the network stack to better match the requirements
of the Web server, down to the device driver. For example, the
device driver could map packet buffers into the application in
such a way that TCP/IP headers can be pre-fabricated and just
mapped in front of the payload. The application can simply write
the payload into the mapped buffer space. If packet checksumming
is required, it can be offloaded to the network interface card.

A more complex cloud application may include a MySQL database
server in addition to the Web server. The database is a fully trusted
component of the cloud application; however, both MySQL and
Apache ship within their own set of processes. Typically, these
are connected via UNIX domain or TCP/IP sockets that need to
be traversed for every request and the operating system has to
be invoked for each traversal. This introduces overhead due to
the required context switch, copy and access code operations, as
well as OS code to ensure that data passed from one application
to the other does not violate security. Avoiding these overheads
can further reduce round-trip request latencies.

Arrakis allows us to run processes of both servers within the
same protection domain. This eliminates most of the afore-
mentioned overheads. Data can simply be remapped between
applications, without sanity checks, and a context switch would
not involve a journey through the operating system.

Application-Level Sandboxing
Web browsers have evolved into running a myriad of complex,
untrusted Web applications that consist of native and managed
code, such as HTML5 and JavaScript. These applications have
access to low-level hardware and OS features, such as file sys-
tems and devices. Sandboxing this code is important to protect
against security flaws and bugs that threaten system integrity.

In Arrakis, we are able to leverage hardware support for
Extended Page Tables (EPT) to set up different protection
domains within the browser. Each sandbox occupies a different
protected address space within the browser’s application con-
tainer, with shared code and data mapped into all of its address
spaces. This allows for a simple sandboxing implementation
that, consequently, has a smaller attack surface.

Device drivers may be sandboxed as well using this approach.
Furthermore, requesting channels to multiple virtual functions
of the same hardware device from the kernel is possible. This
allows us to replicate device drivers within the Web browser
and run each replica within its own protection domain directly
on these virtual functions multiplexed by the hardware. For
example, we can request a virtual function per Web application
and run the driver replica within that Web application. If a buggy
device driver fails, only the Web application instance that trig-
gered the failure will have to be restarted. The failure will not
impact the rest of the browser environment or, worse, the rest of
the system.

Lightweight Sharing
Providing Arrakis would be relatively easy if applications were
complete silos—we could just run each application in its own
lightweight virtual machine and be done. Our interest is also in
providing the same lightweight sharing between applications
as in a traditional operating system, so the user sees one file

Figure 3: Example application containers containing a browser and a
cloud application

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 47

SYSTEMS
Arrakis: The Operating System as Control Plane

system, not many partitions, and applications are able to share
code and data segments between different processes. How might
this be done?

In Arrakis, an application can directly read and write its file
and directory data to disk, without kernel mediation. File layout
and recovery semantics are up to the application; for example, a
Web browser cache might use a write-anywhere format, since
losing several seconds of data is not important, while others
might use traditional write-ahead logging. In the common case,
most files are used only by the applications that wrote them;
however, we still need to be able to support transparent access
by other applications and system utilities, such as system-wide
keyword search and file backup. How do we design OS services
that efficiently allow the same sharing among multiple applica-
tions as that offered by operating systems that mediate each I/O
operation?

To achieve this, the format of files and directories is independent
of name look up. In Arrakis, we insert a level of indirection, akin
to NFS vnodes. When a file name look up reaches an application-
specific directory or file, the kernel returns a capability associ-
ated with the application handling storage of the corresponding
file. The capability is used to access the file’s contents, by
invoking a file memory mapping interface that is provided by the
storage handling application’s library operating system. This
allows us to share files safely and efficiently among untrusted
applications.

Related Work
The security/performance tradeoffs of monolithic operating
system designs have been of concern several times in the past.
Particularly relevant are Exokernel [3] and the SPIN operating
system [2].

Exokernel tried to eliminate operating system abstractions, and
thus allowed applications to implement their own. Applications
can link library operating systems that contain the abstractions
that fit best with an application’s operation. Note that it was not
possible to set up several protection domains within a library
operating system and thus sandboxing was equally difficult as
in today’s operating systems. Furthermore, to be able to safely
multiplex a single hardware device to multiple library operating
systems, Exokernel had to resort to the use of domain-specific
languages that had to be uploaded into the kernel for proper disk
and network multiplexing.

SPIN allowed uploading application-specific extensions into the
operating system kernel. This way, applications could access the
hardware and OS services more directly and gain a speedup. To
make this safe and protect the rest of the system from poten-
tially buggy or malicious extensions that were executing in
supervisor mode, SPIN required the use of a type safe program-

ming language (Modula-3) for extension development. This
allowed for an extension to be checked against all its accesses
before executing it within the OS kernel, but required the imple-
mentation of all extensions within this language.

Conclusion
Now is the time to take a fresh look at the division of labor
between the operating system, applications, and hardware.
Recent hardware trends are enabling applications to become
miniature operating systems, with direct I/O and virtual mem-
ory access, while safety and resource boundaries are enforced by
the hardware.

We propose a division of the operating system into a control
plane and a data plane that allows applications direct access
to the hardware in the common case. Applications can provide
their own storage, network, process, and memory management
without mediation by the operating system kernel.

We are in the early stages of developing the Arrakis operating
system. Our Web site, http://arrakis.cs.washington.edu/, pro-
vides further information and development status updates.

References
[1] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M.
Levy, “Lightweight Remote Procedure Call,” Proceedings of
the 12th ACM Symposium on Operating Systems Principles,
December 1989, pp. 102-113.

[2] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers, “Exten-
sibility, Safety and Performance in the SPIN Operating Sys-
tem,” Proceedings of the 15th ACM Symposium on Operating
Systems Principles, December 1995, pp. 267-284.

[3] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr., “Exoker-
nel: An Operating System Architecture for Application-Level
Resource Management,” Proceedings of the 15th ACM Sympo-
sium on Operating Systems Principles, December 1995,
pp. 251-266.

[4] R. Nathuji and K. Schwan, “Virtualpower: Coordinated
Power Management in Virtualized Enterprise Systems,”
 Proceedings of the 21st ACM Symposium on Operating Sys-
tems Principles, October 2007, pp. 265-278.

[5] Intel 64 and IA-32 Architectures Software Developer’s
Manual, August 2012.

[6] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native Client: A
Sandbox for Portable, Untrusted X86 Native Code,” Commu-
nications of the ACM, vol. 53, no. 1, January 2010, pp. 91-99.

48  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

COLUMNSPractical Perl Tools
Git Smart

D A V I D N . B L A N K - E D E L M A N

In the very first paragraph, this column will attempt to be both contrite
and useful (even to people who don’t like Perl). This issue, we’ll explore
how Perl can improve your Git (git-scm.com) experience. But first, I

must confess: I stole the title of this column from a most excellent Ruby gem
(the heresy of mentioning it here!) found at github.com/geelen/git-smart.
This gem adds a new subcommand “smart-pull” that knows how to do things
like automatically stash work in progress so a “git pull” can succeed. Do
check it out. But enough Ruby dalliance, let’s see what Perl can do for us.

Oh, okay, just a little more dalliance as a small introduction. In this column I’m not going to
spend virtually any time talking about what Git is, why you would to use it (see git-scm.com), or
even how to use it (see the many, many “Git’s not so bad once you learn how it works  .  .  .  here’s
a bunch of lollipop diagrams” articles on the Net for that). I will say that I have been thor-
oughly enjoying (ever) learning and using Git over the past year and a half or so. There’s
definitely a similarity between Perl and Git. They both share a certain internally consistent
obtuseness that yields a great deal of power and productivity upon greater study. Given this, I
think it is interesting to take a look at what happens when the two worlds collide.

Me Git Pretty Someday
The first category of Perl-Git convergence comes in the form of adding more spiffy to some
existing Git commands. For example, App::Git::Spark lets you type “git spark {arguments}”
to see a visual representation of the commit activity of a particular contributor. It uses
 sparklines (a term coined by Edward Tufte: www.edwardtufte.com/bboard/q-and-a-fetch
-msg?msg_id=0001OR&topic_id=1—they are cool, tiny, inline charts) to show how many
commits took place over a certain time period. Here’s a quick example that shows the number
of commits to the repository broken out by week for the last eight weeks:

 $ git vspark -w 8 dnb

 Commits by dnb over the last 8 weeks

 total: 183 avg: 23 max: 45

 4 ▉
 36 ███████▎
 30 ██████▏
 7 █▌
 18 ███▋
 19 ███▉
 24 ████▉
 45 █████████▏

Another subcommand is added in a similar fashion by the App::gitfancy module. When
installed (and put in your path) you can type “git fancy {arguments}” and it will print out “a
more readable graph” than the standard “git log” command provides (so brag the docs). This
graph is similar to the Git log output I’ve heard called “the train tracks” that attempts to

David N. Blank-Edelman is the
Director of Technology at the
Northeastern University College
of Computer and Information

Science and the author of the O’Reilly book
Automating System Administration with Perl (the
second edition of the Otter book), available
at purveyors of fine dead trees everywhere.
He has spent the past 24+ years as a system/
network administrator in large multi-platform
environments, including Brandeis University,
Cambridge Technology Group, and the MIT
Media Laboratory. He was the program chair
of the LISA ‘05 conference and one of the LISA
‘06 Invited Talks co-chairs. David is honored
to have been the recipient of the 2009 SAGE
Outstanding Achievement Award and to serve
on the USENIX Board of Directors beginning in
June of 2010. dnb@ccs.neu.edu

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 49

COLUMNS
Practical Perl Tools

show the way the different branches have diverged and merged
into the master branch of a project. So instead of the output of

 $ git log --graph --oneline

 looking like this:

 * 0a490db Merge branch ‘devel’ into production

 |\

 | * 729cfd5 removing cups from s_desktop

 | * 3118ab4 everything but restricted gets cups

 | * fcfaf8b No need for gdm in the server class

 * | 4310280 adding dependency repo to puppet list

 |/

 * 8dd68f3 adding subversion to all managed machines

 * 78349f7 fixing order of facts

showing how some work branched off of the master at 8dd68f3
later to be merged back in at 0a490db, we can use “git fancy” and
see:

 | M *0a490db (h) prod (HEAD, origin/prod, prod) Merge

 branch ‘devel’ into prod

 .-+

 O | 729cfd5 (r) origin/devel removing cups from s_desktop

 O | 3118ab4 (r) origin/devel everything but restricted gets

 cups

 O | fcfaf8b (r) origin/devel No need for gdm in the server

 class

 | O 4310280 (h) prod adding dependency repo to puppet list

 O-^ 8dd68f3 (r) origin/devel adding subversion to all

 managed machines

 O 78349f7 (r) origin/devel fixing order of facts

Besides the cute ASCII graphics and the color (which you can’t
see), it is doing a number of things to the output, such as using
one column per each branch, displaying clearly where the Merge
took place (the M character on the line), distinguishing the
branches from each other, and so on.

One last subcommand in the same vein if perhaps only to prove it
is possible to have too much of a good thing: the module Git::Glog
claims to provide a “spicey [sic] git-log with a hint of gravatars,
nutmeg and cinnamon.”

If for some reason you’ve always dreamed of seeing a person’s
gravatar (“Your Gravatar is an image that follows you from site
to site appearing beside your name when you do things like com-
ment or post on a blog” according to www.gravatar.com) next to
a person’s name in the “git log” output, you may have to contain
your excitement when I tell you your dream has come true. Hope-
fully, this excitement isn’t too diminished when I mention that
the picture you see when typing “git glog” is actually an ASCII
down-rez’d version of your gravatar (think blocky, really blocky,

and largely unrecognizable). I come right up to the edge of under-
standing why you might want to use this module but don’t quite
get there. I’m including it in this column less as a cautionary tale
and more as a source of inspiration for the sorts of “out there”
things you could implement.

Dancing Git
The next category of Perl-Git interactions isn’t nearly as snazzy
because it is fairly obvious and straightforward. At some point
you may want to perform operations on a Git repository from
Perl. There are two directions you can go when looking for a
module for this purpose. The first, more experimental route is
to find a module that makes use of the (again more experimen-
tal) libgit2 C library. As a small aside, I first heard of libgit2
in Vicent Marti’s great talk called “My Mom Told Me That Git
Doesn’t Scale” (which you can watch at vimeo.com/53261709 as
of the time of this writing). The reason why I’m repeating “more
experimental” so many times is that these modules seem a bit
less polished to me (and indeed libgit2 may also fall into that
category though it has really come a long way). Modules in this
category include Git::Raw and Git::XS.

The other kind of module calls the standard “git” binary directly.
It is likely to be less efficient but more solid in the short term.
We’re going to look at one of the modules that works this way:
Git::Repository. Working with Git::Repository is, as I mentioned
before, fairly obvious and straightforward if you know which Git
command lines you would normally execute by hand.

The first step is to create a Git::Repository object pointing either
at the working directory:

 use Git::Repository;

 $repo = Git::Repository->new(work_tree => $directory);

or the bare repository (the something.git directory):

 $repo = Git::Repository->new(git_dir => $bare_repo_dir);

or both if need be:

 $repo = Git::Repository->new(work_tree => $directory,

 git_dir => $bare_repo_dir);

And from there we call run() with the Git command we’d like to
perform. If by hand, you would type:

 $ git add wp-content/plugins

 $ git commit -m ‘updating WP plugins’

The Perl version would be:

 use Git::Repository;

 $repo = Git::Repository->new(git_dir => $bare_repo_dir);

 $repo->run(add => ‘wp-content/plugins’);

 $repo->run(commit => ‘updating WP plugins’);

50  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

COLUMNS
Practical Perl Tools

Pretty simple, no? My especially eagle-eyed readers might
notice that when you call Git on the command line, it some-
times provides (what it thinks is helpful) output in response to
your commands. Anything sent to STDERR by the commands
is just printed to STDERR by the code above. If you’d prefer
to capture the STDERR output so your code can change its
behavior accordingly, instead of calling run(), you would call
the command() method. It essentially provides a handle that
you read from:

my $output = $repo->command(commit => ‘updating WP plugins’);

print $output->stderr->getlines(); # prints the STDERR output

print $output->stdout->getlines(); # prints the STDOUT output

$output->close;

Git::Repository has some other nice methods for working with
the Git command line. See the Git::Repository::Tutorial and
other documentation in the package. There are a number of other
possible Perl modules that perform a similar function, includ-
ing Git::Wrapper and VCI (a version control system-agnostic
framework).

Git Me More
Given the number of modules that fall into this category, I would
say that there is a burning need out in the larger community for
a solution that helps you manage multiple Git repositories at the
same time. Let’s say you have a “build” directory that includes
a bunch of working directories in it, each a clone of a different
remote repository containing the components that knit together.
You can easily imagine wanting to be able to perform a pull on
all of the repositories so you have the latest version of all of the
components included before beginning a build. Modules that
help with this problem include Group::Git, App::Rgit, Git::Bunch,
App::GitGot, GitMeta, mr (found at http://joeyh.name/code/
mr/), and rgit. I’ll demonstrate two of these but I recommend
checking them all out to see which one most closely matches
your particular needs and work style. They are pretty similar,
though some have features that might scratch your specific itch
(for example, mr knows how to handle “any combination [of]
subversion, git, cvs, mercurial, bzr, darcs, cvs, vcsh, fossil and
veracity repositories”).

Most of these modules are not designed to be used directly by
a programmer; they largely serve as the library behind a new
command line script run to perform your actions. For example,
App::GitGot provides a “got” command, App::Rgit provides “rgit”,
Group::Git provides “group-git” and so on. Given that, let me
show you some command line examples from the first two I just
mentioned.

For “got”, we can type

$ cd working-directory-of-a-repo

$ got add # will prompt you for info about that repo

and “got” will add it to a list of repositories it is tracking for you
(the list can be seen with “got list”). To run a command on all of
those repositories, it is just something along the lines of

$ got status

to see something like this:

1) ldap-config : OK

2) migration : OK

3) puppet : OK

To work on a single repository, you can ask for it by name, as in:

$ got status puppet

Even spiffier, you can also

$ got cd puppet

and it will spawn a shell right in that repo’s working directory.

For a slightly less “sticky” experience (i.e., one that doesn’t
require you to explicitly track certain repositories), rget is lovely.
It lets you perform operations on all of the Git repositories found
in or below a certain directory (i.e., “recursive git”):

show the status for all of the repositories in/below current dir

$ rgit status

One nice feature is it defines special tokens that are set based on
the repository being worked on. For example: %n is the current
repository name and %b becomes what it calls a “bareified rela-
tive path.” The documentation shows these examples of token
use:

Tag all the repositories with their name

$ rgit tag %n

Add a remote to all repositories in “/foo/bar” to their

bare counterpart in qux on host

GIT_DIR=”/foo/bar” rgit remote add host git://host/qux/%b

Captain Hook
If we want to move away from talking about command lines
and into the backend of administering Git repositories, we
should talk a bit about hooks. If you’ve used hooks with another
version control system like Subversion, you’ve probably
encountered the idea that the version control software could
call scripts when certain actions like commits take place. I
mentioned SVN intentionally because it ships with a Perl script
called “commit-email.pl” (sometimes packaged in a separate
subversion-tools package). This script is meant to be called
after each commit has taken place so that the owner of the repo
can receive email notification of actions on that repository.

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 51

COLUMNS
Practical Perl Tools

Git has a similar hook system, and indeed there are Perl modules
meant to help make use of it. For example, the Git::Hooks pack-
age offers a system for having a single script handle all of your
hooks. In this script you define sections (from the doc):

 PRE_COMMIT {

 my ($git) = @_;

 # ...

 };

 COMMIT_MSG {

 my ($git, $msg_file) = @_;

 # ...

 };

The documentation shows how you can implement hooks that
restrict commits to being over a certain size or matching certain
Perl::Critic standards. It also provides a few plugins for further
extending the system.

If you need something a little simpler, Git::Hook::PostReceive
parses an incoming commit and makes it easy to work with its
contents. Here’s the example from the documentation:

 # hooks/post-receive

 use Git::Hook::PostReceive;

 my $payload = Git::Hook::PostReceive->new->read_stdin(<STDIN>);

 $payload->{new_head};

 $payload->{delete};

 $payload->{before};

 $payload->{after};

 $payload->{ref_type}; # tags or heads

 for my $commit (@{ $payload->{commits} }) {

 $commit->{id};

 $commit->{author}->{name};

 $commit->{author}->{email};

 $commit->{message};

 $commit->{date};

 }

Do Something Interesting
As a way of ending this column, I wanted to show one last
interesting intersection of the two worlds. We haven’t seen all
of the possible connections (e.g., there are a number of useful
modules for interacting with the very popular GitHub service
like Net::Github, Pithub, and Github::Fork::Parent), but this one
deserves special mention.

The GitStore module lets you use a Git repository as a “versioned
data store.” To give credit where credit is due, this module was
inspired by an article from 2008 called “Using Git as a Versioned
Data Store in Python” (newartisans.com/2008/05/using-git-
as-a-versioned-data-store-in-python/) and its subsequent
reimplementation in Ruby. The main premise is you can point
this module at a repo and then put “stuff” into that repo, cre-
ating versions as you desire. Here’s the sample code from the
documentation:

 use GitStore;

 my $gs = GitStore->new(‘/path/to/repo’);

 $gs->set(‘users/obj.txt’, $obj);

 $gs->set([‘config’, ‘wiki.txt’], { hash_ref => 1 });

 $gs->commit();

 $gs->set(‘yyy/xxx.log’, ‘Log me’);

 $gs->discard();

 # later or in another pl

 my $val = $gs->get(‘user/obj.txt’); # $val is the same as $obj

 # $val is { hashref => 1 });

my $val = $gs->get(‘config/wiki.txt’);

$val is undef since discard

my $val = $gs->get([‘yyy’, ‘xxx.log’]);

I said “stuff” above because you can place all sorts of things into
the datastore: objects, data structures, contents of variables, etc.
In the first section, you can see that we are storing Perl objects
under some name in the datastore. In the first set() line, the
object is stored under the name “users/obj.txt” and is retrieved
using this key in the get() example. The really cool part of this
example can be found in the commit() call. With that call, we’re
doing a “git commit,” and hence are committing that version of
the datastore. This may not be the fastest datastore available,
but for certain applications it is pretty darn cool.

Take care and I’ll see you next time.

52  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

COLUMNS

Building a Better Dictionary
D A V I D B E A Z L E Y

One of the software projects that I maintain is the PLY parser gen-
erator (http://www.dabeaz.com/ply). In a nutshell, PLY is a Python
implementation of the classic lex and yacc tools used for writing

parsers, compilers, and other related programs. It’s also not the kind of
program that tends to change often—to be sure, I’m not aware of any sort of
space-race concerning the implementation of LALR(1) parser generators
(although perhaps there’s some startup company Lalrly.com just waiting to
strike parsing gold).

As a stable piece of software, PLY only receives occasional bug reports, which are mostly
in the form of minor feature requests; however, I recently received a report that PLY was
randomly failing its unit tests on Python 3.3. Specifically, if you ran its unit test suite twice
in succession, different sets of unit tests would fail each time. For a program involving no
randomness or threads, this development was puzzling to say the least.

This problem of randomly failing unit tests was ultimately tracked down to a recent security-
related change in Python’s dictionary implementation. I’ll describe this change a bit later, but
this incident got me thinking about the bigger picture of Python dictionaries. If anything, it’s
safe to say that the dictionary is part of the bedrock that underlies the entire Python inter-
preter. Major parts of the Python language, such as modules and objects, use dictionaries
extensively. Moreover, they are widely used as data structures in user applications. Last, but
not least, the implementation of dictionaries is one of the most studied and tuned parts of the
interpreter.

Given their importance, you might think that the dictionary implementation would be some-
thing that’s set in stone. To be sure, Python’s core developers are reluctant to make changes
to something so important; however, in the past couple of years, the implementation of
dictionaries has been evolving in interesting and unusual ways. In this article, I hope to peel
back the covers a little bit and discuss how dictionaries work along with some notable recent
changes.

Dictionaries as Data Structures
Most Python programmers are familiar with using a dictionary as a simple data structure.
For example:

s = {

 ‘name’: ‘ACME’,

 ‘shares’: 100,

 ‘price’: 123.45

}

David Beazley is an open source
developer and author of the
Python Essential Reference (4th
Edition, Addison-Wesley, 2009)

and Python Cookbook (3rd Edition, O’Reilly &
Associates, 2013). He is also known as the
creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com/
ply/index.html). Beazley is based in Chicago,
where he also teaches a variety of Python
courses. dave@dabeaz.com

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 53

COLUMNS
Building a Better Dictionary

A dictionary is simply a mapping of keys to values. To perform
calculations, you simply access the key names:

>>> s[‘shares’] * s[‘price’]

12345.0

>>> s[‘shares’] = 75

>>> s[‘name’]

‘ACME’

>>>

Dictionaries are unordered. Thus, if you look at the ordering
of the keys, they’re usually not in the same order as originally
specified when the dictionary was created. For example:

>>> s

{‘price’: 123.45, ‘name’: ‘ACME’, ‘shares’: 75}

>>> s.keys()

[‘price’, ‘name’, ‘shares’]

>>>

Although the lack of ordering sometimes surprises newcomers,
it’s not something that causes concern in most programs; it’s just
an artifact of the implementation.

From dictionaries to classes is only a small step. For example,
suppose you have a class like this:

class Stock(object):

 def __init__(self, name, shares, price):

 self.name = name

 self.shares = shares

 self.price = price

If you make an instance, it’s actually just a thin wrapper around
a dictionary. For example:

>>> s = Stock(‘ACME’, 100, 123.45)

>>> s.shares * s.price

12345.0

>>> s.__dict__

{‘price’: 123.45, ‘name’: ‘ACME’, ‘shares’: 100}

>>>

Naturally, most of this is old news to anyone who’s been pro-
gramming in Python for a while.

Dictionary Implementation
Under the covers, dictionaries are implemented as hash tables.
Each entry in a dictionary is represented by a structure (hash-
val, key, value) where hashval is an integer hashing code, key
is a pointer to the key value, and value is a pointer to the value.
The special hash value used in this triple is not something you
normally think about, but it’s easily obtained using the built-in
hash() function (note: to get examples that exactly match what’s
shown, use Python 2 compiled for a 64-bit platform):

>>> hash(‘name’)

-4166578487145698715

>>> hash(‘shares’)

-5046406209814648658

>>>

When an empty dictionary is first created, a small eight-element
array of dictionary entry structures is allocated. Entries are
inserted into this array at positions determined by bit-masking
the above integer hash codes. For example:

>>> hash(‘name’) & 7

5

>>> hash(‘shares’) & 7

6

>>> hash(‘price’) & 7

2

>>>

The numerical order of the above positions determine the order
in which keys will appear when you look at a dictionary. For
example:

>>> s.keys()

[‘price’, ‘name’, ‘shares’]

>>>

If you add a new key to a dictionary, its insertion position is
determined in the same way. For example:

>>> hash(‘time’) & 7

7

>>> s[‘time’] = ‘9:45am’

>>> s

{‘price’: 123.45, ‘name’: ‘ACME’, ‘shares’: 75, ‘time’: ‘9:45am’}

>>>

If two keys map to the same index, a new position is found by
repeatedly perturbing the index to a new value until a free slot
is found. Without explaining the rationale for the mathematical
details, the following session illustrates what happens if you add
a new entry s[‘account’] = 1 to the above dictionary:

>>> hval = hash(‘account’)

>>> index = hval & 7

>>> index # Collision with “price”

2

>>> perturb = hval

>>> index = (index << 2) + index + perturb + 1

>>> index & 7 # Collision with “name”

5

>>> perturb >>= 5

>>> index = (index << 2) + index + perturb + 1

>>> index & 7 # Collision with “name”

5

54  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

COLUMNS
Building a Better Dictionary

>>> perturb >>= 5

>>> index = (index << 2) + index + perturb + 1

>>> index & 7 # Free slot: position 0

0L

>>>

Indeed, if you try it, you’ll find that the new entry appears first in
the resulting dictionary:

>>> s[‘account’] = 1

>>> s

{‘account’: 1, ‘price’: 123.45, ‘name’: ‘ACME’, ‘shares’: 75, ‘time’:

‘9:45am’}

>>>

As dictionaries fill up, that collisions will occur and perfor-
mance will degrade becomes increasingly more likely (for
instance, notice that four different table positions were checked
in the above example). Because of this, the size of the array used
to hold the contents of a dictionary is increased by a factor of
four whenever a dictionary becomes more than two-thirds full.
This is a rather subtle implementation detail, but you can notice
it if you carefully observe what happens if you add a sixth entry
to the above dictionary:

>>> s

{‘account’: 1, ‘price’: 123.45, ‘name’: ‘ACME’, ‘shares’: 75, ‘time’:

‘9:45am’}

>>> s[‘date’] = ‘05/26/2013’

>>> s

{‘account’: 1, ‘name’: ‘ACME’, ‘price’: 123.45, ‘shares’: 75,

‘time’:’9:45am’, ‘date’: ‘05/26/2013’}

>>>

Notice how ‘name’ and ‘price’ swapped places when the next
item was inserted. This is due to an expansion of the dictionary
size from 8 to 32 entries and a recomputation of the hash table
positions. In the new dictionary, the new positions for ‘name’ and
‘price’ are as follows:

>>> hash(‘name’) & 31

5

>>> hash(‘price’) & 31

10

>>>

To be fair, these kinds of details are not something that most
programmers ever need to concern themselves with other than
to realize that dictionaries involve some extra overhead both in
computation and memory.

Digression: Dictionary Alternatives
If you’re using dictionaries to store a lot of small data structures,
it’s probably worth noting that there are much more efficient
alternatives available. For example, even a small dictionary has a
memory footprint larger than you might expect:

>>> s = { ‘name’: ‘ACME’, ‘shares’: 100, ‘price’: 123.45}

>>> import sys

>>> sys.getsizeof(s)

280

>>>

Here you see that the dictionary is 280 bytes in size (actually,
296 bytes in Python 3.3). Keep in mind, that this size is just for
the dictionary itself, not for the items stored inside. If this seems
like a lot, you’re right. The extra overhead can add up signifi-
cantly if creating a large number of small data structures (e.g.,
imagine a program that’s read a million line CSV file into a list of
dictionaries representing each row).

Class instances are even more inefficient, adding an additional
64 bytes of overhead to the total size. In fact, a basic instance
with no data at all requires 344 bytes of storage when one adds
up all of the parts. For example:

>>> s = Stock(‘ACME’, 100, 123.4)

>>> sys.getsizeof(s)

64

>>> sys.getsizeof(s.__dict__)

280

>>>

If you’re working with data, there are some better choices. One
such option is to create a named tuple:

>>> from collections import namedtuple

>>> Stock = namedtuple(‘Stock’, [‘name’, ‘shares’, ‘price’])

>>> s = Stock(‘ACME’, 100, 123.45)

>>> s.name

‘ACME’

>>> s.shares * s.price

12345.0

>>> sys.getsizeof(s)

80

>>>

A named tuple gives you the nice attribute access normally
associated with a class and much more compact representation;
however, as a tuple, the attributes are immutable. If you need
mutability, consider defining a class with __slots__ instead:

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 55

COLUMNS
Building a Better Dictionary

class Stock(object):

 __slots__ = (‘name’, ‘shares’, ‘price’)

 def __init__(self, name, shares, price):

 self.name = name

 self.shares = shares

 self.price = price

This produces an even more compact representation:

>>> s = Stock(‘ACME’, 100, 123.45)

>>> s.name

‘ACME’

>>> s.shares = 75

>>> sys.getsizeof(s)

72

>>> hasattr(s, ‘__dict__’) # No underlying __dict__

False

>>>

The use of __slots__ on a class is actually the most compact
representation of a data structure in Python without resorting to
lower-level hacks such as binary encodings or C extensions. It’s
even smaller than using a tuple:

>>> s = (‘ACME’, 100, 123.45)

>>> sys.getsizeof(s)

80

>>>

Therefore, if you’re working with a lot of data, and you’re think-
ing about using dictionaries because of their programming
convenience, consider some of these alternatives instead.

Randomized Key Ordering
In late 2011, a new kind of denial-of-service attack that exploited
hash-table collisions was unveiled (see “Efficient Denial of
 Service Attacks on Web Application Platforms” at http://
events.ccc.de/congress/2011/Fahrplan/events/4680.en.html).
Without going into too many details, this attack involves sending
carefully crafted requests to a Web server that push Python’s
hash-table collision handling algorithm into worst-case O(n**2)
performance—the end result of which is that a clever hacker can
make a server consume vast numbers of CPU cycles.

To combat this, Python now randomly salts the computa-
tion of hash values from run-to-run of the interpreter. This is
something that is enabled by default in Python 3.3 or that can
be enabled by the -R option to the interpreter in Python 2.7. For
example:

bash % python -R

>>> s = {‘name’: ‘ACME’, ‘shares’:100, ‘price’:123.45 }

>>> s

{‘shares’: 100, ‘name’: ‘ACME’, ‘price’: 123.45}

>>>

bash-3.2$ python -R

>>> s = { ‘name’: ‘ACME’, ‘shares’:100, ‘price’:123.45 }

>>> s

{‘name’: ‘ACME’, ‘shares’: 100, ‘price’: 123.45}

>>>

The random salting makes it impractical for an attacker to
construct requests that will work everywhere; however, the
randomization can also cause funny things to happen in certain
programs that use dictionaries.

In the case of PLY, randomness of dictionary order changed
the numbering of states in a large automatically created state
machine. This, in turn, caused a certain randomness in the
ordering of output messages being checked by unit tests.

Although random ordering is harmless to the overall execution
of the program, I had to fix a number of unit tests to take it into
account. I also selectively introduced a few uses of OrderedDict
instances (from the collections module) to force a predictable
order on data structures of critical importance to the construc-
tion of state tables.

Split-Key Dictionaries
Python 3.3 introduces yet another improvement on dictionar-
ies related to their use in class instances. In a class such as the
Stock class presented earlier, observe that every instance is
going to have exactly the same set of keys. Taking this observa-
tion into account, Python 3.3 dictionaries actually have two
internal representations; a combined representation where keys
and values are stored together and a split representation where
the keys are only stored once and shared among many different
dictionaries.

For instances, the more compact split representation is used.
This is a bit hard to view directly, but here is a simple example
that shows the impact on the memory footprint:

>>> s = Stock(‘ACME’, 100, 123.45)

>>> sys.getsizeof(s)

64

>>> sys.getsizeof(s.__dict__) # Note: Greatly reduced size

104

>>>

Indeed, if you try a further experiment in which you create one
million identical instances, you’ll find the total memory use to be
about 169 MB. On the other hand, creating one million identical
dictionaries requires almost 293 MB.

This change in implementation is interesting in that it now
makes the use of a class a much better choice for storing data
structures if you care about memory use. The only downside
is that all benefits are lost if you perform any manipulation of

56  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

COLUMNS
Building a Better Dictionary

instances that add attributes outside of the __init__() method.
For example:

>>> sys.getsizeof(s.__dict__)

104

>>> s.date = ‘5/27/2013’

>>> sys.getsizeof(s.__dict__) # Flips to combined dictionary

296

>>>

Final Words
If there’s any take-away from this article, it might be that parts
of Python often assumed to be frozen in time are still a target of
active development. Dictionaries are no exception. If you make
the move to Python 3.3, you’ll find that they are used in a much
more efficient way than before (especially for instances).

This is by no means the last word. At this time, Raymond Het-
tinger, one of Python’s core developers, has been experimenting
with yet another dictionary representation which is even more
memory efficient. Some details about this can be found at http://
code.activestate.com/recipes/578375-proof-of-concept-for-a
-more-space-efficient-faster/.

APRIL 2–4, 2014 • SEATTLE, WA

11th USENIX Symposium on Networked Systems
Design and Implementation

Join us in Seattle, WA, April 2-4, 2014, for the 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ‘14). NSDI focuses on the design principles, implementation,
and practical evaluation of networked and distributed systems. Our goal is to bring together
researchers from across the networking and systems community to foster a broad approach to
addressing overlapping research challenges.

Check out the Call for Papers at www.usenix.org/conference/nsdi14/call-for-papers. Abstract
 submissions will be due September 20, 2013, while full paper submissions will be due September
27, 2013. Authors will be notified of acceptance or rejection by December 13, 2013.

Program Co-Chairs: Ratul Mahajan, Microsoft Research, and Ion Stoica, University of California,
Berkeley

www.usenix.org/conference/nsdi14

Why Join USENIX?
We support members’ professional and technical
development through many ongoing activities, including:

 Open access to research presented at our events

 Workshops on hot topics

 Conferences presenting the latest in research and practice

 LISA: The USENIX Special Interest Group for Sysadmins

 ;login:, the magazine of USENIX

 Student outreach

Your membership dollars go towards programs including:
 Open access policy: All conference papers and videos are immediately free to everyone upon

 publication

 Student program, including grants for conference attendance

 Good Works program

Helping our many communities share, develop, and adopt ground-breaking ideas in advanced technology

Join us at www.usenix.org

58  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

COLUMNS

iVoyeur
inotify

D A V E J O S E P H S E N

The last time I changed jobs, the magnitude of the change didn’t really
sink in until the morning of my first day, when I took a different com-
bination of freeways to work. The difference was accentuated by the

fact that the new commute began the same as the old one, but on this morn-
ing, at a particular interchange, I would zig where before I zagged.

It was an unexpectedly emotional and profound metaphor for the change. My old place was
off to the side, and down below, while my future was straight ahead, and literally under
construction.

The fact that it was under construction was poetic but not surprising. Most of the roads I
travel in the Dallas/Fort Worth area are under construction and have been for as long as
anyone can remember. And I don’t mean a lane closed here or there. Our roads drift and wan-
der like leaves in the water—here today and tomorrow over there. The exits and entrances,
neither a part of this road or that, seem unable to anticipate the movements of their brethren,
and are constantly forced to react. They stretch and grasp, and struggle to keep pace, and
sometimes they even manage to connect things, albeit usually not the things they claim to
connect. The GPS units, having given up years ago, refuse to commit themselves, offering
only vague, directionless suggestions that begin “continue to merge.”

On that particular morning—and really every morning that one takes a rarely traveled road
in DFW—that new zig was literally and figuratively the beginning of an adventure into a
wholly unexplored country, despite my having traveled the route several times in the past.
Often, because of the unfortunate, disembodied exits, these adventures involve the acci-
dental continued merging onto another highway in an utterly unexpected direction (usually
north). So it was that I arrived emotionally depleted and 15 minutes late on the first morning
of my new job. They didn’t seem to notice.

I can imagine neither the ultimate goal of the master plan under which our Department of
Transportation labors nor whether its intent is whimsical or malevolent, but it certainly has
provided ample food for reflection over the years. Many of my professional undertakings
remind me of this or that aspect of our highways.

There are, for example, problems that seem to recur every so often that, like the exits in
Grapevine TX, take me in a new and surprising direction every time I visit. File system
notification seems to be one such problem. Every time I’ve had a need to come up with a fool-
proof way to monitor changes to a set of files or directories, my options seem to have changed
radically.

With three in-kernel solutions—dnotify, inotify, and fanotify—kernel instrumentation like
systemtap, several external libraries like libevent, and myriad security-focused tools like
snoopy logger and samhain, there are now more ways to monitor changes to files than there
are types of file in UNIX.

Dave Josephsen is the
author of Building a
Monitoring Infrastructure
with Nagios (Prentice Hall
PTR, 2007) and is Senior

Systems Engineer at DBG, Inc., where he
maintains a gaggle of geographically dispersed
server farms. He won LISA ‘04’s Best Paper
award for his co-authored work on spam
mitigation, and he donates his spare time to
the SourceMage GNU Linux Project.
dave-usenix@skeptech.org

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 59

COLUMNS
iVoyeur

On this visit, after an afternoon of reading, I decided to try out
the inotify API, which is built-in to Linux kernels >= 2.6.13.
Created to address several shortcomings in dnotify, namely, a
vastly simplified (signals free) interface to more precise events
about more specific file-system objects (dnotify only works
on directories), inotify makes dnotify obsolete. The consensus
seems to be that unless you very specifically need an in-kernel
solution for monitoring directories that will never be unmounted
on Linux kernels < 2.6.13, dnotify should be ignored. I should
also mention that there are a few wrapper libraries that provide
a more portable and abstract interface to inotify and inotify-like
functionality on systems other than Linux. Among these are
inotify_tools, FAM, and Gamin.

Further, the inotify_tools package provides two programs that
are suitable for use in shell scripts: inotifywatch, which collects
and reports inotify events in a “tail -f” fashion, and inotifywait,
which blocks waiting for user-specified inotify events.

Inotify’s interface is pretty simple. After creating an inotify
instance with inotify_init(), the application informs the kernel
which files it’s interested in watching with one or more calls to
inotify_add_watch(). Each call to inotify_add_watch() is accom-
panied by a path name and a bitmask specifying the event types
to watch for. The add_watch function returns a file descriptor,
which can be poll()’d, select()’d, or simply read() by your applica-
tion. When successfully read, the file descriptor returns one
or more inotify_event structures, each of which contains the
details of a single file system event. When the application has
finished its monitoring duties, it closes the watch file descriptor.
I’ve provided a small example program in Listing 1.

Adding and Removing Watches
The add_watch function is not recursive, and therefore must be
called on each subdirectory in a given directory that you want
to monitor. If you call it on a directory, it will monitor all files in
that directory (but not files in subdirectories). The function is
formally defined as follows:

int inotify_add_watch(int fd, const char *pathname, uint32_t mask);

Add_watch returns 0 on success or -1 on failure. The first argu-
ment is the file descriptor returned from inotify_init(), and is
used as a means of referring to our inotify instance. The second
argument is the path to the file or directory you want to monitor.
The application needs to have read permission on this object for
the call to succeed. The third argument is a collection of event
bits OR’d together. There are 23 possible events, 12 of which
represent file system actions, like IN_CREATE (a file or directory
was created).

A few event constants are shorthand for combinations of other
events. For example, the event IN_MOVED_FROM is set when a file
is moved out of a monitored directory, while IN_MOVED_TO is set

when a file is moved in to a monitored directory. The shorthand
event IN_MOVE can be used in lieu of both MOVED events. The
shorthand event IN_ALL_EVENTS can be used to subscribe to all
event types.

When a successful read returns an inotify_event struct, the
same event constants are used in the struct to communicate the
type of event that has transpired. Several of the event types only
occur as output from inotify in these structs. Examples include
IN_ISDIR, which is set whenever an event describes a directory,
or IN_UNMOUNT, which is set when a directory is unmounted.

Finally, a few event types can be set in the bitmask to specify
options to the inotify subsystem, like IN_DONT_FOLLOW, which
turns off dereferencing of symbolic links. The complete list of
event types is available in the inotify(7) man page.

Calling inotify_add_watch() on a file or directory that is already
being watched replaces the event mask for that file or directory,
but specifying IN_MASK_ADD in the replacement mask modifies
this behavior such that the new mask is OR’d with the old one.

A call to inotify_rm_watch() explicitly removes watches on
named files or directories. Whenever you explicitly remove a
watch, or a file is moved outside a watched directory structure,
inotify generates an event with the IN_IGNORED bit set.

Reading Events
The FD returned by add_watch follows the universal I/O con-
vention, and may be treated like any other file descriptor. If no
events have occurred when your application attempts to read()
the descriptor, it blocks until an event is available. Applications
may use poll() or select() for nonblocking behavior. Success-
ful reads yield a stream of bytes, which is composed of one or
more serialized inotify_event structs. The struct is defined as
follows:

struct inotify_event {

int wd; //the FD on which the event occurred

uint32_t mask; //bitmask describing the event

uint32_t cookie; //cookie to detect related events

uint32_t len; //size of the name field in bytes

char name[]; //null terminated filename (optional)

};

The wd descriptor is used by applications that are monitoring
multiple files or directories via the same inotify file descriptor.
To use it, your application needs to keep an internal map that
relates the file descriptors returned by add_watch, to the files
you passed into add_watch.

The mask is a bitmask that describes the event using the con-
stants I’ve discussed above.

60  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

COLUMNS
iVoyeur

Listing 1

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 61

COLUMNS
iVoyeur

Cookies are currently only used to associate MOVE events that
are the result of renaming files. When a file is renamed, two
events will be generated: an IN_MOVED_FROM event for the old file
name and an IN_MOVED_TO event for the new file name. When
this occurs, the value of the cookie field will be the same in both
events, so that the application can associate the two.

If an event occurs to a file inside a monitored directory, the name
field will be set to the name of the file, and len will indicate the
number of bytes allocated for the name field. If, however, the
event occurs to the directory itself, name will be NULL and len
will be set to 0.

Because name is a dynamically allocated field, predicting the
necessary size of the read buffer for the next event struct is
impossible until you’ve read the struct and dereferenced the len
field.; however, we can safely assume the size of the next struct
will be smaller than:

(sizeof(struct inotify_event) + NAME_MAX + 1)

where NAME_MAX is the local OS constant that specifies the
maximum size of a file name (usually set in limits.h). In Listing
1, I’m passing a buffer 10 times this size to read(). This will allow
the application to retrieve at least 10 events with a single read()
efficiently, and use pointer arithmetic to split them out. A read
from an inotify file descriptor will yield the number of available
events that will fit in the supplied buffer. In the event that you
pass a buffer that is too small to hold the next single event struct,
read() will fail with EINVAL.

Because add_watch is not recursive, for inotify applications to
dynamically detect and add_watch newly created subdirecto-
ries in a currently watched directory is pretty common. To keep
things simple, I didn’t include an example of that in my sample
code, but I hope given this article’s Listing 1, that it’s an obvious
enough exercise for the reader.

As always I hope you’ve enjoyed the ride. Until next time, con-
tinue merging.

62  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

For Good Measure
Security Debt

D A N G E E R A N D C H R I S W Y S O P A L

Dan Geer is the CISO for In-Q-
Tel and a security researcher
with a quantitative bent. He has
a long history with the USENIX
Association, including officer

positions, program committees, etc.
dan@geer.org

Chris Wysopal, Veracode’s CTO
and co-founder, is responsible
for the company’s software
security analysis capabilities.
In 2008 he was named one of

InfoWorld’s Top 25 CTOs and one of the 100
most influential people in IT by eWeek. One
of the original vulnerability researchers and a
member of L0pht Heavy Industries, he is an
author of L0phtCrack and Netcat for Windows,
and is the lead author of The Art of Software
Security Testing published by Addison-Wesley.
cwysopal@gmail.com

Blessed are the young for they shall inherit the national debt.

 — Herbert Hoover

W hen you start a company, you take on financial debt so that you
can reach your market in time. When you release a product, you
take on technical debt, and for the same reason. Ward Cunning-

ham talked about this in 1992 [1]:

[I]mmature code may work fine and be completely acceptable to the customer,
excess quantities will make a program unmasterable, leading to extreme
specialization of programmers and finally an inflexible product. Shipping first
time code is like going into debt. A little debt speeds development so long as it is
paid back promptly with a rewrite…The danger occurs when the debt is not repaid.
Every minute spent on not-quite-right code counts as interest on that debt. Entire
engineering organizations can be brought to a stand-still under the debt load of an
unconsolidated implementation.

One of the present authors proposed [2] that cyberinsecurity is the critical form of techni-
cal debt, if for no other reason that a bug is exercised by an accident but a vulnerability is
exercised by an enemy. Consider your security vulnerabilities to be a debt note that has been
purchased by someone who is out to get you—not only are you in debt, but the debt can be
called at the most inconvenient time calculable.

Every software release is debt issuance, and vulnerabilities are common in fresh code [3], but
as Clark et al. point out [4], you can roll your code often enough that the attackers can’t keep
up. (Google appears to roll Chrome every 3–5 days.) Rolling over a financial debt cheaply
means life is good, unless and until there is a rate shock.

The problem with rolling over your security debt, however, is that you can soon have no idea
what is going on. If you are a supplier, then you may choose to buy outside testing, that is to
say you may choose to get your debt rated, but with sub-week release cycles it is not possible
to test within cycle—test results are always for a now previous version. If you are a consumer,
your test might be the most trivial of all tests, viz., whitelisting the hash taken from the sup-
plier’s golden master, but propagation time for the whitelist may well not keep up with the
rate of issuance, just like a rating agency that can’t even rubber stamp what the mortgage
lender is issuing as fast as they are issuing it.

Let’s say you’ve been rolling over your cyberinsecurity debt for long enough that you have
a considerable debt overhang built into your products, or into your enterprise deployment
of everything from Aardvarks to Zebras. Well, you can pay it down. Microsoft showed us
how when it declared cyberinsecurity debt bankruptcy and built IIS 6.0 from scratch. That
rewrite brought an untenably rising incidence of reported vulns down to a dull roar [5], as
seen in Figure 1.

Of course, there are substantial security debts building elsewhere; here, in Figure 2 we dem-
onstrate this buildup with some obvious choices, all on the same timeline as Figure 1, and
their sum, which is a lower bound on net security debt buildup.

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 63

COLUMNS
For Good Measure

Financial bankruptcy is especially easy in the US, which is why
the US economy rebounds from boneheaded financial mistakes
faster than elsewhere—you just throw out the trash . . . unless the
thing “you” need to bankrupt is too big to fail (TBTF). Now you
can’t shuck the debt. TBTF in finance is a bank whose failure
would kill other firms. TBTF in cyber is an installed base too
big to overwrite. As with Marsh Ray’s TLS renegotiation attack
[6], an installed base that is TBTF means that all that can be
done is to add mitigating software on top of it. Adding software
increases the attack surface. Happy New Day.

In the previous installment of this column [7], we proposed a
market approach to dealing with cyberinsecurity risk by sepa-
rating out severity from frequency of cyberinsecurity events.
Severity is context dependent and a matter of taste. Frequency
is an objective, mensurable fact, thus it can be the basis for a
market. In synopsis, a futures market in the frequency of cyber-
insecurity events (a trendline based on a counting function)
dodges the question of severity (the maximum excursion of some
unhappy cost curve). Trendlines are ordinal-scale statistics, i.e.,
good enough for decision support. Trendlines do not require the
precision of definitions (what is “severity?”) that frustrate the
appearance of a hard science of cybersecurity. The key to the
proposed market in cyberinsecurity event futures is an underly-
ing debt pool from which the security events come, an underlying
debt pool for which the security events provide an estimate. That
underlying debt pool is, obviously, accumulated cyberinsecurity
debt. A street cop cannot know how much heroin is for sale, but
he can follow the price and adjust his policing based on which
strategies raise the price of heroin. A cybersecurity cop cannot
know how many vulnerabilities are present in the code on which
he depends, but he can follow the price of cyberinsecurity event
futures (and not the price of zero-days).

If cyberinsecurity insurance is written as a fixed dollar amount
per cyberinsecurity event, then the predicted exposure of the
insurer is simply the predicted frequency of cyberinsecurity
events. And if cyberinsecurity events are, in turn, a linear func-
tion of cyberinsecurity debt load, then we have a third alterna-
tive (hedging in cyberinsecurity event futures) to what had been

a choice of two less attractive alternatives: continuing to roll
over the cyberinsecurity debt (of unknown size) or paying that
debt down through codebase bankruptcy.

We consider Adobe’s recent conversion to Software as a Service
[8] to be an unacknowledged cyberinsecurity debt bankruptcy
with Adobe remaining as a debtor in possession. Perhaps
cyberinsecurity debt avoidance explains part of why the market
capitalization of the top three SaaS vendors is growing five times
as fast as the top three (product) sales vendors [9], as shown in
Figure 3.

The collectivization of risk can be voluntary (you buy insurance)
or involuntary (you are taxed to bail out TBTF). Insurance at
industrial scale requires reinsurers—entities that sell insurance
to insurers such as for linked-losses, viz., catastrophes where
a single event (hurricane) causes large numbers of losses. The

Figure 1: Rising incidence of reported vulnerabilities down

Figure 2: Security debts building

Figure 3: The market capitalization of the top three SaaS vendors is grow-
ing five times as fast as the top three sales vendors.

64  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

COLUMNS
For Good Measure

chance of catastrophes in cyberinsecurity is proportional to
deployed interdependence, meaning that installed base is a strict
lower bound indicator for what is TBTF in cyberinsecurity, i.e.,
the likelihood of a successful attack on one component of that
interdependence may be a consequence of a successful attack on
some different component.

Excepting TBTF, there always comes a point where risk transfer
(like insurance) is a better investment than continued risk reduc-
tion, particularly when risk reduction is proven difficult even for
firms that want to do it. Veracode’s SoSS 5 report [10] shows two
examples where among committed firms and repeated interven-
tions, their cyberinsecurity score is all but constant. Over six
quarters, analyzed software in the aggregate had a ±1.7% score

and Web applications subject to SQL injection had a ±4.7% score

Yes, those are flat lines.

Although it is true that the number of cyberinsecurity insurers
is rising, so far as we know there is not yet a reinsurance market
for cyberinsecurity insurance. Because reinsurance is a neces-
sary condition for a robust market among primary insurers, and
because the optimal number of reinsurers is the square root of
the number of primary insurers [11], if the number of primary
cyberinsecurity insurance issuers is to grow, so will grow the
need for market makers in insurance futures. Despite being
inconsistent with a free people, when a jurisdiction requires that
its citizens buy insurance, capital must be sequestered to cover
probable losses. A market that capitalizes the reserves needed
for cyberinsecurity insurance is thus essential by observation:
the risk is already collectivized even if merely ignored through
the rolling over of cyberinsecurity debt society-wide.

One can argue about what is the “interest” on the cyberinsecu-
rity debt, but it is unclear which of several models is relevant to
the fundamental decisions—unless the interest rate is near zero,
which it can only be by fiat rather than being market derived.
The supply side makes exactly that assertion: the high-order bit
on every page of every EULA is “It is not our fault,” and courts
have tended to agree that if the end user accepted such license
terms, then they do govern. We do not think that cheaply rolling
over cyberinsecurity debt can indefinitely continue, and therefore
there needs to be a way to do risk transfer—one where objective
measures of cyberinsecurity debt help price the transfer of risk.
It would be wise to have that pricing in place before the rate
shock hits.

References
[1] Ward Cunningham, “The WyCash Portfolio Management
System,” March 26, 1992: c2.com/doc/oopsla92.html.

[2] Chris Wysopal, “Application Security Debt and Applica-
tion Interest Rates”: http://www.veracode.com/blog/2011/02/
application-security-debt-and-application-interest-rates.

[3] Elizabeth Nichols, “State of Software Security”: http://
www.veracode.com/blog/2013/05/soss-one-figure-at-a-time/.

[4] “Familiarity Breeds Contempt: The Honeymoon Effect
and the Role of Legacy Code in Zero-Day Vulnerabilities”:
http://www.acsac.org/2010/openconf/modules/request.php
?module=oc_program&action=view.php&a=&id=69&type=2.

[5] Data courtesy of osvdb.org.

[6] “Vulnerable Compliance”: https://www.usenix.org/
system/files/login/articles/geer.pdf.

[7] Dan Geer and Dan Conway, “The Price of Anything Is the
Foregone Alternative,”;login:, vol. 38, no. 3, June 2013:
geer.tinho.net/login/geer.login.1306.pdf.

[8] “Adobe Kills Creative Suite—All Future Features
Online Only”: http://www.theregister.co.uk/2013/05/06/
adobe_kills_creative_suite_for_cloud.

[9] Data courtesy of Yahoo Finance.

[10] “State of Software Security Volume 5,” https://www.
veracode.com/images/pdf/soss/state-of-software-security
-report-volume5.pdf.

[11] Michael Powers and Martin Shubik, “A ‘Square-Root
Rule’ for Reinsurance,” Revista de Contabilidade e Finan-
ças (Review of Accounting and Finance), vol. 17, no. 5, pp.
101-107.

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 65

COLUMNS

/dev/random
R O B E R T G . F E R R E L L

On a lark (it was big for a lark, but I still had to scrunch up a bit) I
applied for an infosec manager position at Facebook. I got to the
“upload your resume” segment and there was also a statement indi-

cating the desirability of a code sample. The job is not a software engineering
job, but apparently their world consists of nails and code is the hammer. I
scratched my head, as I haven’t written any substantial code in at least seven
years, and finally included a Perl module I coded in 1999. I don’t even know if
it will run.

I hope it gives them a good laugh, if nothing else. I did put in the comments that I’m a security
geek, not a coder. They wanted me to solve a programming puzzle, too, but I ignored that part.
They tried to convince me. I ignored them even more vigorously: they don’t know that I solve
all puzzles by cheating, and I intend to keep it that way. So, no Facebook job for me. It’s prob-
ably for the best. I would be tempted to give users an encryption option, so that only those
friends with whom they choose to share the key could read their posts. To everyone else they
would look like shared photos of cats, funny mash-ups involving celebrities and/or cartoon
characters, and long misspelled diatribes on half-understood government policies. One
might be excused for thinking that feature has already been implemented.

The Facebook adventure put me in mind of other avant-garde hiring practices I’ve encoun-
tered, and they’ve almost always sprung from these high tech Silicon Valley-esque outfits. Do
left coast companies vie for “Weirdest Hiring Process”? Is there an industry award for that
now? Is it the sun and sand, or just the ready availability of pharmaceutical enhancements?
Does an abundance of sea gulls, or the aerial poop thereto appertaining, affect the rational
thought processes? Can someone hand me a sparkling mineral water?

Give me the traditional interview questions any day. I have my answers prepared.

Q: “What do you consider your strengths?”

A: “I can eat an entire box of Nutri Grain bars in one sitting. Two, if I have milk.”

Q: “What about your weaknesses?”

A: “I have never made it all the way through the third box without getting sick.”

Q: “Where do you want to be in five years?”

A: “Sitting on the beach in St. Thomas. Actually, that’s where I want to be next
week, too. “

Q: “Why do you think you are the best candidate for this position?”

A: “Because I have the largest collection of emails and text messages between you and the
girlfriend your wife doesn’t know about.”

Robert G. Ferrell is a fourth-
generation Texan, literary
techno-geek, and finalist for the
2011 Robert Benchley Society

Humor Writing Award.  rgferrell@gmail.com

66  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

COLUMNS
/dev/random

Tallying ho (that sounds like a gardening store owner taking
inventory, doesn’t it?), lately I’ve been pondering the expansion
of virtualization to other areas of daily life. What if you could, for
example, instantiate a cheery, optimistic virtual mien over the
rotten, grouchy virulence of your personal underlying operating
system? Your popularity would soar even as your indictments
declined. It would revolutionize Hollywood, too. A director could
take generic thespians and run whatever virtual personalities on
them the script calls for. Easy-bake actor-in-a-box: no need for
messy, time-consuming auditions. Spouse mad at you? Pop in the
“Irresistible Lover” LCM (Loadable Cranial Module) and you’ll
be making beautiful music together in no time.

Pointy-haired bosses are so much easier to handle when you
load up the “Respectful Obedient Employee Secretly Plotting To
Do You In” module (also known as the “Eddie Haskell”). Maybe
choose the “Terminator” one when the visiting in-laws have
outstayed their welcome: “If you want to live, you will leave now.
And do not come back” in a thick Austrian accent is sure to get
the message across. Harsh, yes, but effective. You gotta be firm
sometimes.

I’m wondering where the portable computing device market is
heading next. At some point in the very near future the minia-
turization craze is going to slam with considerable force into the
wall of human optical limitations (and the video will undoubt-
edly appear minutes later on Live Leak). It doesn’t matter to me
if my postage stamp-sized Ultra-absorbent iPad Mini (sorry, got
my pads mixed up) has quad octo-core processors and a 1760 x
1140 HD screen if the pixels are only one photon in size. We’re
rapidly approaching the point where all I/O will be have to done
via Bluetooth or something equivalent—presuming they can
continue to produce smaller and smaller transceivers—because
the CPU housing itself is too small to accept any physical cable
adapter or memory stick visible to the naked eye. I call this entire
class of devices “Barbie boxes.”

Rolling without discernible segue into an entirely different topic,
there’s an interesting discussion underway on a mailing list to

which I belong concerning “back doors” in software intended for
forcing updates. Rather than leap directly onto that philosophi-
cal log jam, though, I will approach it in my customary oblique
fashion. If software can have back doors, what other architec-
tural features might it possess? Well, windows to begin with.
I suppose the screen intensity control could then be thought of
as blinds or drapes. Cleaning said windows would be remov-
ing unnecessary icons, of which I have more than my share at
present. I’ve always believed that one of the primary reasons
Microsoft decided to call its graphic interface “Windows” is that
it was such a pane to run. “Scraping the bugs off your Windows”
then takes on a whole new meaning as a euphemism for install-
ing a patch.

In this architectural scenario the firewall would of course be the
front gate, where packets drive up and push the little buzzer to be
let in. Now, the roof keeps out rain, and too much rain is a flood,
and the thing that prevents floods (syn, for example) would be
the…firewall. So, apparently in this house your visitors enter
through the roof. I guess they get to the ground floor by climbing
down the TCP/IP stack.

It’s became glaringly obvious to me that this analogy is not built
on a solid foundation. Further, the timbers are just as apparently
rotten; the entire construct has collapsed from its own weight. I
hope everyone got out all right.

Sometimes, despite our best efforts, the product of a labored
metaphor is stillborn. At least it didn’t suffer. My apologies if the
same cannot be said for you.

P.S. I would be remiss if I didn’t occasionally toot my own horn
here, so if you’re a humorous fantasy fan, look for Goblinopolis
on bookshelves both virtual and real. Buy a copy for yourself and
everyone you’ve ever met. I might even sign them if I can remem-
ber how to write in cursive.

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 67

BOOKSBook Reviews
E L I Z A B E T H Z W I C K Y , M A R K L A M O U R I N E , A N D R I K F A R R O W

Beyond Software Architecture: Creating and
Sustaining Winning Solutions
Luke Hohmann
Addison Wesley, 2003, 302 pp.
ISBN 978-0-201-77594-5
Reviewed by Elizabeth Zwicky

When you go to build real systems, you will discover that the
architecture is driven by a giant pile of considerations that are
not theoretically part of software architecture. (“Why don’t you
log it in this log file?” I asked the other day. “Ah. Well. That log
file is written by this other part of the software, and this part of
the software only writes this log file. They have different lead
programmers, see. And there’s no way to log across the boundary
without rewriting both components.”) This is a book about the
space where software architecture meets the need to actually
make money and satisfy the people who build it.

Most of the book is about the relationship between what you sell
to customers (the marketing architecture, or “marketecture,”
as the author calls it) and what you build (the technical archi-
tecture, or “tarchitecture,” which sounds sticky and unpleasant
to me, but makes sense as an abbreviation). It suggests ways in
which they should interact, while being clear on the differences
between them.

If you are making the leap to designing whole systems, particu-
larly commercial software (which is the focus here, although the
author does consider internal systems in passing), this is a nice
balanced look at the problem, which does not present either the
customer or the marketing department as an enemy. It encour-
ages sensible, honest, and human behavior without pandering
to the whims of programmers. For instance, it suggests that you
should not try to make water flow uphill or ignore the personal
needs of your team to feel like they have important, relevant
tasks, but it also suggests avoiding getting sucked into new
technologies because they’ll look good on resumes or marketing
collateral.

The section on security is OK but a bit perfunctory and not fully
integrated. It does not have the same feel of hard-learned lessons
that most of the rest book does, but it does at least hit the high
points (you can’t add security at the end of a project; do not write
your own encryption; be sure you know what you’re trying to pro-
tect against and protect sufficiently for that rather than trying to
protect everything everywhere all the time against everybody).

Bad Data Handbook
Q. Ethan McCallum
O’Reilly Media, 2013, 256 pp.
ISBN 978-1-449-32188-8
Reviewed by Elizabeth Zwicky

Continuing in this month’s theme of ruthless realism, here’s an
entire book on analyzing the data you can actually get, which is
never quite the data you wanted. It’s a collection of essays, not
a cohesive whole, but it’s full of interesting and useful insights.
They range from generalizations (why and how you should cross-
check data) to very specific techniques (how to process text of
unknown origin and dubious character set in Python).

Anybody who is new to data analysis can use this book. Most
new analysts have a wholly unfounded faith in the data, which
leads them to produce charming flights of fancy that fall apart
when you look at them at all closely (hey, according to this the
sum of the parts is greater than the whole!). When they lose
this faith, they are not sure what to substitute for it, and poke
gingerly at the data like a small child presented with a new food.
This book suggests concrete steps to take to verify and sanitize
data, as well as pointing out the importance of understanding
exactly where your data comes from and how.

As always, some parts are weaker than others. As somebody who
works with human-generated data a lot, I found the section on
“liars” less useful. It’s good to understand that the people who
use systems often have complicated meta-goals and almost
always behave in ways you don’t expect (the example the author
uses is a great one, and I don’t want to give it away); the users
understand how the system works, mostly, but they don’t really
get all the implications of the difference between automated and
human systems. Their attempts to optimize are damaging to
the system as a whole, but it’s not exactly because they intend to
lie, and the author fails to draw out the implications for human-
based systems. There are always people who are trying to cheat
the system, but there are also always people who are simply at
odds with your design goals, intentionally or unintentionally.
New analysts, in general, assume that you can divide all the data
points into “good” and “bad,” and anything you weren’t expect-
ing is somebody being Wrong on the Internet. In fact there are at
least four relevant categories—”good,” “bad,” “bug in the process-
ing system,” and “not what we were hoping the user would do.”

68  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

BOOKS

Data Insights: New Ways to Visualize and Make
Sense of Data
Hunter Whitney
Morgan Kaufman, 2013, 296 pp.
ISBN 978-0-12-387793-2
Reviewed by Elizabeth Zwicky

This is a very pretty book, with nice examples of visualizations
and with generalizations and advice that are both engaging and
accurate. It is suitable for smart people who aren’t clear on where
to aim for when going from a pile of numbers to something mean-
ingful, or a manager who wants or needs to understand what
comes beyond Excel’s defaults for pie charts. It is not, however, at
all specific on how to get to where you are aiming at. If you want
step by step advice, or actual techniques at all, you’ll need to look
elsewhere, so absolute beginners and experts alike are probably
going to be frustrated.

I didn’t disagree with the content; I think the author’s approach
is right, but I felt it kept getting close to being useful, coherent,
and organized, and then getting distracted by another pretty
visualization and wandering off again. Plus, QR codes as ways
to provide URLs with examples sound like a great idea, but
they’re eye-catching without being illuminating to the reader.
And, in my case, the first two I tried don’t work on the device I
had at hand; one is a Flash animation and the other loads but for
some unclear reason doesn’t do a lot. This is an object lesson in
something about visualization, but it’s not clear that it’s what
the author had in mind. (And I worry about the level of imper-
manency implied in using goo.gl-shortened links to a magazine
Web site; six months from now, are these QR codes going to lead
anywhere at all?)

Finally, there’s an illustration labeled “The Esperanto of visu-
alization.” I think that’s meant to be a compliment, but without
any further explanation of the illustration, I can’t be totally sure,
since the illustration conveys no data at all to me. It could be
meant as a scathing condemnation of both Esperanto and the
visualization. This was an unusually clear example, but I often
found myself unsure of exactly what message I was supposed to
take away and what I was supposed to do about it. Ultimately, I
ended up treating it like a fashion magazine; look at the pretty
pictures, maybe some of the captions about what they are.

Generation Blend: Managing Across the
Technology Age Gap
Rob Salkowitz
Wiley, 2008, 243 pp.
ISBN 978-0-470-19396-9
Reviewed by Elizabeth Zwicky

Sadly, I got through the entire book without being convinced that
in fact there is a significant difference between grouping people

by generation and grouping them by astrological sign. Suppos-
edly, Millenials (the youngest generation at work) like to mix
life and work by having lives at work, and Boomers (the oldest)
and Generation X (mine, which is apparently why I’m so cyni-
cal) don’t—Boomers take work home, and Generation X works to
live. I fail to see how this goes with the popular statistics about
lost work time for the Super Bowl and Thanksgiving shopping,
and while anecdote is not data, I promise you I get mail (to my
personal address) from the personal address of my Boomer col-
league during work hours. I also read it. Apparently it’s not just
the kids these days.

If you believe in firm distinctions between the generations, and
dislike one of them, this is a useful introduction to how all of
them are useful in the workplace. Otherwise, the most useful
part of the book is a chapter on how to teach computers to older
people who don’t have much experience with them.

Digital Capture After Dark
Amanda Quintenz-Fiedler and Philipp Scholz Ritterman
Rocky Nook, 2013, 190 pp.
ISBN 978-1-9333952-66-6
Reviewed by Elizabeth Zwicky

Digital cameras these days will do all kinds of fascinating things
with almost no human help. So, of course, people want to do the
things they’re bad at. Photographing in the dark is one of those
things—your camera will be great, aside from the fact that it
won’t focus or correctly calculate exposure for you, so pretty
much, you’re on your own. Once it gets dark your easy-going
camera that shows you something like you see and can let you
review it on the spot becomes a lying tyrannical magic box which
must be kept still and shielded from stray light but then will
show you things you can’t see.

The authors go over the gear you need (a tripod, a remote shutter
release, extra batteries, a flashlight, extra batteries for the flash-
light) and then get into the techniques. Most of these are photo-
graphic techniques, but some of them are more practical. On the
photographic side, you can’t trust the camera to meter and you
can’t trust the preview or the viewfinder to show you what you’re
really getting, so you have to learn to figure out what you’re prob-
ably getting and how to raise your odds of getting what you want.
On the practical side, it’s cold and dark at night. Digital cameras
run on electricity. Batteries hate the cold. How do you maximize
your ability to take photographs? How do you minimize the risk
to your camera from coming back inside to the damp warmth?

Most popular kinds of night photography are discussed, includ-
ing special lighting techniques like light painting and use of light
bursts to combine motion and still in one picture. There isn’t any
discussion of lightning (oddly, because there’s a lightning photo),
but lightning is basically just a big fast light you don’t control.

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 69

BOOKS

The book succeeded in making me feel that photographing in the
dark was exciting and within my grasp, and its advice is consis-
tent with the little night photography experience I’ve had. I’m
looking forward to more experimentation.

Hacker’s Delight, 2nd Ed.
Henry S. Warren, Jr.
Addison-Wesley, 2013, 494 pp.
ISBN 978-0-321-84268-8
Reviewed by Mark Lamourine

http://www.hackersdelight.org/

Hacker’s Delight is a rare find: a clear, well-written book about a
fundamental element of programming. I would put it on the same
level as Stevens’ TCP/IP Illustrated. Most people will never need
to code binary logic and arithmetic operations at the level of
individual RISC instructions, but knowing what’s going on down
there can only help.

Warren opens Hacker’s Delight by describing the sandbox in
which he will play: a basically unrestricted number of general
purpose 32-bit registers and a “basic” and an “extended” RISC
instruction set. All of the operations are simple integer arith-
metic bit shifts and binary comparisons on registers or con-
stants. Warren also limits branches and memory load and store
instructions because they are expensive. The goal is to see what
can be done within these constraints. The remainder of the book
demonstrates that the answer is “a lot.”

The first seven chapters cover a wide range of simple but some-
times obscure bit and byte operations. Where a reader might
ask, “But why would I want to do that?” Warren provides a brief
answer or a reference to more detail.

The chapters are broken into subsections of about one to three
pages which describe and then explain a particular operation.
The algorithms are presented in computer algebra (presented
in Chapter 1) or in ISO C99. At least one algorithm is offered
in Python, showing that the applications are not limited to
machine-level code. Where a formal derivation or proof of the
algorithm is needed it is presented in more traditional logical or
mathematical form.

As Warren progresses, he moves from simple operations to
more complex tasks. He shows how to implement such things as
integer multiplication and long division, CRCs, and even how to
implement floating-point arithmetic.

Warren briefly mentions issues that someone might find when
trying to implement some operations in other languages, such
as Java or on variations in real-world processors which may
differ slightly from his abstract instruction set. As a high-level
programmer, I would have liked to see some discussion of the

applicability of these algorithms in modern scripting languages.
While the logic remains correct regardless, I’m curious if the
implementation of the scripting languages will carry the com-
pact logical operations down into the resulting machine code.

There is also an associated Web site: http://www.hackersdelight
.org. This refreshingly unadorned set links to copies of the code
samples, errata, and additional resources.

Hacker’s Delight reminded me that there is a case to be made for
clever logical minimalism in specific cases, and this can have its
own beauty and clarity. That said, I expect that it will be of lim-
ited direct use to the vast majority of the computing community.
But utility isn’t everything. Hacker’s Delight will be a pleasure
to anyone who started working with computers out of curiosity
about how stuff works and an appreciation of the aesthetics of
fundamental logic.

Dart in Action
Chris Buckett
Manning Publications Co., 2013, 398 pp.
ISBN 978-1-617290-86-2
Reviewed by Mark Lamourine

There have been a number of attempts to improve upon or
replace JavaScript as the client-side programming language for
the Web. Google’s Dart programming language is one of these.

Dart is a young language. Chris Buckett introduces Dart and the
entire development ecosystem: an IDE, testing frameworks, cli-
ent- and server-side coding and deployment. The first section is
a fairly traditional whirlwind setup and “Hello World” treatment.

In the second section Buckett does an excellent job of detailing
the syntax of Dart. Especially important are the sections on two
language features which appear to be unique to Dart. The first is
the optional type system. In an attempt to address the concerns
of both the fans of strongly typed languages (for compile time
type checking and diagnostics) and those who prefer the flexibil-
ity of weakly typed languages, Dart allows the coder to choose
whether or not to provide data type information.

The second feature, isolates, is a mechanism to provide concur-
rency in a single-threaded environment. Since Dart must be
translated to JavaScript, and JavaScript is single-threaded, then
Dart must be too. Isolates allow concurrency by creating functions
with distinct execution contexts, and limiting interaction between
them. Buckett provides a series of examples for using isolates to
manage concurrent queries on a Web service written in Dart.

In the final two main sections of the book, Buckett addresses the
requirements and capabilities of Dart on the Web browser and
the Web server. He gives special attention to client-server com-
munications and data storage. At the time the book was written

70  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

BOOKS

Dart did not yet have a browser GUI library, but the Dart Web
site indicates that the current release does include one.

Buckett concludes with a pair of appendices which together
provide a language reference to match the tutorial of the second
main section of the book.

I like the general style of the Manning “In Action” series. At the
end of each tutorial section there is a highlighted paragraph list-
ing the significant points from the preceding section. Buckett’s
inclusion of the reference appendices at the end of the book
means that it will continue to have use after the tutorials are
finished.

Dart projects can be deployed either by translating to JavaScript
(much like CoffeeScript is deployed) or by using the DartVM.
Currently, the only Web browser to offer a DartVM is a specially
built Chrome browser provided with the Dart SDK. Indications
are 18 months after Dart’s announcement no other Web browser
producer has plans to include a DartVM, and even Google has no
plans to include it in the main-line Chromium release.

If you’re working on a project which already uses Dart or if you
are interested in alternatives to writing Web applications in
JavaScript, “Dart in Action” is a good place to start.

Distributed Network Data
Alasdair Allan and Kipp Bradford
O’Reilly Media, Inc., 2013, 155 pp.
ISBN 978-1-449-36026-9
Reviewed by Mark Lamourine

The subtitle of Distributed Network Data is “From Hardware
to Data to Visualization.” Allan and Bradford really do take the
reader of this slim book from a hardware parts list to graphing
the collected data.

To fully appreciate this book the reader really should commit
to acquiring the parts and following along. This is a book for
the adventurous beginning Maker. It is a little helpful (but not
necessary) to have some familiarity with a soldering iron, a
text editor, C, and a search engine. It’s really important not to
be intimidated by three- and four-letter acronyms. The authors
explain the ones that matter and refer the reader to other sources
when necessary.

Allan and Bradford have structured the book so that each chap-
ter presents a nicely self-contained task. Each chapter builds on
the one before. They begin with an explanation of the goal and
any needed theory and then dive into a guided tutorial, ending
with a demonstration of some new capability.

In the first few chapters the reader will get comfortable with
Arduino, breadboarding, and some fairly easy circuits. The
second section brings in the “network” from the title with XBee

network devices. The final sections introduce three different
pieces of software for visualizing both the plan for the project
and the resulting data.

I haven’t understood until now how a Mac OS user feels when
presented with examples and screenshots from Windows or
Linux. The examples and code in Distributed Network Data are
all created on Mac OS. Two of the three visualization platforms,
Processing and Fritzing, are open source, free to download, and
available for all three platforms. LabView is a commercial prod-
uct, but there is a free version tailored for use with Arduino.

Allan and Bradford close the book with a chapter giving refer-
ences to the original sites for each of the software packages and
for additional reading.

At the end of the process the reader will have a working wireless
sensor system collecting data and the ability to plot the data.
More importantly, the reader will have the confidence to try
different configurations and pointers to additional resources,
including a community of Arduino Makers, to tap for more ideas
and explorations.

Absolute OpenBSD, 2nd Edition
Mike Lucas
No Starch Press, 2013, 491 pp.
ISBN 978-1-59327-476-4
Reviewed by Rik Farrow

Mike Lucas produces books that are clear and easy to read,
and this book is no exception. He provides information that is
specific to installing and maintaining the most recent version
of OpenBSD at the time (5.3), and with a level of detail that is
refreshing. Today, most of us just “ask the Web” when we want
a quick answer. Each chapter in this book is more like a tutorial
that goes beyond just telling you what to do, but why you should
be doing it, or not doing it.

You won’t find information about configuring Apache 2.2 in this
book—in fact, Mike recommends that you use nginx instead,
but has nothing to say about configuring nginx. This is a book
about the OpenBSD system, not applications. Mike does have a
thorough chapter about how to find applications, use the package
system, or use ports if you cannot use the package system, but
that’s it. And as it should be.

You will find detailed information about configuring OpenBSD,
from the options in login classes, to the purposes of the various
files found in the /etc directory. There are two chapters about
TCP/IP, one on theory, the other on the practical aspects, includ-
ing IPv6. Mike also wrote two excellent chapters on PF, the
OpenBSD firewall, which in itself is a good reason to use Open-
BSD. If you want to try an operating system focused on security,
and also want detailed instructions, this is the book for you.

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 71

REPORTSConference Reports

NSDI ’13: 10th USENIX Symposium on Networked
Systems Design and Implementation
Lombard, IL
April 2–5, 2013
Summarized by: Anish Babu Bharata, Weverton Cordeiro, Rik Farrow,
Utkarsh Goel, Arpit Gupta, Imranul Hoque, Peng Huang, Murad Kaplan,
Scott J. Krieder, Joshua B. Leners, Muntasir Raihan Rahman

NSDI ’13 Opening Remarks and Awards
Summarized by Rik Farrow (rik@usenix.org)

Jeff Mogul, NSDI co-chair, opened the conference by telling
attendees that there were 170 paper submissions, and each paper
received three first-round reviews. About half the papers made
it into the second round, and also received three or four more
reviews. By the time the PC meeting occurred, there were 64
papers left. In total, each PC member performed 25.8 reviews on
average. In the end, 38 papers were accepted, more than usual.
Because of this, each presentation could only be 20 minutes,
including questions at the end. And by the end of the first ses-
sion, things were going well.

Jeff also pointed out that, with 258 attendees, this is almost
the largest NSDI ever. Jeff then singled out three PC commit-
tee members for work above and beyond the “call of duty”: Jeff
Chase, James Mickens, and Renata Teixeira.

Glancing at the hot topics graphic, their most mentioned terms
were: network, data, system, applications, paper, and power. Jeff
magnified a small section of the chart, where the words “Look-
ing for work” were visible as a significant topic. Finally, Jeff
mentioned that Ratul Mahajan and Ion Stoica would be the co-
chairs for NSDI 2014.

Nick Feamster, the other co-chair, took over for the presentation
of awards.

The Best Paper awards went to: “Embassies: Radically Refactor-
ing the Web,” by Jon Howell, Bryan Parno, and John R. Douceur,
Microsoft Research; and “F10: A Fault-Tolerant Engineered Net-
work,” by Vincent Liu, Daniel Halperin, Arvind Krishnamurthy,
and Thomas Anderson, University of Washington.

The Community awards went to: “Composing Software Defined
Networks,” by Christopher Monsanto and Joshua Reich, Prince-
ton University; Nate Foster, Cornell University; Jennifer Rexford
and David Walker, Princeton University; and “Expanding Rural
Cellular Networks with Virtual Coverage,” by Kurtis Heimerl
and Kashif Ali, University of California, Berkeley; Joshua

Blumenstock, University of Washington; Brian Gawalt and Eric
Brewer, University of California, Berkeley.

Howell et al. received their Best Paper award for being ambi-
tious, thought-provoking and even controversial in their paper.
Liu et al. got their award for applying simple effective insights to
the co-design of network topology and protocols and evaluating
them well.

Community awards were given to paper authors for contribu-
tions to the community above and beyond the typical paper.
Monsanto et al. received their award for releasing the code for
their software, which the award committee believed would
be useful and built upon by the Software Defined Network-
ing (SDN) community. Heimerl et al. received their commu-
nity award on the basis that this will help with rural cellular
 deployments.

Software Defined Networking
Summarized by Weverton Cordeiro (weverton.cordeiro@inf.ufrgs.br)

Composing Software Defined Networks
Awarded Community Award!
Christopher Monsanto and Joshua Reich, Princeton University; Nate Foster,
Cornell University; Jennifer Rexford and David Walker, Princeton University

Joshua Reich began by arguing that one can build a robust, large,
complex network system using OpenFlow, but it is going to be
a cumbersome, time-consuming, and even an error-prone task.
In a brief example, he described how complex it is currently to
implement even simple sequential composition of logic such as
simple load balancing and routing functions. The problem is that
existing platforms for network programming only expose part of
the network, lacking proper support for enabling the program-
ming of various aspects in an integrated fashion. Building net-
work applications using existing frameworks is pretty much like
building complex software using assembly language, he said.

After drawing such a picture of the current state-of-the-art,
Joshua presented Pyretic, a modular and intuitive language
(and system) for enabling network programmers to build
sophisticated network traffic management applications. Pyretic
approaches the problem of designing complex network traf-
fic management applications by providing three abstractions
to programmers: policy abstraction, network abstraction, and
packet abstraction. Policy abstraction enables programmers
to use composition operators (sequential and parallel), which
opens the door for doing all sorts of functional composition. The
network abstraction lies on top of that, enabling programmers to
decompose network software logic based on topologies. Finally,
the packet abstraction provides extensive headers, which form
the foundation for the previous abstractions.

72  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

REPORTS

During the talk, Joshua navigated through a series of examples
that highlighted the potentialities provided by each kind of
abstraction, which now enables network programmers to focus
on the meaning of their applications instead of concentrating
on low-level details. “One single line, absolutely precise,” he
said. He also emphasized that Pyretic captures the full power of
OpenFlow by providing one high-level policy for each natively
supported policy, and that Pyretic can be used to implement both
static and dynamic policies; a MAC-learning example described
the power of these policies. Joshua concluded his technical
discussion by sketching the implementation of the topology
abstraction function in the context of a one-big-switch transfor-
mation example. Finally, he encouraged the audience to experi-
ence the full power of Pyretic by referring to the project Web site:
http://www.frenetic-lang.org/pyretic.

Srimat Chakradhar (NEC Labs Princeton) asked about the
things one can do with OpenFlow but cannot with Pyretic. In
terms of capabilities, Joshua did not think there was anything
one could implement with OpenFlow but not with Pyretic,
though he noted that what one does give up is the ability to
finely manage table resource usage, much in the same way that
a Java programmer can no longer manage physical registers and
memory. Chakradhar also asked about the impact on end-to-
end latency. Joshua replied that the current prototype is mostly
an interpreter, but with the micro-flow compiler that will be
released shortly one would have the same performance. Rajesh
Nishtala (Facebook) asked about the impact on queuing behav-
ior. Joshua responded that they hadn’t yet done this testing, but
expected performance comparable to other systems.

VeriFlow: Verifying Network-Wide Invariants in Real
Time
Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten
Godfrey, University of Illinois at Urbana-Champaign

Ahmed Khurshid started his talk by discussing the existing
challenges for networking debugging: tons of devices run-
ning different protocols, from various types and vendors, and
intricate relationships between devices, with several operators
configuring them, among others. These challenges make it dif-
ficult for one to test every possible scenario. As a consequence,
bugs may go hidden and affect production networks in a variety
of ways (e.g., degrading their performance and/or making them
more prone to attacks).

Ahmed enumerated some existing network debugging tech-
niques, e.g., traffic flow monitoring and configuration verifica-
tion. With regard to configuration verification, he emphasized
a crucial problem: the only input taken is configuration scripts.
Everything else (control-plane state, data-plane state, and
network behavior) is predicted. To bridge this gap, Ahmed
introduced a novel approach, data-plane verification, which
considers data-plane state as input for the verification process,

thus making it less dependent on predictions and closer to actual
network behavior. He also emphasized running this verifica-
tion task in real time in contrast to existing approaches such
as FlowChecker, Anteater, and Header Space Analysis, as the
network evolves.

This approach brings us to VeriFlow, a tool for checking
network-wide invariants in real time. VeriFlow introduces a
layer between the controller and devices in a Software Defined
Network (SDN), thus enabling the verification of rules before
they are deployed in the network. In summary, VeriFlow oper-
ates by intercepting new rules and building the equivalence
classes associated to them, a set of packets that are affected by
the rule. For each equivalence class computed, VeriFlow gener-
ates individual forwarding graphs, which model the forwarding
behavior of the packets in the equivalence class through the net-
work. Finally, VeriFlow runs custom queries to find problems.
VeriFlow has a set of built-in queries to verify certain invariants;
however, it also exposes an API for writing custom invariant
checkers. During his talk, Ahmed extensively discussed the com-
putation of equivalence classes (which use multi-dimensional
prefix tries), always highlighting the aspects that make it an
efficient and quick process. From the set of experiments carried
out, one of the main takeaways was that VeriFlow checked 97.8%
of the updates from a real BGP trace within one millisecond.
Some updates took longer, however, because of the larger number
of equivalence classes affected by new rules.

Sanjay Rao (Purdue University) asked about the coverage of
error detection, the types of errors VeriFlow cannot detect.
Ahmed argued that if the problem is visible at the data plane,
it can be detected. Rao continued by asking about errors that
span to multiple devices. Ahmed replied that yes, these type
of errors can be captured as well, since VeriFlow has a global
view of the network. Yan Chen (Northwestern University)
asked whether VeriFlow is applicable to inter-domain routing.
Ahmed replied that yes, VeriFlow can be used in this context as
long as the controller is able to receive reports about changes.
He also mentioned that the accuracy of the detection depends
on receiving updates of network change in real time. Masoud
Moshref (University of Southern California) asked whether one
can reorder rules in order to improve VeriFlow’s performance.
Ahmed answered that they have not looked at this option yet, but
they want to investigate it. He also said that as VeriFlow targets
real-time processing of the stream of rules coming from the
controller, it may not have the liberty to reorder those. Takeru
Inoue (Japan Science and Technology Agency) asked about Veri-
Flow’s memory requirements for verification. Ahmed replied
it is expensive; for a BGP experiment shown in the evaluation
section, VeriFlow took 6 GB of memory.

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 73

REPORTS

Software Defined Traffic Measurement with OpenSketch
Minlan Yu, University of Southern California; Lavanya Jose, Princeton
University; Rui Miao, University of Southern California

Lavanya Jose started her talk enumerating some questions that
existing measurement technologies are either unable to answer,
or would require a prohibitive amount of resources to do so: who
is sending a lot of packets to a specific subnet? how are flow sizes
distributed? is there anyone doing a port scan? etc. NetFlow can-
not answer many of the questions posed. For example, NetFlow
typically does not sample light flows, such as port-scanning
flows. Increasing sampling rate is an option, but then it becomes
resource-consuming. Streaming algorithms could be used as
well, though each algorithm answers one question only.

Given the above, the question now is: what measurement
architecture can answer all the questions? The answer is
OpenSketch. OpenSketch is a software-defined traffic measure-
ment architecture that separates the measurement control and
data-plane functions, and uses sketches (Count Min Sketch) as
building blocks to provide a generic and efficient measurement
API. Lavanya discussed the basics of sketches, highlighting the
tradeoff between memory consumption and accuracy of the
resulting measures. The error can be estimated, which thus can
indicate the degree of confidence one can have in the accuracy of
the obtained measurements.

There is an issue with sketches, however: each one can estimate
only one function. To solve this, Lavanya indicated a solution
based on a three-stage pipeline that can support many sketches.
The first stage in this pipeline is to hash the packet (based on
the header), then classify it (based on the packet header and
hash values), and finally update a set of counters based on the
results of the previous stages. This pipeline can be configured
in the controller plane in order to obtain the required measures
and implement the measurement tasks to solve the questions
initially posed. Lavanya then discussed possible strategies for
implementing sketches with the pipeline, how one can provi-
sion the pipeline so that one can implement multiple, differ-
ent sketches, and the evaluation results. The main takeaway?
OpenSketch truly adheres to the SDN philosophy: separate the
measurement control and data-plane functions, and make mea-
surement in switches efficient and easy.

After the talk, Dejan Kosti (Institute IMDEA Networks) asked
about the possibility of achieving throughput of 10 Gbps.
Lavanya said it is possible, but sequentially updating the SRAM
might become a bottleneck for tasks that update many counters
per-packet. Dejan then asked about the limitations of OpenS-
ketch. Lavanya replied that the data plane is somewhat limited
so that OpenSketch can be made simple enough to implement
with commodity hardware and operate at line rate. For example,
some sketches cannot be implemented as they use more complex
data structures (such as binary trees or heaps) not provided by
the data plane.

Pervasive Computing
Summarized by Scott J. Krieder (skrieder@iit.edu)

V-edge: Fast Self-Constructive Power Modeling of
Smartphones Based on Battery Voltage Dynamics
Fengyuan Xu, College of William and Mary; Yunxin Liu, Microsoft Research
Asia; Qun Li, College of William and Mary; Yongguang Zhang, Microsoft
Research Asia

Fengyuan Xu presented V-edge, a joint work aiming to improve
the accuracy of battery prediction technologies. The idea is to
consider power consumption and current system activities to
accurately predict power runtime. By taking a snapshot of sys-
tem activities the authors can determine CPU usage, backlight
settings, and provide a calculation of power usage. A power
model for smartphones needs to be an abstract concept, applying
to the many different phone developers. Two of the most com-
mon ways to measure power consumption is through external
metering and self-metering. This work uses self-monitoring, but
applies unique algorithms for a fast and accurate measuring.
The authors capture instantaneous current changes that lead
to instantaneous output voltages. V-edge offers the advantages
of accuracy and stability, and it’s been tested on eight different
batteries from two different smartphones. The reading is fast,
as fast as the battery can provide an update rate. The V-edge
solution consists of a training stage and an estimation stage.
V-edge consists of an event-driven design, which provides a low
overhead. After their power profiler runs, you will know which
application consumes how much power and where.

Man Dong (Samsung Electronics) asked about the resistance in
the battery pack, which is sensitive to temperature. Fengyuan Xu
replied that in this case you don’t need to know the absolute, as
they work with the relative changes. Srimat Chakradhar (NEC
Labs) asked that if they are sampling at one hertz, don’t they
miss quick events that only take a few milliseconds but happen
with high frequency? Xu answered that V-edge only needs to
provide power information during the training state. The event-
driven design is quite accurate, comparable to fine-grained
monitoring.

eDoctor: Automatically Diagnosing Abnormal Battery
Drain Issues on Smartphones
Xiao Ma, University of Illinois at Urbana-Champaign and University of
California, San Diego; Peng Huang and Xinxin Jin, University of California,
San Diego; Pei Wang, Peking University; Soyeon Park, Dongcai Shen,
Yuanyuan Zhou, Lawrence K. Saul, and Geoffrey M. Voelker, University of
California, San Diego

Xiao Ma explained that the motivation for this work is abnormal
battery drain (ABD). ABD is a condition on smartphone devices
where the battery begins to drain at a significant rate without
the authorization of the smartphone user. The authors developed
an application called eDoctor which can identify the issue and
suggest a solution to the user. ABD is often caused by an applica-
tion update or software change, and eDoctor uses snapshots and

74  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

REPORTS

installation logs to identify recent changes on the system. The
application then suggests which apps to revert or remove to shift
the battery drain back to normal consumption.

During a user study with 31 volunteers and 50 cases, the applica-
tion was able to diagnose 47 of the cases accurately. This user
study consisted of 6,000 device hours where a hidden bug was
added to a user device. The bug was then activated and the users
needed to use eDoctor to diagnose the problem.

Weverton Cordeiro asked whether they could identify bugs
caused by updates to the Android OS system version. Ma said
that they avoided telling users that a system update was the
problem, as that is hard to undo. Cordeiro than asked about bat-
tery failure. Ma answered that most problems are software, and
they can’t detect hardware failures. Someone from Northeastern
asked whether collecting data was required and was user privacy
a concern. Ma said that they don’t observe what the user does in
an app, just the power utilized by an app. Also, everything is local
on the phone.

ArrayTrack: A Fine-Grained Indoor Location System
Jie Xiong and Kyle Jamieson, University College London

ArrayTrack is an indoor tracking system that can calculate a
position down to a 23 cm level of accuracy when using access
points (APs) with eight antennas. The motivation for this work is
that GPS does not work indoors, and even in cases when it does,
provides accuracy at the level of meters. Some future solutions
include augmented reality on smartphones, or wearable glasses.
The use cases for such a technology include trying to find a
book in the library, an item in a supermarket, or a piece of art in
a museum. Many works have tried to use WiFi, Infrared, and
other technologies over the years, but none are able to calculate
with the level of accuracy that ArrayTrack provides. The theory
of operation requires there to be multiple antennas and radios
at each AP. By locating a device and its rate of movement from
the AP, the authors can calculate the angle of arrival from the
device. The authors then calculate the distance based on the rate
of arrival. Another benefit of ArrayTrack is that it can accurately
calculate position and distance based on a single packet. Future
work includes conducting studies on how the height of APs and
clients affects results.

Phil Levis (Stanford) asked how many antennas the client has
and what effect does MIMO have? Jie Xiong answered that they
assume the client has only one antenna, and if the client has
more than one antenna there will appear to be multiple loca-
tions. For MIMO (multiple input, multiple output), they did the
processing at the MIMO site, and there they needed multiple
antennas. Keith Winstein (MIT) asked whether they needed to
know the exact location and orientation of each AP. Xiong replied
that it did make a difference with linear-oriented antennas. If
they used a circular array of antennas, they could avoid concern

with orientation. Winstein then wondered whether they could
bootstrap to find the orientation of the linear arrays, and Xiong
said that he thought that might work.

Walkie-Markie: Indoor Pathway Mapping Made Easy
Guobin Shen, Zhuo Chen, Peichao Zhang, Thomas Moscibroda, and Yongguang
Zhang, Microsoft Research Asia

Guobin (Jacky) Shen explained that their research used WiFi
client devices to generate maps of the given location. The motiva-
tion for their work is that mapping applications often assume
that the map is predetermined or given. But in many cases this is
not possible.

Consider the problem of generating electronic maps for a large
number of buildings. Neither hiring someone to do this manually
or requesting the floor plans for every building is realistic and
both would be prohibitively expensive. Thus the authors set out
to calculate maps dynamically based on where the WiFi client
traffic was coming from throughout a building. The system then
generates digital landmarks based on high traffic areas and
connects these landmarks based on how client traffic traverses a
building. Some challenges of this approach include noisy traffic
that causes difficulty in the tracking data, the difficulty of track-
ing multiple users at a given time, and the need to handle user
diversity as well as device diversity. The landmarks are easy to
determine, but they simply need to be determined by the device
not by the user.

The authors calculated maps by having users walk in a space
for 20, 30, 50, and 100 minutes. This is where the work gets its
name; the idea is that by walking you mark locations with WiFi
landmarks. The maps improve with time, and future work is
aimed to reduce the time it takes to collect an accurate map. One
drawback to this approach is that the maps are limited to where
the clients are walking, and some areas such as closets or some
routes that clients do not walk on will not be included in the map.
Future work also seeks to improve data captures from lifts and
stairwells.

Phil Levis, the session chair, pointed out that signal strengths
vary over space. Shen replied that they don’t need WiFi marks
everywhere as they can still run their algorithms. Steve Tar-
zen (Vaporstream) asked whether random walks change the
problem. Shen said that they split the readings into one-minute
segments, and even with random walks, this works as long as
they got data from a lot of users. Someone asked whether build-
ing materials could cause problems. For example, hospitals have
lots of metal objects. Shen replied that it was the stability of the
environment that was the key to their system working. Moving
objects would affect the measurements, though.

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 75

REPORTS

Network Integrity
Summarized by Arpit Gupta (agupta13@ncsu.edu)

Real Time Network Policy Checking Using Header Space
Analysis
Peyman Kazemian, Michael Chang, and Hongyi Zeng, Stanford University;
George Varghese, University of California, San Diego and Microsoft Research;
Nick McKeown, Stanford University; Scott Whyte, Google Inc.

Peyman started by discussing the importance of policy check-
ing. Network state changes all the time, rules keep on chang-
ing, and, as a result, there is the potential for policy violations.
Thus it is important to have policy checkers that are real-time
for the entire network. Kazemian proposed NetPlumber, which
improves on Header Space Analysis (NSDI ’12) by enabling
real-time checking of updates. NetPlumber is suited for SDN
as it can tap into the centralized control data to perform real-
time policy checking. Also, NetPlumber can be used for legacy
 implementations.

The heart of NetPlumber is the plumbing graph, which captures
all possible paths of flows through the network. Nodes in the
graph correspond to the rules in the network, and directed edges
represent the next-hop dependency of these rules. This graph is a
perfect tool to check policy in a network, react to violations, eval-
uate complex policies, etc. Peyman also talked about Flow Exp,
which is a regular-expression-like language, to verify policies
in complex networks. The work was evaluated over three real-
world networks: Google WAN, Stanford’s backbone network, and
the Internet2 nationwide network. Rule-update verifications are
on the order of sub-milliseconds, whereas link updates are a few
milliseconds.

Someone asked Kazemian to compare/contrast NetPlumber
with VeriFlow. Kazemian replied that performance-wise
they’re equivalent, as NetPlumber can handle any sort of flow
and is independent of where wild cards are used. NetPlumber
has more of an agnostic approach and is more generic. Though
NetPlumber can’t verify performance, it can check for loops,
blackholes, etc., but not throughput guarantee. Ethan Katz-
Bassett, the session chair, asked about the possibility of using
NetPlumber for non-SDN networks. Kazemian said that you can
use NetPlumber, but it will be using a snapshot and might miss
things.

Ensuring Connectivity via Data Plane Mechanisms
Junda Liu, Google Inc.; Aurojit Panda, University of California, Berkeley; Ankit
Singla and Brighten Godfrey, University of Illinois at Urbana-Champaign;
Michael Schapira, Hebrew University; Scott Shenker, University of California,
Berkeley and International Computer Science Institute

Aurojit Panda started with the difference in time-scale of opera-
tions for control and data planes. Control-plane response to
link failures is slow, and current solutions rely on precomputed
backup paths. Such backup paths make sense for single link fail-
ures and are hard to generalize for multiple- link failures.

Panda suggested that the question to ask is whether we can push
this to data plane. Such a solution will be impossible if we put
constraints like no FIB (Forwarding Information Base) changes
at packet rate and/or no additional data in packet headers.
Their approach is to relax a few constraints—for example, allow
changes to a few bits in the FIB at packet rates. Their solution
is to take advantage of redundancy by extending routing tables
with other paths to a destination, and to restore connectivity at
data speeds using a strategy of reverse reconnect. Using reverse
to reconnect means to start at the disconnected node to attempt
to rebuild the DAG (Directed Acyclic Graph). Enabling rever-
sals in the data plane means two challenges must be addressed,
namely lost or delayed notification. A safe control plane is pro-
posed,, which should not interfere with the data plane.

They evaluated their solution on WAN and datacenter topologies
over NS3 to test for stretch, throughput, and latency. They also
analyzed the effect of FIB update delays on latency and through-
put, and end-to-end benefits of using DDC.

Omar Javed (University of Washington) asked how the concept
of storing multiple links is different from the multiple path
concept. Also, was it possible to enable link reversal for the wider
Internet, where complex business agreements exist? Will it work
for inter AS? Panda replied that link reversal is different from
multipath as it is less restrictive. He also explained that current
work focuses only on intra-domain routing and considers only a
single AS.

Michael Freedman (Princeton) asked how to characterize the
number of bits to change. Is the value three referred to in the
paper a hard limit, and why was a higher value not chosen?
Panda replied that the current algorithm is a simple one and he is
not sure whether higher values will work as expected.

Juggling the Jigsaw: Towards Automated Problem
Inference from Network Trouble Tickets
Rahul Potharaju, Purdue University; Navendu Jain, Microsoft Research;
Cristina Nita-Rotaru, Purdue University

Rahul Potharaju explained that trouble tickets for network
management are common and fixing them as soon as possible is
currently the prime focus. What is missing is how to learn from
such mistakes/problems/issues.

The main goal of this work is to analyze these tickets and extract
three key features for summarization: problem, activities, and
action. The information in a ticket has structured fields and
free text. The goal is to use the free text to extract features. This
choice is based on learning that structured field data is coarse
grained and does not provide much information. A strawman
approach of applying natural language processing (NLP) does
not work because it is suited for well-written texts and ignores
context. Their solution, NetSieve, combines NLP with seman-
tics. In this context, knowledge is like a dictionary that needs to

76  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

REPORTS

be built first before they choose to infer semantics for a ticket. It
involves three steps: (1) repeated phrase extraction, i.e., extract-
ing n-grams from words’ pool-set, trading completeness for
scalability; (2) knowledge discovery, which applies a pipeline of
linguistic filters to determine domain-specific patterns; and (3)
ontology modeling used to determine semantic interpretations.
The evaluation was done for two standard metrics of accuracy
percentage and F-score.

Yan Chen (Northwestern) asked about the status of the source
code release because he envisioned using these techniques in
other domains too, in analyzing security logs, for example. Rahul
briefly replied that the IP for this project is owned by MSR, and
there was a burst of laughter in the conference hall. Ahmed
Khurshid (UIUC) asked what happens in cases where two errors
are related to each other. Rahul replied that they found that such
correlations showed improvements and are shown in use cases
in the paper.

Abhishek Sharma (NEC) asked why the authors used area
experts, and were other data mining (unsupervised) techniques
used to compare results. Rahul affirmed exploration in that
direction. He said they wanted to take a different approach with
a semi-supervised approach; being domain-specific also helped
in terms of performance.

Data Centers
Summarized by Imranul Hoque (ihoque2@illinois.edu)

Yank: Enabling Green Data Centers to Pull the Plug
Rahul Singh, David Irwin, and Prashant Shenoy, University of Massachusetts
Amherst; K.K. Ramakrishnan, AT&T Labs—Research

Rahul Singh started his presentation on Yank by mentioning
that applications hosted in modern datacenters assume always
available stable servers. In order to guarantee server availabil-
ity, datacenters employ a highly redundant power infrastruc-
ture, which is expensive. So applications often relax this strict
stability assumption and compensate for it using low-cost high
availability techniques in software. Singh then introduced
a new abstraction of transient servers, which, unlike stable
servers, have unpredictable availability; however, these servers
receive advance warning either from the software (Amazon spot
instances) or from the hardware (UPS units) prior to termi-
nation. Yank enables datacenters to use the mix of stable and
transient servers transparently while maintaining application
availability.

Singh presented two ways of supporting transient servers: by
modifying individual applications and by providing system sup-
port. Yank adopts the latter approach because the former can be
challenging for certain classes of applications. Upon receiving a
warning, a transient server transfers its VMs to a stable server
to ensure that the application is always available. The transfer
has to be completed within the warning period to ensure that

no state is lost. Singh mentioned two strawman approaches for
transferring VM states: the live migration approach, which has
low overhead but requires a large warning period, and the backup
VM high availability approach, which supports low warning
time but incurs high overhead. These two approaches fall on two
ends of a spectrum. Singh pointed out that Yank covers the entire
spectrum by adapting to the warning time. When the warning
time is low, Yank is similar to the high availability approach. On
the other hand, when the warning time is high, Yank behaves like
the live migration approach. Singh then presented the high-level
design of Yank, which consists of a snapshot manager that runs
at each transient server and is responsible for sending VM states
to backup servers; a backup engine that runs at each backup
server and is responsible for storing multiple transient servers’
snapshot; and a restoration service that runs at stable servers
and is responsible for restoring VMs when the transient servers
receive warnings.

Singh then presented their evaluation of Yank. First, he showed
that when the warning time increases from five seconds to 20
seconds, the amount of data transferred from the transient to
backup servers reduces by a factor of 70. This is because, with
a higher warning time, the entire state of a program is small
enough to be transferred after receiving the warning signal.
Second, he showed that a five second warning time is sufficient
to bring down the client-perceived response time by a factor of
20. He also showed that a 4 GB backup server can support 15
transient VMs and claimed that powerful backup servers will
be able to support hundreds of VMs. Finally, Singh showed that
transition from stable servers to transient servers and vice-versa
do not have any visible difference on the response time—thus,
he claimed that Yank masks applications from transiency due to
changing power availability.

Rajesh Nishtala (Facebook) asked what percentage of an appli-
cation’s memory is needed to reconstruct a live instance and
why Yank moves states as opposed to reconstructing states,
which can be done in a shorter time period. Singh replied that
their experiments showed that the state of an application is
much smaller than the total allocated memory. So their design is
guided by this observation of small working sets. Dave Andersen
(Carnegie Mellon University) asked about the benefit of Yank in
terms of energy saving or carbon footprint reduction, because
Yank assumes a grid power supply in addition to the renewable
power supply. Singh answered that a datacenter can leverage the
on-peak and off-peak electricity pricing in order to decide when
to switch to renewable energy and back. For example, the energy
cost can be reduced if, during an on-peak hour, all the workloads
can be moved to transient servers. Andersen was not satisfied
with the answer and said that he would continue the discussion
later. He then asked whether the same techniques could be used
to ensure VM migration within a bounded time. Singh answered

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 77

REPORTS

affirmatively by saying that Yank gives users a knob to change
the warning period and thus reduce the overhead of maintaining
VM backups.

Scalable Rule Management for Data Centers
Masoud Moshref and Minlan Yu, University of Southern California; Abhishek
Sharma, University of Southern California and NEC Labs America; Ramesh
Govindan, University of Southern California

Masoud Moshref started his presentation on vCRIB by pointing
out that datacenters use rules to implement management poli-
cies. Rules are saved on predefined fixed machines (hypervisors,
switches, etc.). On one hand, machines have limited resources
(i.e., they can support a limited of rules). On the other hand,
future datacenters will have many fine-grained rules ranging
from millions to billions of rules. So, it is necessary to offload
rules, which creates a tradeoff between resource and bandwidth
usage. Moshref then pointed out some challenges of rule offload-
ing. First, an offload scheme must preserve the semantics of
overlapping rules. Second, the scheme must respect resource
constraints. Third, the scheme must minimize traffic overhead.
Fourth, and finally, the scheme must handle dynamics of traffic
and rule changes and VM migration.

Next, Moshref presented the design of vCRIB, which is a virtual
cloud rule information base. vCRIB provides a proactive rule
placement abstraction layer to the operator. The input to vCRIB
is a set of rules, and the output of vCRIB is a minimum-traffic
feasible-placement. Moshref then pointed out how vCRIB
addresses the challenges of rule-placement mentioned earlier in
the talk. First, in order to ensure that the semantics of overlap-
ping rules are unchanged, vCRIB uses a source partitioning
with replication approach. Second, it uses a resource-aware
placement algorithm known as First Fit Decreasing Similarity
(FFDS) to find feasible placement of the rules. Third, vCRIB
minimizes traffic overhead by refining the feasible placement
using a traffic-aware refinement approach. Finally, vCRIB
handles dynamism by re-running both the placement and refine-
ment steps if the dynamics converted the feasible placement into
an infeasible one. In the case when the placement is still feasible,
vCRIB only re-runs the refinement step.

Finally, Moshref presented an evaluation of the vCRIB system.
He compared vCRIB against source-placement, in which rules
are saved at the traffic source. His simulation results revealed
that vCRIB found low traffic feasible solutions. Additionally,
adding more resources helps vCRIB further reduce traffic over-
head. Moshref concluded his talk by mentioning several future
works, which included supporting reactive placement of rules,
splitting partitions when the number of rules becomes large, and
testing for other rule sets.

Michael Piatek, the session chair, asked whether there is a way
to limit the number of rule changes that happen at any point of

time, because drastic rule changes may cause problems. Moshref
replied that any such constraints will have to be set in the
refinement algorithm by setting the appropriate budget. He also
mentioned that it can be a good future step. Piatek followed up
by asking whether setting a constraint will prevent the algo-
rithm from finding a feasible placement. Moshref asked Piatek
whether he was concerned about finding a feasible placement
as opposed to refining for minimum traffic overhead. Piatek
confirmed this and Moshref replied that in his algorithm he
does not consider previous placements in order to find future
placements; however, similar algorithms can be found for virtual
machine placement and can be adopted for this scenario. Finally,
Piatek asked what was causing the rule explosion in datacenters.
Moshref replied this was happening because of the growing
scale of datacenters and because of the way policies were written
to regulate traffic within a datacenter (e.g., between pairs of
virtual machines within a datacenter).

Chatty Tenants and the Cloud Network Sharing Problem
Hitesh Ballani, Keon Jang, Thomas Karagiannis, Microsoft Research,
Cambridge; Changhoon Kim, Windows Azure; Dinan Gunawardena and Greg
O’Shea, Microsoft Research, Cambridge

Keon Jang focused on how to share the network in multi-tenant
datacenters. He pointed out that multi-tenant datacenters
consist of both intra-tenant (VM-to-VM) and inter-tenant (VM-
to-storage) traffic. Because the network is shared by multiple
tenants, network performance of tenants is interdependent. Jang
mentioned three requirements for network sharing: a minimum
bandwidth guarantee, upper-bound proportionality, and high
utilization. Jung pointed out that no prior work satisfies all three
requirements—they focus on intra-tenant traffic only; however,
inter-tenant traffic accounts for 10–35% of the overall traffic.
Additionally, guaranteeing minimum bandwidth and ensuring
proportionality for inter-tenant traffic is harder.

Jang then presented an overview of Hadrian, which satisfies
the above three requirements. Hadrian uses a hierarchical hose
model. In this model, tenants can separately specify inter-tenant
bandwidth requirement and communication dependency. This
guides the placement of VMs across the datacenter. Hadrian
uses a hose-compliant bandwidth allocation scheme, which
ensures upper-bound proportionality and provides minimum
bandwidth guarantees.

Jang then presented an evaluation of Hadrian through real-
world deployments as well as large scale simulation experi-
ments. He showed that job completion time is 3.6x faster using
Hadrian. This is attributed to the better and predictable network
performance as well as efficient resource utilization offered by
Hadrian. His results also verified that Hadrian satisfies upper-
bound proportionality. Finally, Jang pointed out that a Hadrian
cluster accepts 37% more jobs compared to a non-Hadrian

78  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

REPORTS

 cluster. Thus, Hadrian enables providers to offer improved ser-
vice at a lower price.

Rajesh Nishtala (Facebook) asked Jang to comment on the
multi-tenancy of low-bandwidth, low-latency applications and
high-bandwidth, high-latency tolerant applications coexist-
ing in a single environment in the Hadrian model. Jang replied
that latency is out of scope of their work; however, bandwidth
reservation prevents the network from getting over-utilized, so
latency remains low. Sanjay Rao (Purdue University) asked how
easy it is to predict the inter-tenant bandwidth and whether it
changes a lot over time. Jang replied that it would depend on
the application. For example, in MapReduce, where the input
data size is known a priori and where users can reason about
the job deadline, bandwidth prediction is easy. Rao wanted to
know whether they make the assumption that the bandwidth is
specified by tenants. Jung answered affirmatively. Rao then que-
ried about the complexity of dependencies among tenants and
whether Hadrian uses the dependency relationships among ten-
ants to make placement decisions. Jung replied that tenants only
specify their total bandwidth requirements and Hadrian’s place-
ment decisions are solely guided by these bandwidth require-
ments, not by the dependency relationships. Michael Piatek
(Google) commented that in case of all-to-all communication the
placement problem is tricky. This is specifically true for services
like storage providers. He asked whether providing some hint to
the placement algorithm to make better placement decisions in
case of services is possible. Jung replied that in this work they
did not consider this approach but certainly these hints can help
the placement engine to make better decisions.

Effective Straggler Mitigation: Attack of the Clones
Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica,
University of California, Berkeley

Ganesh Ananthanarayanan presented his work on effective
straggler mitigation in the case of interactive data analytics. He
pointed out that interactive jobs are common in today’s clusters,
and the number of interactive jobs is expected to grow further.
These jobs are small in size, and low latency is crucial. For exam-
ple, in Facebook’s Hadoop cluster, 88% jobs operate on 20 GB of
data and contain fewer than 50 tasks. These interactive jobs are
sensitive to stragglers. Existing straggler mitigation techniques,
such as blacklisting and speculation, are ineffective for these
small jobs (6x–8x slower compared to the median task size).

Ananthanarayanan proposed proactively launching multiple
clones of a job and picking the results from the earliest clone.
This approach probabilistically mitigates stragglers. Because
most of the small jobs use only a small fraction of resources in
a cluster, to clone small jobs with only a few extra resources
is feasible; however, cloning creates I/O contention. To avoid
the contention, every clone should get its own copy of data. In
MapReduce this data may either be the input data (replicated)

or the intermediate data (not replicated). Ananthanarayanan
considered the harder case of intermediate data and showed that
job-level cloning is not effective in mitigating stragglers with a
small number of clones; however, task-level cloning can solve the
problem by using only a few (3) clones. Next, he presented two
schemes for contention avoidance and straggler mitigation for
intermediate data: contention-avoidance cloning (CAC) and con-
tention-cloning (CC). He showed that CAC avoids contentions
but increases vulnerability to stragglers. On the other hand,
CC mitigates stragglers but creates contentions. He proposed
solving the problem associated with CAC and CC by an approach
called “delay assignment,” where a small delay is assigned to
get an exclusive copy before contending for the available copy.
He also mentioned that jobs are cloned only if sufficient budget
(resource) is available.

Finally, Ananthanarayanan presented evaluations of his system
(called Dolly) by using workloads from Facebook and Bing
traces. He compared Dolly against two prior approaches called
LATE and Mantri. His experiments showed that jobs are 44%
and 42% faster compared to LATE and Mantri, respectively.
Additionally, the slowest task is only 1.06x slower compared to
the median task (down from 8x). He also showed that the pro-
posed delay assignment technique is critical for achieving better
performance, and with the increasing number of phases in jobs,
the benefit of this technique increases further.

Christopher Stewart (Ohio State University) asked how a
small job was defined in terms of the number of tasks in that
job. Ananthanarayanan replied that they avoided defining and
specifying which jobs were small. This notion was captured by
the cloning budget. A specific number of clones for a job are cre-
ated as long as resources are available. Stewart followed up by
asking whether there was any insight on how to set the cloning
budget. Ananthanarayanan mentioned that it would require
sensitivity analysis, which is mentioned in the paper. The clon-
ing budget depends on the knee of the power-law curve of the
job size in a specific workload. Sanjay Rao (Purdue University)
asked whether cloning could backfire, i.e., whether the proposed
techniques depended on the fact that stragglers were random
and there was no correlation between them. Ananthanarayanan
replied that cloning may not be effective in case of data skew (i.e.,
when one task has more data to process than the other). Rao then
refined his question by asking whether straggler nodes were
correlated or not. Ananthanarayanan replied that according to
their observation, stragglers were uncorrelated. For this reason,
techniques such as speculation were effective; however, what
Rao suggested might be interesting in order to make placement
decisions for speculative clones. If a specific rack is known to
be faulty, then avoiding that rack might be better. They did not
explore these cases in their work.

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 79

REPORTS

Substrate
Summarized by Joshua B. Leners (leners@cs.utexas.edu)

Wire Speed Name Lookup: A GPU-Based Approach
Yi Wang, Tsinghua University; Yuan Zu, University of Science and Technology
of China; Ting Zhang, Tsinghua University; Kunyang Peng and Qunfeng
Dong, University of Science and Technology of China; Bin Liu, Wei Meng, and
Huicheng Dai, Tsinghua University; Xin Tian and Zhonghu Xu, University
of Science and Technology of China; Hao Wu, Tsinghua University; Di Yang,
University of Science and Technology of China

Bin Liu explained that name lookup is an important problem,
both in the context of networking and in domains outside of
networking. This paper focuses on a particular use case of name
lookup: routing in a content-centric network. Content-centric
networking uses hierarchical names (e.g., /com/google/maps)
of arbitrary length rather than fixed-length addresses to route
packets. To be useful, content-centric networking needs a lookup
mechanism that supports longest prefix matching, has high
throughput (saturates a 100 Gbps Ethernet link), and low latency
(100 microseconds per lookup).

Satisfying these constraints requires a carefully designed data
structure that can work efficiently with GPU hardware. Some
straightforward approaches won’t work: character tries and
state transition tables require too much memory. Aligned transi-
tion arrays (ATAs) can greatly compact the information of a
transition table, but they don’t support incremental update and
are still inefficient (each character must be looked up sepa-
rately). To address both of these concerns, the authors imple-
mented multi-ATAs, which can use multiple characters in each
transition and support incremental update.

There are some challenges to implementing multi-ATAs on a
hybrid CPU-GPU platform: the PCI-e bus and GPU processor
are limiting factors in achieving both high-throughput and low
latency. Two techniques are used to improve performance. First,
pipelining lookup and data transfer improves PCI-e bus and
GPU processor utilization. Second, inter weaving the memory
layout of the input names in GPU memory reduces the memory
accesses of threads, improving performance.

The implementation of the multi-ATA data structure performs
well on the CPU-GPU platform. Using the multi-ATA requires
two orders of magnitude less space than a baseline state transi-
tion table. The techniques to use the GPU efficiently allow up
to ~70 million searches per second, an order of magnitude more
than a state transition table. Furthermore, these techniques can
saturate a 100 Gbps link with latencies of less than 100 micro-
seconds per search.

Dong Zhou (Carnegie Mellon University) pointed out that in
their evaluation, they worked only on a local machine but didn’t
actually transfer data onto a NIC. Zhou wondered whether this
was a fair comparison. Bin Liu replied that they only worked
within the context of a single machine and that they were look-

ing at using the NIC in future work. Because using the NIC
would take additional CPU cycles, Zhou then wondered, would
competing with the CPU affect their results? Bin Liu replied
that this was something they needed to address but thought that
other hardware acceleration could help. Srimat Chakradhar
(NEC Labs) wondered if the state tables get larger, would they
still fit in the GPU. Bin Liu said that they currently had a 10 mil-
lion-entry table on the GPU, which uses about 1/3 of the GPU’s
external memory for a single GPU processor chip, and they had
two processor chips on the GTX590 board. They estimated they
could keep a 60 million-entry table on this kind of GPU. Newer
GPUs had more space, and they thought they could keep a 120
million-entry table on the new hardware.

Michael Freedman (Princeton University) noticed that in the
multi-ATA table it looked like collisions map into a second
table. This seemed to imply that lookups would require mul-
tiple accesses. Bin Liu said that it didn’t, and they have a proof
in the paper. Freedman then asked whether they considered
other hashing algorithms, such as cuckoo hashing, and Bin Liu
said that they use a much simpler lookup algorithm. Gun Sirer
(Cornell) suggested that they should be mining BitCoins with
his GPUs, since, currently, their approach lacked security, as in
self-verifying names. Lack of security as a first-class primitive
plagues DNS today. Bin Liu said that security is future work.

SoNIC: Precise Realtime Software Access and Control of
Wired Networks
Ki Suh Lee, Han Wang, and Hakim Weatherspoon, Cornell University

Ki Suh Lee said that measuring and controlling interpacket
delays can enable better understanding of network charac-
teristics and new applications. For example, measuring these
interpacket delays can give better characterization of network
traffic, and controlling the interpacket delays can create new
covert channels. Unfortunately, current techniques are insuf-
ficient to measure these interpacket delays precisely; however,
the precision of network measurements could be improved with
access to the PHY layer: counting the number of PHY layer idle
characters between packets can give network research applica-
tions sub-nanosecond precision.

Manipulating idle characters requires accessing the PHY,
which is currently a black box that hides information (including
idle character counts). One approach could use something like
 BiFocals, which uses physics equipment to measure the PHY
layer. Unfortunately, this equipment is expensive ($500,000) and
only works offline. Because there is limited access to hardware,
the authors propose using software to count idle characters.

The authors implement their approach as a new platform called
SoNIC, which ports some of the PHY layer functionality of a 10
Gbps Ethernet link into software. Specifically, SoNIC ports all
of the functionality that manipulates bits into software (every-

80  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

REPORTS

thing above the scrambler of the physical coding sublayer), but
keeps the functions that translate bits into signals into hard-
ware. This split requires high-performance software, which
SoNIC implements using three techniques: (1) SoNIC software
threads are pinned to an individual CPU core; (2) polling and an
optimized DMA, rather than interrupts, are used to interface
with the network device; and (3) software is tightly optimized
(e.g., by replacing loops with bitwise operators).

These techniques give SoNIC precise measurement and control
of interpacket delay and interpacket gaps, which allowed the
authors to implement several functions that were previously
impossible (including a new timing channel with data rates up to
250 Kbps that is undetectable by current techniques).

Dong Zhou(Carnegie Mellon University) asked whether there
are any limitations to applications they can support, because
SoNIC appears to require a lot of CPU. Lee replied that the
applications must be able to work with data faster than 10 Gbps
using the remaining resources of the system. Nikita Borisov
(University of Illinois Urbana-Champaign) thought that it’s
cool that their timing channel attack works even if there are
unmodified routers along the path, and wondered whether they
had considered cross traffic while evaluating this attack. Lee
said that they had, but their paper uses only unloaded routers
to demonstrate feasibility. Hongyi Zeng (Stanford University)
wondered about the requirements for an FPGA to implement
SoNIC. Lee replied that the FPGA must have transceivers that
can support more than 10.3 Gbps. Zeng then asked about the use
of a CDF graph that showed variations in the interpacket gap,
wondering why hardware would exhibit these variations. Lee
said that SoNIC has errors because it’s timestamping within the
network stack, and within the kernel there’s a lot of overhead:
other tasks, interrupts, etc. Zeng asked about hardware time-
stamps, and Lee replied that hardware clocks have lower resolu-
tion than their techniques. What’s cool about SoNIC is that
they get really precise timing from counting the idle characters.
Junda Liu (Google) noticed that every port had five dedicated
kernel threads, and asked whether that required five cores. Lee
answered yes, that they pinned each thread to its own core, but
the other cores were shared. More CPU-intensive applications
(e.g., full packet capture that requires disk access) are impossible
right now because of application requirements (must handle > 10
Gbps of data).

Split/Merge: System Support for Elastic Execution in
Virtual Middleboxes
Shriram Rajagopalan, IBM T. J. Watson Research Center and University
of British Columbia; Dan Williams and Hani Jamjoom, IBM T. J. Watson
Research Center; Andrew Warfield, University of British Columbia

Shriram Rajagopalan noted that elasticity, the ability to scale a
Web service dynamically to meet demand, has been well-studied
in the context of Web applications; however, these applications

often depend on middleboxes, such as firewalls, intrusion detec-
tion systems, and load balancers, which are not well suited to
dynamic scaling, because they maintain state. Because middle-
boxes are hard to provision dynamically, scalable Web services
over-provision their middleboxes or stop using them entirely.

An important insight is that middleboxes are flow-oriented:
most processing deals with a single flow in isolation, and that
the state associated with these flows is partitionable. Using
this insight, the authors classified middlebox state into three
cate gories: partitionable (e.g., flow state), coherent (e.g., coun-
ters), and ephemeral, state that is local to a middlebox instance
(caches, etc.).

To leverage this insight, the authors implemented FreeFlow,
a VMM runtime for middleboxes that can dynamically provi-
sion middleboxes. To use FreeFlow, a middlebox developer must
annotate the middlebox’s state as partitionable, coherent, or
ephemeral. At runtime, FreeFlow uses OpenFlow to migrate
flows (and their state) correctly to dynamically allocated middle-
boxes, without disrupting existing traffic. To prevent coherent
state from becoming a bottleneck, FreeFlow uses looser con-
sistency semantics for keeping such state in sync. The lessened
consistency is not problematic for most coherent state, such as
counters for reporting statistics, monitoring thresholds, etc.

Using its Split mechanism, FreeFlow is able to keep latency
low by dynamically allocating new middleboxes in the face of
increased load. FreeFlow also keeps utilization high with its
Merge mechanism: combining middlebox replicas when load
decreases. FreeFlow has end-to-end benefits with existing
middleboxes. For example, FreeFlow allows Bro, an intrusion
detection system, to scale dynamically, performing as well as
over-provisioning, with only a minor performance hit after a
burst in load.

Masoud Mosharef (USC) asked whether they assumed that the
flow entries were not dependent. Rajagopalan replied that they
assumed that flows were independent. Mosharef then asked
whether they had any suggestions for selecting middleboxes
(e.g., to balance network traffic). Rajagopalan answered that
implementing policy on top of their mechanism is future work.
Anthony Nicholson (Google) pointed out that their implementa-
tion requires modifying code, and wondered whether FreeFlow
could be made to work with unmodified middleboxes. Rajago-
palan replied that, currently, modifying the code is necessary.
The idea is that people are already moving away from custom
hardware middleboxes to software-based middleboxes that can
be deployed and scaled in the cloud. We have the opportunity to
get things right the first time by designing these middleboxes
properly. Srimat Chakradhar (NEC) asked whether they were
assuming locking across middle boxes for coherent state. Raja-
gopalan answered yes, if the coherent state requires strong con-

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 81

REPORTS

sistency. Yan Chen (Northwestern) pointed out that in Bro, there
are multi-dependent flows and wondered whether they tried
to evaluate the state explosion in keeping these flows together.
Rajagopalan said that there is no state explosion as such. There
are two ways of tackling this scenario: partition state at larger
granularity or abstract the dependencies into a coherent state
and synchronize as needed. There is definitely a tradeoff in the
granularity of partitioning vs. the ability to finely balance load.
They didn’t find many interflow dependencies in their evalua-
tion, so there wasn’t much problematic state.

Steve Tarzia (Vaporstream) asked why not make the middle-
boxes stateless, since they were already re-architecting them.
Rajagopalan replied that stateless Web applications can afford
to look up session state from external systems like databases or
key-value stores because they handle thousands of requests per
second; however, middleboxes handle millions of packets per
second. The latency requirements on middleboxes make access-
ing an external database impractical.

Wireless
Summarized by Arpit Gupta (agupta13@ncsu.edu)

PinPoint: Localizing Interfering Radios
Kiran Joshi, Steven Hong, and Sachin Katti, Stanford University

Currently, interference is the major cause of poor performance
for WiFi networks, and localizing these interfering devices is
desirable. Most of the previous work in this area required exten-
sive pre-deployment calibration. Steven Hong presented their
solution, which requires minimum calibration and is built on top
of existing AP architecture.

Steven also emphasized that this solution cannot only be used
for locating interfering devices but also for location-based
advertising, indoor navigation, real-life analytics, etc. PinPoint
can differentiate between multiple interfering signals, compute
line-of-sight angle-of-arrival (LoS AoA) in a non-line-of-sight
(NLoS) multipath environment, and aggregate and process noisy
data from APs. Computation of LoS AoA in an NLoS multipath
environment with multiple antenna requires usage of angle of
arrival for interference signals, but the presence of multipaths
obscures such an approach. Steven than explained how angle of
arrival estimation techniques work in general. Also, LoS detec-
tion naively won’t work due to a NLoS scenario. Their solution is
to use feature vectors and arrival time differences. LoS signals
arrive first, enabling identification of LoS signal and AoA
 eventually.

For evaluations, they used AoA+ CSSI (cyclic signal strength
indicator) information and compared it against performance of
RSSI-based techniques and MUSIC. Pinpoint leverages existing
WiFi infrastructure, provides a better algorithm for LoS AoA
estimates, and is capable of differentiating various interference

sources. This makes PinPoint a better candidate for interference
localization than existing solutions.

Sarthak Grover (Georgia Tech) asked about the CSSI approach,
whether it is possible to differentiate between two WiFi signals.
Steven replied that it works better if the interfering signals are of
different protocols. In the case of two WiFi signals, CSSI infor-
mation won’t be important but AoA will surely be important. A
researcher from UCL London said that MUSIC is not suited to
indoor scenarios and asked whether theirs was a fair compari-
son. Steven admitted that the objective for MUSIC is different,
and they do focus on the strongest multipath components.

SloMo: Downclocking WiFi Communication
Feng Lu, Geoffrey M. Voelker, and Alex C. Snoeren, University of California,
San Diego

Feng Lu started with statistical figures to emphasize the domi-
nance of WiFi radios in consuming power for energy limited
smart devices. He then explained how WiFi sleep works and
about the focus of researchers to develop better sleep policies
in recent years. Most apps are real time and chatty in nature.
Feng explained that the data rates for such apps are small, but
these apps stay connected more than 62% of the time. In order
to identify opportunities to save energy, knowing where energy
is spent is important. WiFi radio goes to idle before sleep, which
is almost the amount of energy of the transmit (Tx) and receive
(Rx) states. As apps require a smaller data rate, but available
rates are higher, time spent in Tx/Rx is small and most of the
energy is spent in idle state.

Their solution is to downclock the WiFi radio, saving 30–40%
energy. Clock rate is gated by the sampling rate, which is
higher following the Nyquist principle for WiFi signals. Recent
advances in compressive sensing allows them to cheat when the
information rate is much less than the signaling rate (11 times).
The simple idea is to sample groups of chips rather than a single
one, enabling downclocking for WiFi radio. The solution enables
downclocking for both transmission and reception.

SloMo is implemented over the Sora (SDR) platform and doesn’t
require any modification to WiFi APs, with full backward
compatibility. Evaluation reveals that there is not much differ-
ence for cases where SNR is good and when SNR is poorer. As
an example, SloMo energy consumption for the Angry Birds
app goes up for Tx and Rx, but significant energy savings are
observed for idle times. Similarly, apps such as Skype benefit
significantly. They observed that the increase in airtime is less
than 13%, ensuring that SloMo is useful and relevant for energy
saving.

Philip Levis from Stanford pointed out that this solution works
fine at the link level but wondered how it’s going to play out at
the MAC level. For example, if the receiver is downclocked and
AP is sending RTS/CTS, it is possible that the receiver won’t be

82  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

REPORTS

able to decode these RTS/CTS signals. Feng replied that if RTS/
CTS are sent at 1 or 2 Mbps, decoding them easily is possible,
but for other data rates we may not be able to decode correctly.
For the cases when RTS/CTS was sent at 1–2 Mbps, SloMo
was able to achieve 80–90% detection rate for low SNR values,
so it is not much of a concern. Men Dong (Samsung Labs) was
curious how the authors determined the energy breakdown
in their experiments. Also, the 700 mW power consumption
mentioned in earlier slides does not match the specifications
for Qualcomm or TI WiFi chips. Feng explained that the WiFi
node sends a null packet to the AP for sleep activities, and they
used that knowledge to determine when the AP went to sleep
and vice versa. Finally, they combined the power models based
on real smartphone measurements to map power consumed for
different modes of operation. The energy consumption values
mentioned are for data transmissions/receptions. Arpit Gupta
(NC State University) asked about scenarios in which multiple
apps (data-intensive ones along with chatty ones) concurrently
use the network interfaces; what should be the mechanism to
switch downclocking ON/OFF for such scenarios? Feng claimed
that apps do not actually use network interfaces concurrently,
and users interact with one app at a time. Masoud (USC) asked
how downclocking affects user experience or the performance of
applications like Skype. Feng said that experiments were carried
out with Skype and no perceivable impact was observed.

Splash: Fast Data Dissemination with Constructive
Interference in Wireless Sensor Networks
Manjunath Doddavenkatappa, Mun Choon Chan, and Ben Leong, National
University of Singapore

Manjunath Doddavenkatappa talked about the importance of
data dissemination and the critical nature of its completion
time, which for existing protocols is of the order of a few minutes
attributable to contention resolution. The proposed solution,
Splash, eliminates the need for contentions and therefore mini-
mizes completion time.

Manju explained how Splash eliminates the need for conten-
tion resolution through the use of constructive interference
and channel diversity, covering the network with fast, parallel
paths (tree pipelining). He further explained how Splash utilizes
transmit density diversity, opportunistic overhearing, channel
cycling, and XOR coding techniques to strengthen reliability.
He emphasized that any missing data is recovered locally and
the fact that 90% of nodes have full objects makes local recovery
practical.

Evaluation of this work was carried out over two testbeds:
Indriya at NUS and Twist at TU Berlin. Various experiments
strongly demonstrated that Splash reduced the data dissemina-
tion completion time by an order of magnitude. Contributions
of individual techniques were also presented giving better

insight to various factors responsible for this performance
 improvement.

Philip Levis complimented the work for the significant gain
demonstrated in the paper and asked about the implications for
the physical layer, whether there was a need for new physical
chips. Manju replied that it depends on the modulation tech-
niques. Masoud (USC) asked whether devices needed to be syn-
chronized and what data rate was required to keep that accuracy.
Manju agreed that there is a need for synchronization and that
the time difference between different data transmissions should
be less than .5 µs to result in constructive interference. Session
chair Brad Karp asked about how constructive interference will
scale out as you increase the density, because the heuristic used
about leaf and non-leaf nodes might not work if the network is
too dense and non-leaves are nearly the entire network. Manju
said that it is totally random because of the capture effect; it
depends on the placements of nodes, and it is difficult to find an
optimal number of receivers.

Community Award! Expanding Rural Cellular Networks
with Virtual Coverage
Kurtis Heimerl and Kashif Ali, University of California, Berkeley; Joshua
Blumenstock, University of Washington; Brian Gawalt and Eric Brewer,
University of California, Berkeley

Awarded Community Award!

Kurtis Heimerl mentioned that his talk was about cellular
networks, which is not very common at networking conferences.
Interestingly, he compared the invention of cellular networks
with the light bulb to demonstrate the impact of this technology.
This set the tone for the entire talk. Kurtis explained the reasons
why rural areas lack cellular network coverage: the investment
cost is high and user density is not enough to recover costs. He
revealed that half the cost of running a cellular tower in remote
areas is power related. Thus, to enable wider coverage for rural
areas, power draw must be reduced. Kurtis explained various
components of a rural base station tower and the costs for each
of its components, making it clear that the lack of power infra-
structure was responsible for higher costs.

The power amplifier draws 130 W constantly and is always
turned on. Because the number of users is low in rural areas,
most of the time nothing goes on and energy is wasted keeping
the power amplifier constantly running. Their simple idea is to
enable sleep for base stations when not in use. Implementation of
this idea is relatively tricky for the user side. Kurtis spoke about
two solutions for this problem: wake-up radios and wake-up
phones. The fundamental change is to involve users for power
provisioning, which is shown to be very common in rural areas.
The proposed solution when compared to traditional schemes
saves around 84% power.

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 83

REPORTS

Alex Snoeren (UCSD) asked about power consumption of receiv-
ers for scanning activities, as in the case of WiFi networks; scan-
ning is a power hungry activity, so how does this work impact
power consumption for handsets? Alex also wondered about the
cost of maintaining armed guards for rural areas. Kurtis replied
that scanning is a common activity for cellular networks and
results in no overhead for this solution. Labor cost is trivial in
these areas, so hiring guards is not much of a cost issue. Rajesh
Nishtala (Facebook) asked whether this kind of solution could
be used for data activities like checking email. Kurtis said that
there is nothing about this work which limits it to calls; it can be
used for data activities, too. Though, as these things are asyn-
chronous in nature, some periodic synch activities need to be
planned around such a service, but it is surely doable. Josh Reich
(Princeton) asked about potential attacks on such a service.
Kurtis replied that validation mechanisms make sure that such
attacks are not a problem. Josh asked why the authors didn’t
considered power cycling. Kurtis replied that usage for such a
service is mostly for emergency situations and thus timing is an
important factor to consider. Daniel Turner (UCSD) asked an
economics-based question: who will sponsor such a service, gov-
ernment or rural entrepreneurs? Kurtis said that GSM operation
requires a license, and its usage by rural entrepreneurs would
require policy changes.

Big Data
Summarized by Muntasir Raihan Rahman (mrahman2@illinois.edu)

Rhea: Automatic Filtering for Unstructured Cloud
Storage
Christos Gkantsidis, Dimitrios Vytiniotis, Orion Hodson, Dushyanth
Narayanan, Florin Dinu, and Antony Rowstron, Microsoft Research,
Cambridge

Christos Gkantsidis presented research on optimizing data
analytics in the cloud. Public cloud infrastructures are break-
ing the locality of data and computation by introducing separate
storage and computation infrastructures. This approach has
many advantages, but comes at the cost of network transfer. The
paper has measurements that characterize the amount of data
transfer required for this, and the author mentioned that it is
quite significant.

The key insight is that most jobs only operate on a subset of the
input data. So filtering the input data before transferring from
storage to compute can yield significant performance gains.
The authors propose generating network filters that get rid of
unnecessary data before starting the network transfer. The filter
has to be correct and transparent; however, to filter the data, we
need some structure, whereas the input data is usually unstruc-
tured. The authors propose using static analysis of job byte-code
and extracting row and column filters to discover the data that is
actually used in computing. Filters are opportunistic, conserva-
tive, and transparent.

Christos also briefly outlined the system design, especially the
construction of row and columns filters. A row filter discov-
ers rows that generate some output data. Then column filters
identify which substring of that row is of interest. One problem
is that some MapReduce programs use state, whereas filters
cannot rely on mutable state. The solution is to tag all mutable
fields as output. On the other hand, column filters use abstract
interpretation and tokenization methods to find interesting
columns within a row.

The experimental setup was Hadoop on Windows Azure. The
author presented results for eight jobs in the same datacenter;
however, implementing filters on Amazon storage is not possible.
So the authors took the data, filtered it using Rhea, and com-
pared the job results with the pure input and the filtered input.
The authors also observed that the overhead of Rhea is linear in
the number of cores. They observed that the filter performance
was bottlenecked by string I/O. They saw 30–80% improvement
in runtime using Rhea. These numbers turn out to be lower than
job selectivity in Hadoop.

Following the talk, Ryan McElroy (Facebook) asked whether the
authors tested the filters directly, where storage and compute
are already collocated, and whether there were any benefits.
Christos replied that they did some experiments using local
storage and machines for testing the filter, which means that
storage and compute are collocated, and they saw some benefits.
The session chair, George Porter, then asked whether declarative
cluster computing frameworks such as Spark, Pig, or Hive could
help with the static analysis required in Rhea. In a nutshell,
George was asking about generalizing Rhea from pure MapRe-
duce programs written in Java to more functional programs
like Spark, which is written in Scala. Christos first clarified by
saying that in declarative languages, select and project operators
are explicit in the code, which Rhea had to discover for MapRe-
duce programs. But even in that case, the user will still need to
do static analysis on user-defined functions.

Robustness in the Salus Scalable Block Store
Yang Wang, Manos Kapritsos, Zuocheng Ren, Prince Mahajan, Jeevitha
Kirubanandam, Lorenzo Alvisi, and Mike Dahlin, The University of Texas at
Austin

Yang Wang presented Salus, a scalable and robust block store.
The first priority of any storage system is not to lose data. The
problem is exacerbated by remote storage used by most users.
Salus adds robustness on top of scalable remote storage systems
such as Amazon elastic block store (EBS). There are existing
systems that provide strong protection against arbitrary fail-
ures; however, these techniques do not go well with online scal-
able storage systems. This is where Salus comes in; it matches
well with scalable block stores. Salus inherits scalability from
existing systems, while providing strong robustness with low
overhead. The robustness guarantees are that a client never

84  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

REPORTS

reads corrupted data, and the system remains durable and avail-
able despite a fixed number of failures.

Yang then described the architecture of existing scalable sys-
tems. The first component is a metadata server, which is rarely
accessed to avoid being a bottleneck. Scalability is achieved
via parallel access to data servers, whereas the availability and
durability guarantees come from replication; however, these
systems lack ordered write guarantees and have single points of
failure. A block store needs ordering guarantees for implement-
ing barrier semantics. A simple checksum does not suffice to
resolve the corruption of data by a compute node.

Salus overcomes these problems by introducing end-to-end
verification at the block driver level to prevent corrupt data reads
by clients. Also, Salus uses pipelined commits to the servers
to implement barrier semantics. The single point of failure is
alleviated through active storage in the replication protocol.
Yang then went into details about pipelined commits and active
storage. A naive approach of waiting for all writes to finish does
not work for barrier semantics, since it loses all parallelism.
Two-phase commit also falls short because it cannot provide
ordering among multiple transactions. Pipelined commit solves
this issue by forcing a transaction leader to wait for an acknowl-
edgement from the previous leader. So the pipelined commit still
does the first phase of 2PC in parallel but executes the second
phase sequentially for barrier semantics. The performance is
still good because the message overhead in the second phase is
much smaller than in the first phase. Salus handles active stor-
age by decoupling safety and liveness. Safety is still achieved
via f+1 replicas, whereas liveness is guaranteed by only storing
soft state in compute nodes. Surprisingly, active storage helps
with performance because the soft state compute nodes can now
be collocated with storage nodes. Evaluation results show that
Salus is always safe, and remains live when the number of com-
puting node memory failures doesn’t exceed two. The experi-
ments also showed that the overhead of Salus doesn’t grow as the
system scales.

George Porter asked whether Salus can support multiple
con current writers. Yang answered that it was still an open
problem, but it could be achieved by sacrificing either lineariz-
ability for causal consistency or scalability. Salus can handle
independent random failures. As a follow-up, George asked
whether Salus can handle correlated failures. The author said
that they did not experiment with correlated failures and it was
left as future work.

MemC3: Compact and Concurrent MemCache with
Dumber Caching and Smarter Hashing
Bin Fan and David G. Andersen, Carnegie Mellon University; Michael
Kaminsky, Intel Labs

Bin Fan presented MemC3, which improves upon the basic
Memcached via low overhead caching and better hashing. The
goal of Memcached is to reduce space overhead and improve per-
formance. The state-of-the-art systems improve performance
by sharding, which eliminates inter-thread communication;
however, this only works for uniform workloads. For skewed
workloads, sharding can lead to hotspots and memory overhead.
Instead, the authors try to use space-efficient concurrent data
structures for their system via smart algorithmic tuning. Their
system has 3x throughput improvement and requires 30% less
space compared to the original Memcached system.

Before diving into the details of MemC3, Bin gave a brief over-
view of the original Memcached architecture and the typical
workload for the system. MemC3 optimizes for this typical
workload of small objects with high throughput requirements.
The core data structures used in Memcached is a key-value index
implemented via a chaining hash table, and a doubly linked list
for LRU eviction. MemC3 replaces these data structures with
efficient concurrent data structures without global locks for
improved single-node scalability and reduced space overhead.
For hashing, the authors use optimistic cuckoo hashing, which is
space-efficient and highly concurrent. For cache eviction, they
use CLOCK-based LRU eviction. The rest of the talk focused on
optimistic cuckoo hashing.

The default Memcached architecture uses a chaining hash table,
which has low cache locality and high pointer cost. Another
alternative could be linear probing, which is cache friendly but
has poor memory efficiency. Instead, the authors use cuckoo
hashing, where each key has two candidate buckets, and lookups
read both buckets in parallel. The value is actually stored in
just one of the buckets, and this scheme has constant amortized
insertion cost. Memory efficiency is further improved to 95%
with increased set-associativity. Even though the system only
supports single write, multiple reader concurrency, the problem
is still hard due to false misses. This happens if a read happens
while a recursive insertion is going on. The authors solved this
using a two-step insert process. In the first step, the system
finds a path to an empty bucket without editing buckets. In the
next step, the empty slot is moved back through the reverse
path. The only required guarantee is that each swap is atomic.
The authors use optimistic locking for the atomic swap, which
is optimized for read-heavy workloads. The system also avoids
concurrent writes by serializing all inserts, which performs well
with read-heavy workloads. Micro-benchmarks reveal that their
hash table increases throughput from 1.74 to 21.54 M lookups/
sec for all hit lookups, with further improvement for all miss

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 85

REPORTS

lookups. They also showed that their system scales much better
with increased number of threads.

Following the talk, Srimat Chakradhar (NEC Labs) asked
whether the authors considered the impact of network perfor-
mance on MemC3, since the network can be the main bottle-
neck. He commented that the experiment was masking the
true network delay, and that any amount of local computation
improvement cannot bypass the network delay. Bin wanted
to answer this question offline. Arash Molavi (Northeastern
University) asked whether the hash path could end up in a loop.
Bin responded that they handled it with a fixed upper bound on
retry attempts, and that if a lookup fails after 500 attempts, the
table is most likely full. Arash then asked how the authors came
up with the magic number of 500. Bin’s response was that they
used experimental parameter tuning to figure out the optimal
number of retry attempts. Sid Sen (Princeton University) sug-
gested that further improvement could be obtained by using
overlapping instead of disjoint set-associativity for the hash
table. The speaker responded that they tried that idea, but it did
not work since they are only storing part of the key for perfor-
mance reasons.

Scaling Memcache at Facebook
Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman
Lee, Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David
Stafford, Tony Tung, and Venkateshwaran Venkataramani, Facebook Inc.

Facebook is the largest user of Memcache in the industry space,
and Rajesh Nishtala began by listing Facebook’s key system
infrastructure requirements: real-time communication and
aggregation from multiple sources, access and update of popular
content, and huge scalability. This means that any such system
needs to support large read-heavy workloads, must be geo-repli-
cated, and has to support evolution of products; however, Mem-
cache does not need to worry about persistence, which helps it
scale. The basic building block for Facebook’s infrastructure is
Memcached, which is basically a network attached in-memory
hash table with LRU-based eviction policies. The rest of the talk
gradually explored larger and larger scale usage of Memcached
at Facebook.

The first phase was a single front-end cluster that dealt with a
read-heavy workload, wide fan-out, and fault tolerance. Before
delving into the design, Rajesh briefly mentioned that with the
pre-Memcached architecture, a few shared databases sufficed
to serve the workload. Obviously, this did not scale, as evident
from an example of data fetching for a simple user request that
Rajesh pointed out. So the first step was to add a few Mem-
cached servers (around 10) to alleviate the load (about a million
operations per second). The typical workload had about twice as
much reads as writes, which required higher read capacity. The
solution was to use Memcached as a demand-filled look-aside
cache, with high probability of lookup success. Updates usu-

ally invalidate Memcache entries. Facebook prefers idempotent
deletes rather than updates because they can be repeated with-
out loss of data; however, the look-aside cache can lead to stale
sets where the Memcache and the database are not consistent.
This was resolved with a lease. This still leaves a problem called
“thundering herds,” where a huge number of Web servers flood
the database that stores a popular item once the Memcache
entry is invalidated through an update. This issue is resolved by
using Memcache as an arbiter to decide who gets access to the
database.

Next, Rajesh described the scale increasing to around 100
servers and about 10 million operations per second. Obviously,
this required even more read capacity. At this scale, items are
distributed using consistent hashing; however, this leads to
all-to-all communication between Web servers and Memcache
servers, which is bad for the network. One such problem is incast
congestion, where multiple Memcache servers reply to the client
at the same time, which overloads the client network connection.
The solution is a simple sliding window protocol to control the
number of outstanding requests.

In the second phase, Rajesh went on to talk about scaling with
multiple front-end clusters, which introduced issues like data
replication control and consistency. At this scale, there are
thousands of servers and hundreds of millions of operations
per second. Here the main problems are to keep each cluster of
Memcache servers consistent and to manage over-replication of
data. The solution is a simple push-based approach, where the
database pushes invalidation updates to all Memcache clusters.
The network overhead of this broadcast approach is handled
using a middle layer of Memcache routers.

In the grand finale, Rajesh went on to the largest scale, that is,
multiple regions, where data consistency issues really kick in. At
this scale, there are billions of operations per second. The main
problem is to handle writes to slave regions. This is resolved by
only writing to the master, which works for read-heavy work-
load, but there can still be race conditions. This is handled via a
remote marker, which is a special flag that indicates whether a
race is likely to happen. This works because Memcache ensures
that misses are rare. Again, the read-dominance of the workload
is the reason why this works.

Rajesh concluded with three lessons learned from building
massive scale systems. First, pushing as much complexity to the
client as possible always helps. Second, operational efficiency is
a first-class citizen. And third, separating cache and persistent
storage allows systems to scale.

Anirudh Badam (MSR) asked about bottlenecks in a single
server. Rajesh answered that their systems are always pro-
visioned for the worst case, which means that single server
bottlenecks rarely surface. Badam then asked about using

86  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

REPORTS

flash-based storage for Memcached. Rajesh said that they use
flash mainly for colder data, as opposed to using Memcached for
hot data. Dave Andersen (CMU) asked whether the large scale
usage of Memcache at Facebook was due to legacy issues. Rajesh
answered that wasn’t the case. He said scaling Memcache has
worked well at Facebook and there is no reason to replace it.
Dave then asked about using Memcached outside Facebook. As
Bin pointed out in the last talk, the typical Facebook workload
has a lot of reads of small data items, so Rajesh reiterated that as
the dominant workload that would drive Memcache deployment
outside Facebook. Amar Phanishayee (MSR) asked about the
size of the cache and the average utilization. Rajesh answered
that it depended on the popularity of the item, which is basi-
cally the principle of caching. Marcos Aguilera (MSR) asked for
a clarification about pushing complexity to the client. Rajesh
clarified that the complexity is actually pushed to the client-side
library.

Posters
Summarized by Utkarsh Goel & Anish Babu Bharata
{utkarsh.goel, anishbabu.bharata}@cs.montana.edu

Demystifying Page Load Performance with WProf
Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and
David Wetherall, University of Washington

Many techniques that focus on reducing the Web page load time
(PLT) exist. Even though these techniques aim to provide a low
PLT, they are still difficult to be identified due to the complexity
of the page load process. The authors have abstracted a depen-
dency graph of the activities that make up a page load and have
developed a lightweight in-browser profiler, WProf, to produce
this graph. The results obtained from WProf shows that syn-
chronous JavaScript plays a significant role by blocking HTML
parsing, and the computation is a significant factor that makes
up as much as 35% of the critical path.

Towards A Secure Controller Platform for OpenFlow
Applications
Xitao Wen, Yan Chen, Northwestern University, Chengchen Hu, Xi’an
Jiaotong University, Chao Shi, Northwestern University, Yi Wang, Tsinghua
University

The OpenFlow architecture suffers from trust issues as it
embraces third-party development efforts. Most of the apps are
highly flexible for defining network behavior, yet the openness
and the absence of security enforcement make it difficult to
keep such trust on the OF controller, especially on the third-
party modules. To provide an intuitive impression, authors have
envisioned four classes of attacks: (1) direct intrusion from
control plane into data plane,(2) leakage of sensitive informa-
tion, (3) manipulation of OF rules, (4) deactivation of other apps.
As a part of the implementation, the authors have ported the app
hub to evaluate the additional controller latency and throughput.

Their results show that there were no additional latencies, and
even the throughput was reduced by only 1.3%.

Syndicate: A Scalable, Read/Write File Store for Edge
Applications
Jude Nelson, Larry Peterson, Princeton University

To preserve data consistency and its durability, coordination
between cloud storage, network caches, and local storage is a
must. The authors’ work is mainly based on following design
goals: decouple caching from consistency, decouple storage pol-
icy from implementation, and decouple read performance from
durability. The authors’ early work consisted of implementation
of the user gateway as a FUSE file system, the replica gateway
as a cloud-hosted process, and the metadata service as a Google
AppEngine service.

Dynamic Layer Instantiation as a Service
Flavio Espositox, Yuefeng Wangx, Ibrahim Matta, John Day, Boston
University

Current Internet architecture lacks scoping of control and
management functions. This results in a challenge to deliver a
communication service with required characteristics when the
ranges of operations are wide. This deficiency, together with the
desire to offer virtualized network services, has compounded
existing network service management challenges. The main
contribution of the authors is that RINA is capable of enabling
private networks to be instantiated dynamically. This is done by
customizing network management policies into a single layer,
without the shortcomings of the TCP/IP architecture.

WASP: A Centrally Managed Communication Layer for
Smart Phone Networks
Murad Kaplan, Chenyu Zheng , Eric Keller, University of Colorado

With the rapid increase in the use of smartphones-based
interactive applications, overloading off the cellular network’s
capacity can be observed, which may quickly expend the limited
bandwidth cap. In order to overcome these problems, the authors
have proposed WASP, a communication layer within a smart-
phone that couples cellular connections with direct phone-to-
phone links (over WiFi direct). The poster presented by the
authors presented the design and implementation of WASP and
discussed the design space that was enabled by this new SDN-
based model. Their demonstration consisted of three parts: (1)
they collected data from a small scale collection of phones, (2)
they collected data from a larger scale simulation of the Android
application within NS-3 (Network Simulator 3), and (3) they
conducted a mixed-mode simulation involving real Android
phones participating with the NS-3 based simulation.

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 87

REPORTS

Characterizing Broadband Services with Dasu
Zachary S. Bischof, Mario A. Sanchez, John S. Otto, John P. Rula, Fabián E.
Bustamante, Northwestern University

The authors presented a crowd-sourced approach to broadband
service benchmarking from end-systems. In the context of Dasu,
the authors have described its prototype implementation. Dasu is
a measurement experimentation platform for the Internet’s edge
based on the observation that, by leveraging minimal monitor-
ing information from the local host and home routers, one can
achieve the scale of “one-time” end host approaches with the
accuracy of hardware-based solutions. The demonstration of
Dasu consisted of broadband characterization functionality and
its user interface. The results observed by the authors showed
that by using an end-host approach, the large-scale view allowed
them to capture the wide range of service performance as expe-
rienced by users over different times of day and across different
geographic locations.

Auditable Anonymity
Sonia Jahid and Nikita Borisov, University of Illinois at Urbana-Champaign

The cloud is a common platform these days for storing and
sharing data. Deploying applications in clouds brings some new
challenges in security and privacy. The authors’ work enables the
data owner to get logs for data accesses, while hiding the infor-
mation from the cloud provider at the same time. This is done at
the data owner’s end by decrypting the audit log and then getting
access to all the logs provided by data access.

Self Tuning Data-Stores for Geo-Distributed Cloud
Applications
Shankaranarayanan Puzhavakath Narayanan, Ashiwan Sivakumar, Sanjay
Rao, and Mohit Tawarmalani, Purdue University

Most of the applications using the Internet share user data in an
interactive manner. Moreover, these applications have strin-
gent service-level agreements that are responsible for placing
tight constraints. These constraints affect the performance
of underlying geo-distributed datastores. The main challenge
here is the deployment of such systems in the cloud as applica-
tion architects have to maintain consistency between multiple
replicas, minimize access latency, and ensure high availability.
In this poster, the authors have adopted a systematic approach in
which they were able to capture the performance of a datastore
by developing analytical models. These datastores are based on
application workload and are capable of building a system for
optimal performance by automatically configuring the datas-
tore.

A Declarative Framework for the Verification of Network
Protocols
Jiefei Ma and Alessandra Russo, Imperial College London; Jorge Lobo,
Universitat Pompeu Fabra; Franck Le, IBM T. J. Watson Research Center

Verifying network protocols is a challenging problem. In this
poster, the authors have proposed a declarative framework that

builds upon the recent realization that with simple extensions,
database-style query languages can be used to specify and
implement network protocols. This framework consists of three
components: a protocol model, a communication model, and an
analysis model. The authors have observed the following results:
in a network running a link state protocol, the presence of per-
sistent forwarding loops was revealed by using this framework,
and the framework detected flaws in a MANET protocol that
was designed for finding disjoint paths.

Natjam: Prioritizing Production Jobs in the Cloud
Brian Cho, Samsung Inc.; Muntasir Rahman and Indranil Gupta, University of
Illinois at Urbana-Champaign; Cristina Abad, University of Illinois at Urbana-
Champaign and Yahoo! Inc.; Tej Chajed, University of Illinois at Urbana-
Champaign; Nathan Roberts, Yahoo! Inc.; Philbert Lin, University of Illinois at
Urbana-Champaign

This project presents the Natjam system, which does both
efficient resource utilization and better job run times during
overload. This system introduces job and task eviction policies,
thus achieving the co-existence of high priority production jobs
and low priority research jobs on the Apache Hadoop cluster.
This system is well tested, and they presented data that shows
Natjam is better than existing systems and relatively close to an
ideal outcome.

Consistent Packet Processing—Because Consistent
Updates Are Not Enough
Peter Perešíni and Maciej Kuźniar, École Polytechnique Fédérale de
Lausanne and Technische Universität Berlin/T-Labs; Nedeljko Vasić, École
Polytechnique Fédérale de Lausanne; Marco Canini, Technische Universität
Berlin/T-Labs; Dejan Kostić, Institute IMDEA Networks

This project explores the needs for consistent packet process-
ing in software-defined networking controllers and describes
the situations in which performance and scalability issues arise
even in a straightforward OpenFlow deployment. The project
proposes the use of transactional semantics within the control-
ler and explains the benefits it poses over consistent packet
processing.

IRate: Initial Video Bitrate Selection System for
HTTP Streaming
Ricky K.P. Mok, Weichao Li, and Rocky K.C. Chang, The Hong Kong
Polytechnic University

This project proposes IRate, which offers lightweight, fast, and
yet accurate decision-making for selecting the best initial video
bit rate for a given network condition. As one of its benefits, this
system just needs modification on the server and not on any
hosts. The results show greater accuracy of the IRate quality
oracle against the duration of the probe kit measurement.

Software Defined Measurement for Data Centers
Masoud Moshref, Minlan Yu, and Ramesh Govindan, University of Southern
California

Accurate detection of large flow aggregates and choice of bet-
ter routes for these flows are needed for performing traffic

88  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

REPORTS

 engineering. For reducing latencies of a partition/aggregate,
there is a need for identifying short traffic bursts. These mea-
surement tasks vary according to what traffics are required to
be measured, where to measure them, and when to measure. For
automatically distributing the measurement tasks across all the
switches, the authors have proposed leveraging a centralized
controller in datacenters. The key challenge here is to identify
the right division of labor across the controller and switches.
Another challenge is that monitoring a source IP prefix is a
collaborative task of multiple switches because a datacenter
topology consists of several switches and no switch sees all the
traffic.

IP2DC: Making Sense of Replica Selection Tools
Anish Bharata, Mike P. Wittie, and Qing Yang, Montana State University

Most of the cloud-based applications deliver the same level of
responsiveness as stand-alone software, which leads to user
dissatisfaction and slow adoption. In order to avoid poor user
experience due to end-to-end delay or lag, back-end logic and
application data are usually deployed across geographic loca-
tions. These distributed servers then direct all the user requests
to the closest server. The challenge lies in the accurate selection
of a server closest to a user, or a group of communicating users.
Even though earlier studies have proposed a number of tools for
identifying the closest replica server to a client IP, these tools
suffer from incomplete coverage of the IP space and can make
predictions based on stale network measurements. Hence, which
of these tools makes the most accurate prediction in most cases
remains unclear. The authors of this poster are interested in
their coverage of the IP space and their accuracy in determining
the closest public cloud datacenter to a given IP, relative to direct
probing.

Reliability
Summarized by Peng Huang (ryanhuang@cs.ucsd.edu)

F10: A Fault-Tolerant Engineered Network
Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, Thomas Anderson,
University of Washington

Awarded Best Paper!

Vincent started by stating that multi-rooted tree topologies such
as Fat Tree are preferred in today’s datacenter networks for
bisection bandwidth and cost concerns. Vincent proceeded to
talk about failure detection and recovery problems inside these
networks. The way they deal with failure is through heartbeat
detection and centralized controller for recovery by exploit-
ing path redundancy. But the detection and recovery are slow,
which can lead to suboptimal flow assignment: DC networks use
commodity switches that often fail and the particular topol-
ogy doesn’t allow local recovery. Vincent described the basic
approach of F10, which achieves fast failure detection and local,
fast, and optimal failure recovery by co-designing topology, rout-
ing protocol, and failure detection.

Fat Tree is not good at failure recovery primarily because there
is no redundancy on the way down and the alternative routes are
many hops away. They stem from the symmetries in the topolo-
gies: each node is connected to the same set of parents as the
siblings and the same set of grandparents as their cousins. F10
breaks these symmetries. To this end, it investigates two types
of subtrees, one with consecutive parents (type A) and the other
with strided parents (type B). But type A and type B alone is
essentially Fat Tree. The authors propose to mix them as an AB
Fat Tree: half of the subtrees are type A and half are type B. With
this topology, more nodes can have alternatives that are one hop
away. Then F10 adds a cascaded failover protocol through local
rerouting, notification, and a centralized scheduler.

Vincent went on to explain the failure detector in F10 in detail;
it’s faster than current failure detection because it looks at the
link itself, monitoring incoming bit translation and rerouting the
next packets. The key point is that rerouting is cheap in F10.

F10 was evaluated with both testbed (Emulab) and simulation
on traces. Results show that failure recovery can be under a mil-
lisecond and with only 14% of the congestion loss compared to
Fat Tree.

Brad Karp (UCL) asked how the solution compared to multipath
TCP. Vincent said they didn’t evaluate this, but as pointed out in
the paper, they are targeting slightly different cases, where you
aren’t necessarily able to affect end-hosts, and you want them to
use their own OS. Vincent speculated that even with multipath
TCP, there would still be performance degradation in that you
will loose one of the paths, which potentially could be worse than
F10. Siddhartha Sen (Princeton) suggested adding more links,
like VL2, so they have a fully connected topology. Vincent replied
that he thought that was a Clos topology and that F10 will fur-
ther optimize that. Even with a traditional datacenter network
which has all-to-all connectivity, F10 probably would have a 50%
- benefit over Fat Tree. Someone from USC asked whether the
solution had impact on the nice load balancing properties of Fat
Tree. Vincent replied that F10 doesn’t change that. You can do
the same thing in F10.

Someone from MSR asked two questions: when a node fails,
will reacting too quickly to links cause more problems? Vin-
cent answered that the actual number of messages broadcast
is not that high. Also, F10 will do exponential back-offs. Does
the global scheduler make an implicit assumption that traffic
is stable? Vincent explained that previous work (Hedera and
MicroTE) shows that there are LFN (Long Fat Network) flows
that are predictable. Even if things are unpredictable, the sched-
uler can still provide benefits.

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 89

REPORTS

LOUP: The Principles and Practice of Intra-Domain Route
Dissemination
Nikola Gvozdiev, Brad Karp, and Mark Handley, University College London

Nikola started with users’ expectations of Internet reach ability
as the transport has become reliable and routing systems adap-
tive. Many real-time applications, such as VoIP and interactive
gaming, become intolerant of brief interruptions. Routing is a
major source of the unreachability. Nikola then explained the
big picture of routing and the roles of iBGPs. Although previous
work has looked into gateway protocols, the fundamental behav-
ior of intra-AS route propagation is still unanswered. Typically,
iBGP fails when updates of iBGP causes transient loops, which
in turn cause collateral damage.

The authors propose new, clean-state intra-domain route dis-
semination protocols, SOUP and LOUP, that are loop free. These
protocols use reverse forwarding tree (RFT) and forwarding
activation (FA), require minimal configuration, and can be fully
distributed. They can provably avoid loops when the underlying
topology is stable. Nikola showed several cases of transient loops
and how the protocol can avoid them.

The evaluation of SOUP an LOUP was done on synthetic
topologies, and simulation was on a simulated publicly avail-
able network topology. Result shows LOUP causes no loops or
blackholes.

Ethan Katzbatha (USC) asked what should be done for packets
going to destinations that are being withdrawn. Nikola said there
is a fundamental tradeoff between a loop and a blackhole. If you
don’t do anything, the packets will be dropped at the border.
There can be smarter solutions if there is already a tunnel set
up. The border router knows where the packet should be going to,
and the router can forward the packet using this tunnel. Michael
Freedman (Princeton) noted that even with the tell-me-when
shortcut, there might still be strange issues in that the propa-
gation of reverse activation where the announcements go to
different parts of the network. Nikola said that there is one more
mechanism that is not described in the presentation that fixes
the issue.

Improving Availability in Distributed Systems with
Failure Informers
Joshua B. Leners, Trinabh Gupta, The University of Texas at Austin; Marcos
K. Aguilera, Microsoft Research Silicon Valley; Michael Walfish, The
University of Texas at Austin

Joshua described the importance of failure handling in distrib-
uted systems. The typical method of timeouts doesn’t tell what
and why. For example, consider the ICMP “destination unreach-
able” error message; it’s unclear why something’s unreachable:
is it a problem with the destination or network? is it permanent
or transient? The same error message is delivered for all these
types of failures. The reasons behind this is that the network

was designed to hide find-grained information as described in
a SIGCOMM 1988 paper on design philosophy of the DARPA
Internet protocol. Joshua revisited this classic network design
choice and argued that this choice is mismatched to today’s
requirements. Today’s network environment is built with a large
number of commodity machines and switches and, as a result,
failures are common and diverse. Applications, on the other
hand, lack failure information. To them, the diverse failures look
similar and so they choose universal recovery mechanisms.

Joshua then provided an example where knowing the type of
failure can help applications to act more efficiently for failure
recovery. The thesis of the paper is to expose the failure types to
application.

One potential problem of exposing failure types to applications
is that it may be burdensome to applications. For example, an
application now needs to understand the semantics of each fail-
ure type, and if the interface changes, the application code also
needs to change. The approach they use to tackle this problem is
to group failures: e.g., process crash, host crash, and host reboot
can be grouped to represent the case where the target stops
permanently.

The authors built a service, Pigeon (5400 LOC C++), which
implements their new interfaces. Pigeon collects local failure
information with sensors, transports the information to end-
hosts, and provides an interpreter for applications to understand
the information.

Evaluation of Pigeon on a 12-host Fat Tree-topology network
connected by 16 physical routers with injected failures shows
distinguishing the host and network failures reduces unavail-
ability by 4x, from 6.9 seconds to 1.6 seconds. Also, enhancing
Cassandra with Pigeon helps Cassandra optimize replica selec-
tion. Pigeon also helps RAMCloud avoid unnecessary recovery.

Dave Levin (University of Maryland) asked whether Pigeon can
handle Byzantine failure. Joshua answered it’s targeted for tra-
ditional crash failures. Someone from MSR asked how to ensure
the information sent to application reflects the ground truth.
Joshua said for stop conditions, Pigeon confirms that the process
crashed by, for example, looking at the process table. In the case
of network failure, the current prototype fetches the topology
from the gateway. Michael Freedman (Princeton) asked whether
using this in a large distributed system, where nodes might see
the same failure as different types, would cause conflicting
reports and problems for Pigeon. Joshua said no.

90  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

REPORTS

Applications
Summarized by Murad Kaplan (murad.kaplan@colorado.edu)

BOSS: Building Operating System Services
Stephen Dawson-Haggerty, Andrew Krioukov, Jay Taneja, Sagar Karandikar,
Gabe Fierro, Nikita Kitaev, and David Culler, University of California,
Berkeley

Stephen Dawson-Haggerty started by presenting facts on energy
consumption in the US, how a big percentage of this consump-
tion is related to building and how this is a computer science
problem. As many buildings have digital controls that include
sensors and actuators that run many applications, Stephen
asked the big question: can we write portable building moni-
toring and control applications that help to reduce the energy
consumption caused by the digital control? He pointed to a
number of applications used in today’s buildings and asked if
researchers can be forward looking in the way these application
use resources and energy. These applications break down into a
couple of different categories. The challenge is how to integrate
existing applications using the existing physical infrastructure,
and how researchers can make these kinds of applications that
pop up all the time widely deployable in a way that saves more
energy. The other challenge is how researchers can incorporate
these applications in wider scale control to better manage their
energy consumption.

From a systems point of view, researchers face several chal-
lenges; the first is portability—how do we take these applica-
tions, which are pretty much demo work today, and make them
run anywhere in the building? Second is the failure modes we
have been introduced to in these applications and how we can
deal with them. And third, accessing the control systems in
the buildings, exposing the existing hardware to the world and
building all our stuff on top of it. Researchers want to scale to
a large number of sensors and to large buildings, and they want
these applications to be portable and easy to use.

To accomplish these goals, Stephen and his team built BOSS,
distributed building operating system services that together
allow these applications and control processes to sit on top of
and interact with physical sensors and actuators in the building,
and that offer authorization, optimization, and personal comfort
services.

Stephen described the BOSS architecture by presenting por-
tability as a part of the abstraction layer. He also presented appli-
cations that were built on BOSS to use its services to perform
analysis, provide personal control, and personalize the micro-
environment and optimization. The team installed these appli-
cations in a number of buildings to make these measurements.
Stephen concluded that while BOSS provides a lot of opportuni-
ties, there are also a number of issues since applying computer
system design to buildings involves a lot of pieces. BOSS was
able to provide a 30% saving in electricity and steam and a 60%

saving in lighting in its test apps. These apps can be found at
http://smap.cs.berkeley.edu.

Someone asked how BOSS would provide a good handle for
coordination in the case of a multiple control system. Stephen
answered that there is a tradeoff in the way that you handle
these services; right now they are statically configured. Kurtis
Heimerl (University of California, Berkeley) was interested in
the user programming environment and asked how far along
BOSS was in doing that. Stephen responded that it will be a cool
idea to let people program but the key challenge is the really
dynamic binding.

Stochastic Forecasts Achieve High Throughput and Low
Delay over Cellular Networks
Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan, MIT Computer
Science and Artificial Intelligence Laboratory

Keith Winstein started by highlighting some special character-
istics of current cellular networks. He explained how cellular
networks have probably became the means by which a majority
of users access the Internet, but that cellular networks differ in
many ways from the traditional Internet. One of these differ-
ences is that cellular networks are highly variable in link speed.
Using Verizon LTE cell phones, they measured the downlink
and uplink as they kept them busy and kept recording how fast
packets crossed each link. Keith presented a graph that showed
how extremely variable the network was. Keith also pointed out
another difference from the “old fashioned” networks is that
they are too reliable. We talk about best-effort network delivery,
but in fact it is insane-effort network delivery. Another graph of
one TCP download showed how there is a big delay in the round
trip time.

Then Keith presented a graph showing Skype performance
over the Verizon LTE network. This is to show when Skype is
not using all the bandwidth available because Skype is being
very conservative. Also when Skype is not conservative and
sends higher than the available bandwidth, the result is a huge
delay. To overcome this problem, Keith presented their proto-
col, Sprout. Sprout is a transmit protocol designed for real-time
interactive applications over these variable, semi-reliable net-
works. Sprout has the goal of providing the application with the
most throughput possible, but the higher priority is to bound the
risk of accumulating a large delay in gateway queues.

In order to control the risk of delay, the authors have separate
parts of their algorithm. At the Sprout receiver, the authors infer
the current link speed and they do that with Bayesian inference
on a stochastic model. In part two, the receiver tries to predict
what is going to happen to the link speed in the future. It makes
a “cautious forecast” and sends this to the sender as part of its
acknowledgments. In part three, the sender uses this forecast
to control an evolving window that compromises between the

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 91

REPORTS

desire for more throughput and for controlling the risk that a
packet will spend more than 100 ms in a queue.

Keith later compared Sprout with other applications, such as
Skype, Google-Hangout, and Facetime. Sprout performed better
in term of throughput and delay. Keith said that a Stanford net-
working class had reproduced these plots, and the two students
who chose Sprout were awarded the best project in the class.
MIT students were challenged to beat Sprout and came up with
3,000 different algorithms with different compromises between
throughput and delay. Keith indicated several limitations in
their measurements in the conclusion of his talk: Sprout was
only evaluated in the case of video conferencing, and all mea-
surements were made in Boston. The source code and directions
to use it are at : http://alfalfa.mit.edu/.

Phil Levis (Stanford University) said that he sees the authors are
using LEDBAT (Low Extra Delay Background Transport), but
did they think they should replace LEDBAT with Sprout? Keith
answered that LEDBAT tries to coexist with TCP on the same
bottleneck queue to scavenge available bandwidth. Although
there are similarities between LEDBAT and Sprout such as
counter filter and one-way delay estimation, they did not test it
in competition with TCP on the same queue, so they don’t want
to say that they do better than LEDBAT in this situation.

Kurtis Heimerl (University of California, Berkeley) asked if the
authors had thought about using geographical knowledge to
help in this. There are falls in throughput traffic when a user is
switching towers, for example, or driving a car, so how would
Sprout use that to make better prediction? Keith answered that
there is previous work in NSDI on this kind of thing, and he is not
sure if speed and location may affect his results or not. Kurtis
pointed out that with cellular networks, there is a whole circuit
switch piece of technology that essentially is designed to solve
this problem for voice traffic; how is that related to the problem
Sprout is trying to solve? Is it something Sprout could just solve
by using that circuit switched network? Keith replied that circuit
switching networks in cellular systems have admission controls
that give users 64k bits per second and they don’t have that for
large bit rate flows that need to vary in speed. The problem is
that the link quality varies, which you can’t just solve with better
policy. Someone asked, looking at the graph with the available
bandwidth even if the mobile was stationary, whether they had
tested Sprout with Sprout. Keith replied that they did that by
testing six phones in the same cell.

Demystifying Page Load Performance with WProf
Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and
David Wetherall, University of Washington

Xiao Sophia Wang demonstrated that the Web is everywhere and
it is a critical part of the Internet. Unsurprisingly, page load is
critical. Studies suggest that Amazon can increase its revenue by

1% by reducing page load time by 100 ms. Wang showed her mea-
surement studies of page load time of about 200 Web pages. The
results show that the median page load time is three seconds.
And few Web pages take more than 10 seconds to load. Because
Web page load time is slow, there are many techniques aimed to
reduce this time. These optimization techniques include using
CDN, small pages, etc. While these techniques can help some
pages, they may have no effect on others. And, in fact, they may
even harm performance. The reason is that the page load process
is poorly understood. Because of that, the authors’ goal in this
paper was to understand the page load process. Wang explained
how difficult it is to understand page load time because there are
many factors that affect the page load. She showed an example
on how a page’s structure affects the page load time.

Wang presented the process of demystifying Web page perfor-
mance. The authors modeled the page load process. And they
presented WProf to implement the set of dependencies inside
browsers to study in real Web pages. To identify the bottlenecks
of page load, the authors applied critical path analysis on top of
the dependences graph that WProf generated.

Their methodology includes three elements. First, they designed
test pages to systematically uncover dependencies across
browsers. They also examined documents as well as browser
code whenever the source code was available. For designing the
test pages, the authors started by thinking how Web objects are
organized in Web pages. They found four categories of depen-
dency policies: (1) flow dependencies, which is the natural order
of the activities acquired; (2) output dependencies, which ensure
the correct execution of multiple processes with access to the
same resources; (3) lazy and eager binding, which are trad-
eoffs between data downloads and page load latencies; and (4)
resource constraints resulting from limited computing power or
network resources.

Wang reviewed some experimental results where they loaded
real pages using WProf. They ran the experiments at the campus
network using WProf in Chrome, looking at 150 Web pages.
Their conclusion was that most object downloads are not criti-
cal, and JavaScript blocks parsing on 60% of top pages. Caching
eliminates 80% of Web object loads, but it doesn’t reduce page
load time as much. Wang concluded her talk by pointing out the
most important elements of WProf: it automatically extracts
dependencies and analyzes critical paths. WProf can be used to
understand performance of page load times and to explain the
behaviors of current optimizations.

Someone asked whether WProf can predict what the benefit
from parallelization will be. Wang replied that HTML pars-
ing and CSS evaluation can be parallelization, but JavaScript
evaluation is hard to parallelize. Someone from University of
California, San Diego, asked if the critical path measurement

92  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

REPORTS

can be used for a specific object, not only the entire page. Wang
replied that their tool can do that. Brighton Godfrey (University
of Illinois at Urbana Champaign) asked, assuming their results
are based on the minimum over five trials for each page, would
their conclusions change if they looked at the median and out-
liers? Wang replied that because there is large variation, they
only looked at the median page.

Dasu: Pushing Experiments to the Internet’s Edge
Mario A. Sánchez, John S. Otto, and Zachary S. Bischof, Northwestern
University; David R. Choffnes, University of Washington; Fabián E.
Bustamante, Northwestern University; Balachander Krishnamurthy and
Walter Willinger, AT&T Labs—Research

Mario Sánchez talked about having measurement experimenta-
tion platforms located at the edge of network. The rapid growth
of the Internet has been driven in part by advances in broadband
technology and affordability which made the Internet not only
larger but also spread out and diverse. Although many of the
distributed systems are located at the edge of network, when
we measure them from the code, they look different. The truth
is that researchers like measuring platforms at the right scale,
vantage point, and location in order to provide sufficient control
for them to conduct needed experimentation. While there are
platforms like PlanetLab that provide great fine-grained control,
they don’t scale very well. Also, their vantage points are located
in research and academic networks. Other platforms, like
Dimes, provide the potential for scale, and the actual view that
researchers want, but they also provide little flexibility in term
of control and experimentation. So there is a need for a platform
that combines the best of both worlds. But for such a platform to
be useful, the safety of the volunteered nodes need to be guaran-
teed, and researchers need both to be able to control the impact
of having the experiment in their network and to have a way to
share resources between multiple experiments and multiple
experimenters.

To overcome these challenges, Mario presented Dasu, which is a
prototype for such a platform. Dasu is a software measurement
experimentation platform that is hosted by end users located at
the edge of the network and that relies on the direct incentive of
using broadband measurement for end users. Dasu was designed
with two purposes: to allow end users to characterize the service
from their broadband network and to support experimentation
from the edges. By considering these design purposes, Dasu
aligns the objectives of end users and experimenters in three dif-
ferent ways. First, both end users and experimenters can benefit
from having large coverage in order to capture network and
service diversity. Second, both users and experimenters benefit
from having large availability in order to be able to catch changes
in policies and scheduled events. Third, users and experimenters
also benefit from being at the edge and extensible, in the case of
end users in order to remain unaffected in the face of changes in

ISP policies, and for experimenters in order to be able to expand
the new platform with new measurements.

At the same time, Mario pointed out that researchers face a lot
of challenges; one of them is the lack of dedicated resources,
which means they cannot run arbitrary experiments on these
machines. For instance, some experiments related to censorship
might be out of the question because these may get end users in
trouble. Mario presented the design implementation of Dasu and
how it addresses these challenges.

To protect volunteer nodes, Dasu runs the experiments inside its
own engine inside a sandbox. Also, Dasu’s clients run a resource
profiler to continuously monitor the resources consumed by the
system, and there is also a watchdog timer that triggers client
shut down if anything goes wrong. Mario presented the dynamic
of the system by showing experiments run by clients using Dasu.

Dasu is currently an extension to BitTorrent and soon will
be stand-alone in a DNS resolver. Mario also pointed out that
Dasu has over 90,000 users in over 150 countries. Dasu’s main
components are the Dasu client and the infrastructure service
that supports it.Indranil Gupta (University of Illinois at Urbana
Champaign) asked how Dasu would stop a runaway experiment.
Mario said they do have the resource profiler that looks at the
CPU usage if anything goes wrong, and then it will automatically
shut it down. Mike Weighty (Montana State University) asked if
the authors have any plan on extending Dasu to mobile devices.
Mario said there are other students in his lab who focus on wire-
less, and he is working on something related.

Security and Privacy
Summarized by Weverton Cordeiro (weverton.cordeiro@inf.ufrgs.br)

πBox: A Platform for Privacy-Preserving Apps
Sangmin Lee, Edmund L. Wong, Deepak Goel, Mike Dahlin, and Vitaly
Shmatikov, The University of Texas at Austin

Sangmin Lee pointed out a recent study which has shown that
only 17% of users pay attention to access permission requests
when installing applications on their mobile devices. More
alarmingly, just 3% of them actually fully understand these
requests. But even though users read and fully understand these
requests, there is no guarantee that apps will actually comply
with them—in fact, there is evidence that some apps out there
are misusing users’ private data! The user may choose to believe
that app publishers will not misuse their private data; but in
which one of the 300,000+ publishers can they actually trust?
According to Sangmin, such an obscure scenario for users’ pri-
vacy strongly suggests that existing countermeasures to protect
users’ privacy are not working.

Sangmin proposed to shift the users’ trust from the 300,000+
app publishers to a few major brands, such as Google, Micro-
soft, Apple, and Amazon. In addition to the fact that one already

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 93

REPORTS

has to trust these companies to use their device anyway, they
also have a reputation to maintain, and thus more incentive to
work correctly. The key to realize the proposed shift? πBox: a
framework that combines app confinement through sandboxes
and control channels to provide explicit and useful privacy
 guarantees.

Sangmin explained that πBox provides a per-user, per-app sand-
box confinement. All users’ data stays inside the sandbox along
with an app instance, and the sandbox prevents the app from
leaking the data. The sandboxes use a model which makes them
span the users’ device and the cloud—and thus use resources
from both the device and the cloud. Private vaults (which are in
both the device and the cloud) and content storages are pro-
vided for storing user and app-specific data, respectively. Both
are secured to prevent privacy violation. The aggregate chan-
nels provide communication capabilities between the app and
its publisher, and use differential privacy to introduce random
noise and thus bound information leakage. Finally, The sharing
channel allows one to have control of “when” and “with whom” to
share, but provides weak guarantees on “what to share.” How-
ever, it makes it difficult for an adversary to access users’ private
data directly. Sangmin mentioned, though, that shared chan-
nels are not entirely secure (for example, photo sharing remains
subject to steganography).

Along with a three-level classification model (green, yellow, and
red), πBox enables fine-grained control over which security fea-
tures will be enabled for each app, and provides explicit privacy
guarantees users can rely on. Sangmin closed the talk arguing
that real, existing applications can benefit from πBox, and high-
lighting that overhead is low: only a few lines of code needed to
be changed in existing, popular apps; and the measured informa-
tion throughput was marginally degraded.

Fengyuan Xu (College of Willian and Mary) appeared concerned
about the burden πBox will place on users (who will have to
decide what, when, and with whom contents will be shared, for
example). Sangmin argued that there will be not much difference
from how it is currently done, and that apps will provide support
for that decision process. In a follow up question, Fengyuan
asked if πBox is vulnerable to attacks that use covert channels.
Sangmin replied that it depends on whether the implementation
of sandboxes and the design of πBox is orthogonal. He added
that if there are any improvements on building better sandboxes,
πBox can benefit from it by using it. Fengyuan then asked if
πBox is something like a platform, in which you can plug in other
schemes to make it more secure. Sangmin simply replied that
yes, it is. Yan Chen (Northwestern University) asked what the
aggregation channels can support. Sangmin replied that one
big goal of aggregate channels is to provide information to app
providers without violating users’ privacy. He mentioned some
examples of apps and how they could use aggregate channels to

export information to app publishers. Yan then asked if πBox
does protect social network information (i.e., the list of friends to
whom one is sharing photos) from potential spammers. Sangmin
replied that yes, it does.

P3: Toward Privacy-Preserving Photo Sharing
Moo-Ryong Ra, Ramesh Govindan, and Antonio Ortega, University of
Southern California.

Moo-Ryong Ra started his talk by mentioning that cloud-based
photo sharing service providers (PSPs) are very popular, in
spite of the various privacy concerns on the way these provid-
ers provision their services. For example, shared photos may be
over-exposed (either accidentally or because of poor PSP system
design). The PSP could also use inference techniques to extract
information from shared photos. In other words, he argued that
one can trust the (mobile) device but not everything else (e.g., the
network and the PSPs).

On one hand, these privacy concerns Moo-Ryong mentioned are
real. He showed several news headlines that reported privacy
issues with Photobucket, Facebook, and Instagram. On the
other hand, PSPs provide valuable and useful services to users:
a shared photo may be adapted to the various types of devices
that access these photos (smartphones, computers, etc.) and
perform image quality processing. The only question is, can we
protect users’ privacy while still performing cloud-side image
transformation? The answer: yes, we can. In the remainder of
his talk, Moo-Ryong described P3, a privacy-preserving photo
encoding algorithm. The algorithm extracts and encrypts a
small part of the photo that contains significant visual infor-
mation (the “secret part”), while preserving the larger part (the
“public part”), which contains no significant information, in a
standards-compatible format. With P3, PSPs can still provide
their services without being required to redesign their systems.

P3 concentrates on JPEG images, and exploits the fact that DCT
(Discrete Cosine Transform) coefficients of natural images
are sparse, with a few coefficients holding most of the use-
ful information; put in an intuitive way, P3’s “secret part” and
“public part” correspond to the most significant bits and least
significant bits of the DCT coefficients, respectively. There is a
challenge, however: how to reconstruct the original image out
of the secret and public parts? If the public part has not been
modified, a straightforward series of linear operations can
reconstruct the image. In case it has been modified, the PSP
must also send the linear operator used for processing it. During
the talk, Moo-Ryong discussed the (easy-to-deploy) architecture
of P3, provided evidence regarding its privacy-preserving aspect
(through a set of examples and evaluation experiments), and
showed that it causes minimal storage overhead (in the worst
case, the image file-size increased at most 20%). Regarding the
privacy-preserving aspect, Moo-Ryong showed that P3 virtually

94  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

REPORTS

broke face recognition algorithms: the number of successful face
recognitions on the public part was decreased significantly.

Nikita Borisov (University of Illinois at Urbana-Champaign)
asked if one can obtain the original picture solely with the secret
part. Moo-Ryong answered negatively, saying that one needs
both parts to obtain the original picture. In a follow up, Nikita
posed the situation in which the P2P is fully malicious. Moo-
Ryong said that in this particular case P3 is broken. However,
it was emphasized that in this case it is a functionality problem
rather than a privacy problem—the P2P will not be able to do
anything malicious without the secret part anyway. The session
chair (Krishna Gummadi, Max Planck Institute for Software
Systems) asked for the high-level intuition as for why the small-
est part of the image contained most of the visual informa-
tion, whereas the larger part of the image contained almost no
information. Moo-Ryong replied that this is related to why JPEG
works, and revisited the discussion about the process of extract-
ing the secret part from the image. Finally, Lakshminarayanan
Subramanian (New York University) asked about the privacy
guarantees of P3. Moo-Ryong replied that they are still trying
to prove privacy guarantees of P3 using mathematical tools.
However, they are unaware of any techniques that could break
the algorithm.

Embassies: Radically Refactoring the Web
Jon Howell, Bryan Parno, and John R. Douceur, Microsoft Research.

Awarded Best Paper!

Jon Howell started his talk by stating that the Web promises us
a really nice isolation model, in which users are protected from
malice even though they click on “dangerous links.” The real-
ity is quite different, however, as browsers have vulnerabilities
that might compromise the system, if explored by a malicious
Web app. In this scenario, what kind of advice should one give to
ordinary Web users? Do not click on “dangerous links”?

According to Jon, these security weaknesses are not caused by
poor Web API implementation; even a correct browser imple-
mentation cannot protect users from external protocol flaws.
“The API itself needs to be changed,” he said. Why? He first
explained that the Web API has a subset of methods that specify
the behavior of the application when it arrives at the client; that
subset he called Client Execution Interface (CEI). To provide
isolation, CEI must be as simple as possible and have a well-
defined semantics, so that it can be implemented correctly; in
other words, it should pursue minimality. He also explained that
the same API has served as a Developer Programming Interface
(DPI), and developers have always wanted this interface to be
richer and richer, so that fancier applications can be built with
less and less code; in other words, it has also been pursuing rich-
ness. “This API has been pulled off in two opposite directions,”

he said. To solve this problem, he proposed to refactoring the
Web API, separating the roles of CEI and DPI.

Jon argued that the CEI should provide Web applications an
execution environment having the same philosophy (and isola-
tion guarantees) of a multi-tenant datacenter but in the client
machine—a “pico-datacenter,” as he defined it. In his refactored
API, binary code would be the core of the CEI, thus accepting
binary programs from the vendor. In this case, Web developers
would be able to develop their applications using the libraries
that best suit their needs (e.g., libraries for HTML rendering,
JavaScript processing, etc.); not only is browser incompatibility
gone in this “Embassies” model, but users would also be able to
run applications such as Gimp in their browsers. To run an appli-
cation in the pico-datacenter, the client would just need to load
the required libraries. From an experimental evaluation using
a prototype, the Embassies model has been shown to introduce
some overhead. However, Jon strongly emphasized that this
overhead comes in exchange for a truthful Web promise of a nice
isolation model. “Dangerous links”? No more!

Nikita Borisov (University of Illinois at Urbana-Champaign)
mentioned he saw some similarities between the Embassies
model and the one that does exist in the mobile platform, and
then asked Jon if the two models would eventually become one.
Jon replied that he definitively sees convergence there, since
the mobile world is being pushed towards the right user model.
However, he thinks that not all the opportunities of this model
are being explored, since mobile apps do not depend on a clean
and narrow execution interface. Someone asked about the effec-
tiveness of Web-indexing in this new model and the burden it
would cause to vendors such as Google and Yahoo!. Jon answered
that this is a reasonable aspect to be worried about, but said that
while Web app vendors can go anywhere they want (by using any
shared libraries they please), they would still attach to popular
transit protocols, and also expose interactions one would be able
to sniff on. Lakshminarayanan Subramanian (New York Univer-
sity) proposed taking the work in a different direction, and asked
if there is a problem with how Web pages should be designed. Jon
suggested that a way one can look at this work is to ask why the
Web API developers use to design their pages must be bound to
the browser, instead of being just software libraries that they are
free to choose. Jon said it is inevitable there will be complexity in
the stack used to design Web pages. The advantage is that Web
developers will be free to make choices over that complexity.

Announcement and Call for Papers www.usenix.org/fast14/cfp

February 17–20, 2014, Santa Clara, CA

12th USENIX Conference on
File and Storage Technologies
(FAST ’14)
Sponsored by USENIX, the Advanced Computing Systems Association

Important Dates
Paper submissions due: Thursday, September 26, 2013, 9:00 p.m. PDT
 (Hard deadline, no extensions)

Notification to authors: Sunday, December 8, 2013

Final paper files due: Thursday, January 23, 2014

Conference Organizers
Program Co-Chairs
Bianca Schroeder, University of Toronto
Eno Thereska, Microsoft Research

Program Committee
Remzi Arpaci-Dusseau, University of Wisconsin—Madison
Andre Brinkmann, Universität Mainz
Landon Cox, Duke University
Angela Demke-Brown, University of Toronto
Jason Flinn, University of Michigan
Garth Gibson, Carnegie Mellon University and Panasas
Steven Hand, University of Cambridge
Randy Katz, University of California, Berkeley
Kimberly Keeton, HP Labs
Jay Lorch, Microsoft Research
C.S. Lui, The Chinese University of Hong Kong
Arif Merchant, Google
Ethan Miller, University of California, Santa Cruz
Brian Noble, University of Michigan
Sam H. Noh, Hongik University
James Plank, University of Tennesee
Florentina Popovici, Google
Raju Rangaswami, Florida International University
Erik Riedel, EMC
Jiri Schindler, NetApp
Anand Sivasubramaniam, Pennsylvania State University
Steve Swanson, University of California, San Diego
Tom Talpey, Microsoft
Andrew Warfield, University of British Columbia
Hakim Weatherspoon, Cornell University
Erez Zadok, Stony Brook University
Xiaodong Zhang, Ohio State University
Zheng Zhang, Microsoft Research Beijing

Steering Committee
Remzi Arpaci-Dusseau, University of Wisconsin—Madison
William J. Bolosky, Microsoft Research
Randal Burns, Johns Hopkins University
Anne Dickison, USENIX Association
Jason Flinn, University of Michigan
Greg Ganger, Carnegie Mellon University
Garth Gibson, Carnegie Mellon University and Panasas

Kimberly Keeton, HP Labs
Darrell Long, University of California, Santa Cruz
Jai Menon, Dell
Erik Riedel, EMC
Margo Seltzer, Harvard School of Engineering and Applied Sciences
 and Oracle
Keith A. Smith, NetApp
Ric Wheeler, Red Hat
John Wilkes, Google
Yuanyuan Zhou, University of California, San Diego

Tutorial Coordinator
John Strunk, NetApp

Overview
The 12th USENIX Conference on File and Storage Technologies (FAST ’14)
brings together storage-system researchers and practitioners to explore
new directions in the design, implementation, evaluation, and deploy-
ment of storage systems. The program committee will interpret “storage
systems” broadly; everything from low-level storage devices to informa-
tion management is of interest. The conference will consist of technical
presentations, including refereed papers, Work-in-Progress (WiP) reports,
poster sessions, and tutorials.

FAST accepts both full-length and short papers. Both types of sub-
missions are reviewed to the same standards and differ primarily in the
scope of the ideas expressed. Short papers are limited to half the space
of full-length papers. The program committee will not accept a full
paper on the condition that it is cut down to fit in a short paper slot, nor
will it invite short papers to be extended to full length. Submissions will
be considered only in the category in which they are submitted.

Topics
Topics of interest include but are not limited to:

•	 Archival storage systems

•	 Auditing and provenance

•	 Caching, replication, and consistency

•	 Cloud storage

•	 Data deduplication

•	 Database storage

•	 Distributed I/O (wide-area, grid, peer-to-peer)

•	 Empirical evaluation of storage systems

•	 Experience with deployed systems

•	 File system design

•	 Key-value and NoSQL storage

•	 Memory-only storage systems

•	 Mobile, personal, and home storage

•	 Parallel I/O

Continued on next page

Rev. 6/17/13

•	 Power-aware storage architectures

•	 RAID and erasure coding

•	 Reliability, availability, and disaster tolerance

•	 Search and data retrieval

•	 Solid state storage technologies and uses (e.g., flash, PCM)

•	 Storage management

•	 Storage networking

•	 Storage performance and QoS

•	 Storage security

•	 The challenges of “big data”

Submission Instructions
Please submit full and short paper submissions (no extended ab-
stracts) 9:00 p.m. PDT on September 26, 2013, in PDF format via the
Web form on the Call for Papers Web site, www.usenix.org/fast14/cfp.
•	 The complete submission must be no longer than twelve (12)

pages for full papers and six (6) for short papers, excluding
references. The program committee will value conciseness, so
if an idea can be expressed in fewer pages than the limit, please
do so. Papers should be typeset in two-column format in 10
point Times Roman type on 12 point leading (single-spaced),
with the text block being no more than 6.5” wide by 9” deep. As
references do not count against the page limit, they should not
be set in a smaller font. Submissions that violate any of these
restrictions will not be reviewed. The limits will be interpreted
strictly. No extensions will be given for reformatting.

•	 There are no formal restrictions on the use of color in graphs
or charts, but please use them sparingly—not everybody has
access to a color printer.

•	 Authors must not be identified in the submissions, either
explicitly or by implication. When it is necessary to cite your
own work, cite it as if it were written by a third party. Do not
say “reference removed for blind review.”

•	 Simultaneous submission of the same work to multiple venues,
submission of previously published work, or plagiarism consti-
tutes dishonesty or fraud. USENIX, like other scientific and tech-
nical conferences and journals, prohibits these practices and
may take action against authors who have committed them.
See the USENIX Conference Submissions Policy at www.usenix.
org/conferences/submissions-policy for details.

•	 If you are uncertain whether your submission meets USENIX’s
guidelines, please contact the program co-chairs, fast14chairs@
usenix.org, or the USENIX office, submissionspolicy@usenix.org.

•	 Papers accompanied by nondisclosure agreement forms will
not be considered.

The program committee and external reviewers will judge papers
on technical merit, significance, relevance, and presentation. A good
paper will demonstrate that the authors:
•	 are attacking a significant problem,

•	 have devised an interesting, compelling solution,

•	 have demonstrated the practicality and benefits of the solution,

•	 have drawn appropriate conclusions,

•	 have clearly described what they have done, and

•	 have clearly articulated the advances beyond previous work.

Blind reviewing of all papers will be done by the program commit-
tee, assisted by outside referees when necessary. Each accepted paper
will be shepherded through an editorial review process by a member
of the program committee.

Authors will be notified of paper acceptance or rejection no later
than Sunday, December 8, 2013. If your paper is accepted and you
need an invitation letter to apply for a visa to attend the conference,
please contact conference@usenix.org as soon as possible. (Visa ap-
plications can take at least 30 working days to process.) Please identify
yourself as a presenter and include your mailing address in your email.

All papers will be available online to registered attendees, no
earlier than January 23, 2014. If your accepted paper should not be
published prior to the event, please notify production@usenix.org.
The papers will be available online to everyone beginning on the
first day of the main conference, February 18, 2014. Accepted submis-
sions will be treated as confidential prior to publication on the USENIX
FAST ’14 Web site; rejected submissions will be permanently treated as
confidential.

By submitting a paper, you agree that at least one of the authors
will attend the conference to present it. If the conference registra-
tion fee will pose a hardship for the presenter of the accepted paper,
please contact conference@usenix.org.

If you need a bigger testbed for the work that you will submit to
FAST ’14, see PRObE at www.nmc-probe.org.

Best Paper Awards
Awards will be given for the best paper(s) at the conference. A small,
selected set of papers will be forwarded for publication in ACM Trans-
actions on Storage (TOS) via a fast-path editorial process. Both full and
short papers will be considered.

Test of Time Award
We will award a FAST paper from a conference at least ten years earlier
with the “Test of Time” award, in recognition of its lasting impact on
the field.

Work-in-Progress Reports and Poster Sessions
The FAST technical sessions will include a slot for short Work-in-
Progress (WiP) reports presenting preliminary results and opinion
statements. We are particularly interested in presentations of student
work and topics that will provoke informative debate. While WiP
proposals will be evaluated for appropriateness, they are not peer
reviewed in the same sense that papers are.

We will also hold poster sessions each evening. WiP submissions
will automatically be considered for a poster slot, and authors of all
accepted full papers will be asked to present a poster on their paper.
Other poster submissions are very welcome.

Arrangements for submitting posters and WiPs will be announced
later.

Birds-of-a-Feather Sessions
Birds-of-a-Feather sessions (BoFs) are informal gatherings organized
by attendees interested in a particular topic; they are held in the eve-
nings. BoFs may be scheduled in advance by emailing the Conference
Department at bofs@usenix.org. BoFs may also be scheduled at the
conference.

Tutorial Sessions
Tutorial sessions will be held on February 17, 2014. Please send tutorial
proposals to fasttutorials@usenix.org.

Registration Materials
Complete program and registration information will be available in
December 2013 on the conference Web site.

FAST ’14 Call for Papers (continued from previous page

SANDBOXING & VIRTUALIZATION • DETECTING CHEATERS

MARCH/APRIL 2011

THREAT MODELING • MOBILE DEFENSE • FROM PAPER TO PIXELS

JULY/AUGUST 2011

INSIDER ATTACKS • MOBILE TWO-FACTOR AUTHENTICATION • TRUTH IN CROWDSOURCING
SEPTEMBER/OCTOBER 2011

Protect Your Network

www.qmags.com/SNP

IEEE Security & Privacy is the
publication of choice for great
security ideas that you can put into

practice immediately. No
vendor nonsense, just real
science made practical.

—Gary McGraw,
CTO, Cigital, and author of Software
Security and Exploiting Software

Access the latest trends and
peer-reviewed research
anywhere, anytime

Further your knowledge
with in-depth interviews
with thought leaders

 SUBSCRIBE FOR $1995

DIGITAL EDITION

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

NOVEMBER 3–8, 2013 | WASHINGTON, D.C .

27th Large Installation
System Administration Conference
Sponsored by USENIX
in cooperation with LOPSA

Register now! www.usenix.org/lisa13

Plus a 3-day technical program:
• Invited talks
• Guru Is In sessions
• Paper presentations
• Vendor exhibition

• Practice and
experience reports

• Workshops
• Posters and

lightning talks

6 days of training on topics including:
• Configuration

management
• Cloud computing
• Distributed systems

• DevOps
• Security
• Virtualization
• And more!

New for 2013! The LISA Labs “hack space” will be available
for mini-presentations, experimentation, tutoring, and mentoring.

Keynote Address:
“Modern Infrastructure: The Convergence of Network, Compute, and Data”

by Jason Hoffman, CTO, Joyent

	Table of Contents/Masthead
	Musings
	Investigating Zero-Day Attacks
	Rethinking Password Policies
	Bill Cheswick on Firewalls
	Setting the Stage for a SoftwareLiability Discussion
	Enterprise Logging
	Cuckoo Filter: Better Than Bloom
	A Short Primer on Causal Consistency
	Arrakis: The Operating System asControl Plane
	Practical Perl Tools
	Building a Better Dictionary
	iVoyeur
	For Good Measure
	/dev/random
	Book Reviews
	Conference Reports

