

Mental Nutrition
When we talk about nourishment, we often mention concepts
like vitamins, carbohydrates, calory counting, food groups, and
so on. But the physical spirit isn’t the only part of the body that
requires careful feeding.

What you feed your brain is also important. I awoke early on
that September 11th when the World Trade Center went down.
Just before 7:00 am, my living room laptop beeped (CNN alert,
ya know) that a plane had run into one of the towers. Recalling
news reports of the plane that ran into the Empire State Building
in the 1930’s, I switched on the TV. I continued to watch in fasci-
nation and horror for eight hours.

That was a mistake.

I fed my brain a full day of fear, uncertainty, and incitement. I
spent background intellectual time for several days coming to
grips with the experience and trying to get back to a regular
pace.

Normally, I try to nourish my brain a bit more carefully. I’ve
spent a little time figuring out what to feed and how it all works.

The input circuits appear to be connected to the standard five
senses: sight, sound, taste, smell, and touch (we’ll ignore the ESP
senses and so on for this discussion). For information band-
width, sight and sound are the big leaders. Some people think
that sight is the big winner, since it obviously takes more bits to
represent in data (just look at the number of bits on DVDs vs.
CDs). However, if you’ve ever tried watching TV without the
sound or listening to TV without looking at the picture, it often
appears that sound has the more important data.

Years ago The Diagram Group published a book about the
human body (The Male Body: An Owner’s Manual) that showed
two caricatures of the human body with senses exaggerated by
data rate and also by impact on the psyche. Intriguingly, the low
bit-rate “touch” sense was the big winner in the second diagram.

I feed facts and logical information to my brain from many
sources: the Web, newspapers, trade magazines, hobby maga-
zines, television, electronic mail, books, and the occasional
movie.

While on my sabbatical a couple years ago, I found I was spend-
ing two hours every morning just to keep up with technical and
trade magazines. (This number is borne out by results from the
SAGE salary survey that show that a sizable fraction of adminis-
trators spend this much time, continually, just keeping up).

Recently, I’ve observed some other people feeding their brains. I
hadn’t realized that one can feed “junk information” to your
brain just like one can feed “junk food” to your body. Empty
information, useless databits, wasted time (time, of course, is the
ultimate non-renewable resource) are consumed just as handily
as potentially more stimulating works.

One of my longest-term friends has only recently begun to read
fiction. He used to eschew it completely, saying “. . . but there’s so
much non-fiction to read!” He finally discovered that exploring
things that might be or could be can lead to insights that simple
deductive thinking might not reveal nearly so quickly.

These days I’m a real fan of those personal video recorders (like
Tivo and Dishnet). They enable 30 minute television shows to be
viewed in as little 18 minutes, with the added bonus of eliminat-
ing commercial announcements that often border on the inane.
(Don’t construe this comment as saying the shows are always
that much better; no guarantees there, either.) When combined
with the living room laptop multiplexed for web-surfing, light
programming, or light e-mail reading, evenings can push lots of
data (not necessarily information, unfortunately) into the brain.
I am continually amazed that it’s hard to keep up even when
spending a few hours per night on such activities. The internet
truly is a firehose of data.

I am also a big fan of “resting the brain” (i.e., vacations, “easy”
activities, sleeping, etc.) but some things do seem like they don’t
nourish as well as others. Some people hang out in chatrooms
whose conversation is little more than “hello” and “goodbye” to a
seemingly endless procession of visitors. Maybe these are more
like popcorn than they are like protein-rich alternatives.

I often try to find data that stimulates my thinking. This includes
identification of issues important to me (technologies, a few
world and political issues, a couple local issues) and sources for
reliable information about them. The google news robot
(http://news.google.com) is interesting because it presents news
stories from dozens (more usually hundreds) of news sources.
Reading the Bahrain newspaper’s viewpoint of the Iraq war is
sometimes more illuminating than that of our local newspaper’s.

2 Vol. 28, No. 4 ;login:

by Rob Kolstad

Dr. Rob Kolstad has

long served as editor of

;login:. He is also head

coach of the USENIX-

sponsored USA Com-

puting Olympiad.

<kolstad@usenix.org>

motd

http://news.google.com

3August 2003 ;login:

Every so often, I try to read opposing viewpoints to cherished beliefs. Occasionally,
new data emerges that requires me to reassess various thoughts that I hold dear. Of
course, this is somewhat frustrating, but it does seem like a “good thing to do”.

The popular site Slashdot (http://www.slashdot.com) is interesting. It has a huge read-
ership and a few hundred reader-commentators who write snippets about the various
articles. Among other things, I have learned that I am apparently now officially an “old
fart” (simply too old to participate in the “Linux movement” based on my chronologi-
cal age). Apparently, I read the articles and commentary on slashdot dramatically dif-
ferently than the majority of the contributors. Is it my years of experience and
wisdom? Is it simply being completely out of touch with “the new generation of pro-
grammers?” Am I really just an old fart? I don’t know. It’s fascinating to watch in small
doses, though.

Have you ever thought about what you feed your brain? Such contemplation makes
for a very interesting week or two as you watch what it eats. It’s then equally interesting
to see how your brain processes the data. Good brain nutrition is as important as good
body nutrition. I’m just sure that proper brain-food will lead to the same sort of hap-
pier, more productive lives that good body-food does.

Corrigendum
In the April issue (Vol. 28, No. 2) the reference to the CAIDA Sapphire worm should
have included all the authors who contributed: David Moore, Vern Paxson, Stefan Sav-
age, Colleen Shannon, Stuart Staniford, and Nicholas Weaver. The fascinating article in
its entirety is available at http://www.caida.org/outreach/papers/2003/sapphire/
sapphire.html .

EDITORIAL STAFF

EDITOR:

Rob Kolstad kolstad@usenix.org

CONTRIBUTING EDITOR:

Tina Darmohray tmd@usenix.org

MANAGING EDITOR:

Alain Hénon ah@usenix.org

COPY EDITOR:

Steve Gilmartin

TYPESETTER:

Festina Lente

MEMBERSHIP, PUBLICATIONS,

AND CONFERENCES

USENIX Association

2560 Ninth Street, Suite 215

Berkeley, CA 94710

Phone: 510 528 8649

FAX: 510 548 5738

Email: office@usenix.org

login@usenix.org

conference@usenix.org

WWW: http://www.usenix.org

http://www.sage.org

http://www.slashdot.com
http://www.caida.org/outreach/papers/2003/sapphire/

Vol. 28, No. 4 ;login:

To the Editor:

I enjoyed reading Timo Sivonen’s excel-
lent and highly informative article on
IPv6 configuration in the April edition
of ;login:.

I have a few comments though, regard-
ing the section on IPv6 and DNS.

After reading the article, one gets the
impression that DNS resource records of
type AAAA are deprecated in favor of
A6, DNAME, and binary labels (bit-
strings).

However, more recent RFCs indicate
almost the opposite. Specifically, RFC
3363, written by Randy Bush, indicates a
status change of RFCs 2874 and 2673
from “proposed standard” to “experi-
mental.”

Another change, proposed in RFC 3152,
deprecates the use of the ip6.int domain,
in favor of the newer ip6.arpa domain,
but without use of binary labels.

If I read things right, there is IETF con-
sensus on these matters. Before we all
rush off to implement IPv6, we should
probably make sure that we run in the
same direction when it comes to the
DNS part of the job. At least for now, it
seems that RFC 3363 indicates the way
to go.

An Internet-draft at http://www.ietf.org/
internet-drafts/draft-ietf-dnsop-ipv6-
dns-issues-02.txt may also be of interest.
It discusses several IPv6 DNS transition
issues. For example, should a name
server listen on IPv4, IPv6, or both?

Finally, a note on IPv6 and managing
reverse DNS data. For some time, we’ve
been using tinydns as a content DNS
server for some of our zones. The
tinydns program is a part of Dan Bern-
stein’s djbdns package. One nice feature
is that tinydns automatically generates
PTR records, eliminating the need to
register your hosts twice in DNS name-
space. A typical data line looks like this:

=host.example.com:10.0.0.5

The equals sign indicates a two-way
mapping, so both an A and a PTR
resource record are generated. (Of
course, proper delegations must be
defined.)

The current version of tinydns lacks
IPv6 support, but patches do exist
(http://www.fefe.de/dns/). This shows
that name server software actually can
relieve us from much of the messy work
of maintaining reverse zone data.

Regards,

Mads E. Eilertsen
MadsE.Eilertsen@hist.no

Timo Sivonen Responds:

Mads E. Eilertsen had valid points on
IPv6 and DNS in his letter. Since much
of IPv6, and especially in relation to the
DNS, is still under development, the
current consensus resembles a moving
target. I decided to cover both the RFC-
1886 and RFC-2673/RFC-2874
approaches for IPv6 DNS, since both
have their merits. The RFC-1886
approach is easier to implement, but the
newer proposal would have had the flex-
ibility to survive in the corporate world
of mergers and acquisitions and con-
stant network renumbering exercises. Yet
RFC-3363 makes perfect sense, as it
favours the conservative approach – the
AAAA Resource Records and nibble for-
mat reverse records – in order not to
break anything.

Finally, the most reliable way to find out
where to go with IPv6 DNS probably is
to start with the AAAA RRs and decide
in the next 6–12 months whether the
A6, DNAME, and RFC-2673/RFC-2874
are worth the effort.

letters to the editor

4

http://www.ietf.org/
http://www.fefe.de/dns/

5August 2003 ;login:

opinion

OPINION �

�

O

PI
N

IO
N

by Adam Moskowitz

Adam Moskowitz is a

system administrator,

programmer, manager

of system administra-

tors, certified barbecue

judge, and author of

the recently published

SAGE Short Topics

booklet Budgeting for
SysAdmins.

adamm@menlo.com

On Choosing Usernames
Every site faces the problem of how usernames (or “login names”) are created or
selected, by whom, and how conflicts are resolved. Every solution has its proponents,
all with seemingly sound arguments – arguments that I think miss the real point.
Based on over a dozen years as a user and another dozen as a system administrator (or
manager of system administrators), I believe I finally understand the real problem and
the best solution.

First, though, let me address two simple technical issues: conflicts and length. Schemes
based solely on the user’s name(s) will almost certainly result in conflicts. There are
any number of ways to resolve such conflicts, but the point is that for almost every
username scheme, there will be conflicts. With regard to length, there are still plenty of
operating systems that limit usernames to eight characters or fewer. For a reasonably
large segment of the population, this results in awkward truncations such as
“amoskowi” or “cdagdigi” (for my co-worker with the last name “Dagdigian”).

So back to the questions at hand: How should usernames be chosen, and by whom?

I think the best way is to let the users choose their own usernames; in the case of a
conflict, let the users resolve it however they wish. Limitations, if any, should be based
on lengths and character sets acceptable to the systems on which the username will be
used. Businesses may choose to prohibit obscene usernames, but there’s no technical
reason why this must be done.

Why?

First and foremost, usernames are perceived by users as names. One can argue that
they’re not actually names, but if the user perceives them as names, then they are. In
general, if a person says, “Hi, my name is Joe,” it’s considered rude to say, “Well, I’m
going to insist on calling you Joseph.” Imagine, then, when a user says “I prefer ‘joef ’ as
my username” and hears, “We’re going to give you ‘jsfritze’ instead.”

Second, it’s the users who have to type their usernames every day, maybe several times
a day. Not the system administrator, not the IT director – the users. An awkward user-
name (like “amoskowi”) can only detract from the user’s overall experience. Maybe
not by much, but if the user mistypes the name a few times, they’re going to get frus-
trated.

Over the years, I’ve heard plenty of arguments against letting users chose their own
usernames; most of the arguments boil down to one of these two: “It’s not convenient
for me [the system administrator]” or “That will cause problems with email.”

On the first point, system administrators need to remember that their job is to help
other people (users) get their jobs done (with due consideration to overall company
benefit). If we can do that in a way that also makes our jobs easier, great — but user
convenience trumps sysadmin convenience. On the technical side, nothing should be
“encoded” in the usernames; that is, any additional information about the user should
be stored somewhere else, in some other form. This could be as simple as how the UID
is assigned or as complex as Jon Finke’s use of Oracle databases.

The second argument I hear, that of email problems, is specious: Usernames are not
email addresses! In most companies there may be an email address that happens to
match a username, but there doesn’t have to be. As long as the system has some way to

Vol. 28, No. 4 ;login:

map email addresses to usernames (and this can happen fairly late in the delivery
process), usernames never have to be known by anyone except the receiving user. In
fact, there’s probably even some (small?) security benefit to not propagating user-
names beyond the institution’s security perimeter.

Inside the company there should be some sort of “shared address book,” whether an
LDAP system or something like Microsoft Exchange, that users can consult for email
addresses. Even this system doesn’t need to return a username, just a valid email
address. Outside the company there might be several email addresses for each person:
f_lastname, firstname_lastname, f_oldlastname and f_newlastname, etc. Conflicts (Joe
or John Smith) can be resolved in any number of ways, a common one being that mes-
sages to j_smith get a reply to the effect of “ambiguous email address; please use
joe_smith or john_smith.”

I will be surprised if what I’m proposing doesn’t leave many of you spitting and sput-
tering and saying things like, “Well, this argument will change his mind.” Before you
send me email, please take a moment to consider whether your “killer reason” isn’t
really just a variation of “sysadmin convenience.” Many of us are set in our ways and
can’t see that what makes our job easier is often not what’s best for our customers. I
certainly was, and it took working in a very special research environment with some
very bright, articulate people to see that not only could I make my users happy, I could
still do my job without any real loss of convenience. In fact, I also got a pat on the back
from my boss after she got a note from a user saying, “Thanks for hiring Adam; he
fixed my problem (changing my username) for me with no hassle at all, and I’ve been
trying to get that done for over a year now.” Not bad for having been on the job barely
a month.

As a friend of mine says, “Change is required; growth is optional.”

Many of us are set in our

ways and can’t see that what

makes our job easier is often

not what’s best for our

customers.

6

7August 2003 ;login:

one up on LRU

ONE UP ON LRU �

�

ST

O
RA

G
E

SY
ST

EM
S

Introduction
The concept of caching dates back (at least) to von

Neumann’s classic 1946 paper that laid the foundation

for modern practical computing. Today, caching is used

widely in storage systems, databases, Web servers, mid-

dleware, processors, file systems, disk drives, RAID con-

trollers, operating systems, and in varied and numerous

other applications.

Generically, a cache is a fast, usually small, memory in front of a
presumably slower but larger auxiliary memory. For our pur-
poses, both memories handle uniformly sized items called
pages. We also assume demand paging. Host requests for pages
are first directed to the cache for quick retrieval and, if the page
is not in the cache, then to the auxiliary memory. If an
uncached page is requested, one of the pages currently in the
cache must be replaced (often requiring that the page be flushed
back to the auxiliary memory, if it was written to by the host). A
replacement policy determines which page is evicted. LRU is the
most widely used replacement policy.

Until recently, attempts to outperform LRU in practice have not
fared well because of overhead issues and the need to pre-tune
various parameters. Adaptive Replacement Cache (ARC) is a
new adaptive, self-tuning replacement policy with a high hit
ratio and low overhead. It responds in real time to changing
access patterns, continually balancing between the recency and
frequency features of the workload, and demonstrates that
adaptation eliminates the need for workload-specific pre-tun-
ing. Like LRU, ARC can be easily implemented. Even better, its
per-request running time is essentially independent of the cache
size. Unlike LRU, ARC is “scan-tolerant” in that it allows one-
time sequential requests to pass through without polluting the
cache. ARC leads to substantial performance gains over LRU for
a wide range of workloads and cache sizes.

ARC’s Paradigm
Suppose that a cache can hold c pages. The ARC scheduler
maintains a cache directory that contains 2c pages, c pages in
the cache and c history pages. ARC’s cache directory, referred to
as DBL, maintains two lists: L1 and L2. The first list contains
pages that have been seen only once recently, while L2 contains
pages that have been seen at least twice recently. The replace-
ment policy for managing DBL is: Replace the LRU page in L1 if
it contains exactly c pages; otherwise, replace the LRU page in
L2.

The ARC policy builds on DBL by carefully selecting c pages
from the 2c pages in DBL. The basic idea is to divide L1 into a
top T1 and bottom B1 and to divide L2 into top T2 and bottom
B2. The pages in T1 are more recent than those in B1; likewise
for T2 and B2. The algorithm includes a target size target_T1
for the T1 list. The replacement policy is simple: Replace the
LRU page in T1, if T1 contains at least target_T1 pages; other-
wise, replace the LRU page in T2.

The adaptation comes from the fact that the target size
target_T1 is continuously varied in response to an observed
workload. The adaptation rule is also simple: Increase
target_T1, if a hit in the history B1 is observed; similarly,
decrease target_T1, if a hit in the history B2 is observed.

LRU
Consider a very simple implementation of an LRU cache to
motivate ARC. A typical implementation maintains a cache
directory comprising cache directory blocks (CDB), often with
a structure like this:

by Nimrod
Megiddo

Nimrod Megiddo has

published in the areas of

optimization, algorithms

and complexity, game

theory, and learning,

and has taught and lec-

tured in several univer-

sities.

megiddo@almaden.ibm.com

and Dharmendra S.
Modha
D. S. Modha has pub-

lished on caching algo-

rithms, information and

coding theory,data min-

ing, learning theory, sig-

nal processing, and data

visualization. He holds 6

patents.

dmodha@almaden.ibm.com

Vol. 28, No. 4 ;login:8

struct CDB {
long page_number; /* page's ID number */
struct cache_page *pointer; /* page's location in cache */
int ARC_where; /* not used for LRU */
int dirty; /* if 'dirty', write before replacing */
struct CDB *lrunext; /* for doubly linked list */
struct CDB *lruprev; /* for doubly linked list */
};

struct CDB *L; /* the LRU list */

long LLength; /* length of list L */

LRU caches with c pages require c CDBs. The following code manages the LRU list and is invoked for each page request:

/* keep the cache descriptor list, L, in LRU order */

struct CDB *
LRU (long page_number, int dirty) {

struct CDB *temp;
temp = locate(page_number); /* search L for page #page_number */
if (temp != NULL) /* page in cache? */

remove_from_list(temp); /* page in cache: remove now, reinsert later */
else { /* page is not in cache ... */

if (LLength == c) { /* cache full? */
temp = lru_remove(L); /* cache full: remove the LRU page at end of list */
if (temp->dirty) /* dirty -> page out changed pages */

destage(temp);
} else { /* cache not yet full */

temp = get_new_CDB(); /* populate & bookkeep */
temp->pointer = get_new_page();
LLength++;

}
temp->page_number = page_number; /* bookkeep */
temp->dirty = dirty; /* bookkeep */
fetch(page_number, temp->pointer, dirty); /* put new page in place */

}
mru_insert(temp, L); /* this page now goes to head of LRU queue */
return temp;

}

We leave the simple routines locate, remove_from_list, mru_insert, lru_remove, destage, get_new_CDB, get_new_page, and fetch as
an exercise. If the page is dirty, that is, a write request, then the fetch routine simply uses the changed page supplied by the host if the
page is a read request, then the fetch routine reads the page from the auxiliary memory. Any existing LRU implementation already
has these routines.

ARC
ARC requires 2*c CDBs. The extra directory entries maintain a history of certain recently evicted pages. The key new idea is the use
of this history to guide an adaptation process. The cache directory consists of four disjoint doubly linked LRU lists along with their
lengths:

struct CDB *T1, *B1, *T2, *B2;
long T1Length, T2Length, B1Length, B2Length;

Any given CDB will occupy a spot on one of the four lists. The field ARC_where will be set to 0, 1, 2, or 3, depending on the list in
which it appears (T1, B1, T2, or B2, respectively).

9August 2003 ;login:

#define _T1_ 0
#define _T2_ 2
#define _B1_ 1
#define _B2_ 3

struct cache_page *
replace() {

struct CDB* temp;
if (T1Length >= max(1,target_T1)) { /* T1’s size exceeds target? */

/* yes: T1 is too big */
temp = lru_remove(T1); /* grab LRU from T1 */
mru_insert(temp, B1); /* put it on B1 */
temp->ARC_where = _B1_; /* note that fact */
T1Length—; B1Length++; /* bookkeep */

} else {
/* no: T1 is not too big */

temp = lru_remove(T2); /* grab LRU page of T2 */
mru_insert(temp, B2); /* put it on B2 */
temp->ARC_where = _B2_; /* note that fact */
T2Length—; B2Length++; /* bookkeep */

}
if (temp->dirty) destage(temp); /* if dirty, evict before overwrite */
return temp->pointer;

}

�

ST

O
RA

G
E

SY
ST

EM
S

The T1 and T2 lists describe c pages currently resident in the cache. The B1 and B2 lists contain c, a “history” of pages that were very
recently evicted from the cache.

Furthermore, the T1 and B1 lists contain those pages that have been seen only once recently, while the T2 and B2 lists contain those
pages that have been seen at least twice recently. The B1 list contains those pages evicted from T1, while B2 contains those pages that
are evicted from T2.

The T1 and B1 lists capture “recency” information, while the T2 and B2 lists capture “frequency” information.

The algorithm adaptively – in a workload-specific fashion – balances between the recency and frequency lists to achieve a high hit
ratio. It tries to maintain the number of pages in the T1 list to contain target_T1 pages. This parameter is adapted on virtually every
request.

When the cache is full, the page to be evicted will be either the LRU page in T1 or the LRU page in T2.

This code demonstrates the page replacement procedure:

The main algorithm comprises five cases which correspond to
whether a page request is found in one of the four lists or in
none of them. Only hits in T1 and T2 are actual cache hits. Hits
in B1 and B2 are “phantom” hits that affect adaptation.

In particular, the cache parameter target_T1 is incremented for a
hit in B1 and decremented for a hit in B2. This means that B1
hits favor recency while B2 hits favor frequency. The cumulative
effect of the continual adaptation leads to an algorithm that
adapts quickly to evolving workloads.

If a page is not in any of the four lists, then it is put at the MRU
position in T1. From there it ultimately makes its way to the LRU
position in T1 and eventually B1, unless requested once again
prior to being evicted from B1, so it never enters T2 or B2.
Hence, a long sequence of read-once requests passes through T1
and B1 without flushing out possibly important pages in T2. In

this sense, ARC is “scan-tolerant.” Arguably, when a scan begins,
fewer hits occur in B1 compared to B2. Hence, by the effect of
the adaptation of target_T1, the list T2 will grow at the expense
of the list T1. This further accentuates the tolerance of ARC to
scans.

If the list B1 produces a lot of hits, then ARC grows T1 to make
room for what appears to be localized requests, and, hence,
favors recency. If the list B2 produces a lot of hits, then ARC
grows T2 to favor frequency. ARC continually balances between
recency and frequency in a dynamic, real-time, and self-tuning
fashion, making it very suitable for workloads with a priori
unknown characteristics or workloads that fluctuate from
recency to frequency. ARC requires no magic parameters that
need to be manually tuned or reset.

Here’s the straightforward code that implements this procedure:

ONE UP ON LRU �

Vol. 28, No. 4 ;login:10

ARC(long page_number, int dirty) {
struct CDB *temp, *temp2;
temp = locate(page_number); /* find the requested page */
if (temp != NULL) { /* found in cache directory? */

switch (temp->ARC_where) { /* yes, which list? */
case _T1_:

T1Length—; T2Length++;
/* fall through */

case _T2_:
remove_from_list(temp); /* take off whichever list */
mru_insert(temp, T2); /* seen twice recently, put on T2 */
temp->ARC_where = _T2_; /* note that fact */
if (dirty) temp->dirty = dirty; /* bookkeep dirty */
break;

case _B1_:
case _B2_:

if (temp->ARC_where == _B1_) { /* B1 hit: favor recency */
target_T1 = min(target_T1 + max(B2Length/B1Length, 1), c);

/* adapt the target size */
B1Length—; /* bookkeep */

} else { /* B2 hit: favor frequency */
target_T1 = max(target_T1 - max(B1Length/B2Length, 1), 0);

/* adapt the target size */
B2Length—; /* bookkeep*/

}
remove_from_list(temp); /* take off whichever list */
temp->pointer = replace(); /* find a place to put new page */
temp->page_number = page_number; /* bookkeep */
temp->dirty = dirty; /* bookkeep */
mru_insert(temp, T2); /* seen twice recently, put on T2 */
temp->ARC_where = _T2_; /* note that fact */
fetch(page_number, temp->pointer, dirty); /* load page into cache */
break;

}
} else { /* page is not in cache directory */

if (T1Length + B1Length == c) { /* B1 + T1 full? */
if (T1Length < c) { /* Still room in T1? */

temp = lru_remove(B1); /* yes: take page off B1 */
B1Length—; /* bookkeep that */
temp->pointer = replace(); /* find new place to put page */

} else { /* no: B1 must be empty */
temp = lru_remove(T1); /* take page off T1 */
if (temp->dirty) destage(temp); /* if dirty, evict before overwrite */
T1Length—; /* bookkeep that */

}
} else { /* B1 + T1 have less than c pages */

if (T1Length + T2Length + B1Length + B2Length >= c) { /* cache full? */
/* Yes, cache full: */
if (T1Length + T2Length + B1Length + B2Length == 2*c) {

/* directory is full: */
B2Length—; /* find and reuse B2’s LRU */
temp = lru_remove(B2);

} else /* cache directory not full, easy case */
temp = get_new_CDB();

temp->pointer = replace(); /* new place for page */
} else { /* cache not full, easy case */

temp = get_new_CDB();
temp->pointer = get_new_page();

}
}
mru_insert(temp, T1); /* seen once recently, put on T1 */
T1Length++; /* bookkeep: */
temp->ARC_where = _T1_;
temp->page_number = page_number;
temp->dirty = dirty;
fetch(page_number, temp->pointer, dirty); /* load page into cache */

}
}

11August 2003 ;login:

The Proof Is in the Pudding
Although ARC uses four lists, the total amount of movement
between lists is comparable to LRU. The space overhead of ARC
due to extra cache directory entries is only marginally higher –
typically less than 1%. Hence, we say that ARC is low-overhead.

To assess ARC’s performance, we conducted trace-driven simu-
lations, results of which populate Table 1. ARC outperforms
LRU for a wide range of real-life workloads – sometimes quite
dramatically. For brevity, we have shown only one typical cache
size for each workload. In fact, ARC outperforms LRU across
the entire range of cache sizes for every workload in our test!

Traces P1–P14 were collected by using VTrace over several
months from Windows NT workstations running real-life
applications. ConCat was obtained by concatenating the traces
P1–P14, while Merge(P) was obtained by merging them. DS1 is
a seven-day trace taken from a database server at a major insur-
ance company. The page size for all these (slightly older) traces
was 512 bytes. We captured a trace of the SPC1 (Storage Perfor-
mance Council) synthetic benchmark, which is designed to
contain long sequential scans in addition to random accesses.
The page size for this trace was 4KB. Finally, we considered
three traces – S1, S2, and S3 – that were disk-read accesses initi-
ated by a large commercial search engine in response to various
Web search requests over several hours. The page size for these
traces was also 4KB. The trace Merge(S) was obtained by merg-
ing the traces S1–S3 using timestamps on each of the requests.

Conclusion
ARC is an easily implemented, new, self-tuning, low-overhead,
scan-tolerant cache replacement policy that seems to outper-
form LRU on a wide range of real-life workloads. We have out-
lined a simple implementation that may be adapted to a variety
of applications. The reader interested in a formal presentation
of ARC, a detailed literature review, and extensive simulation
results can consult the full paper, “ARC: A Self-Tuning, Low
Overhead Replacement Cache,” in USENIX Conference on File
and Storage Technologies (FAST ’03), March 31–April 2, 2003,
San Francisco, CA (http://www.usenix.org/events/fast03/).

Table 1. At-a-glance comparison of LRU and ARC for various
workloads. It can be seen that ARC outperforms LRU, some-
times quite dramatically.

WORKLOAD SIZE

(MB)
LRU

(% HITS)
ARC

(% HITS)

P1 16 16.55 28.26

P2 16 18.47 27.38

P3 16 3.57 17.12

P4 16 5.24 11.24

P5 16 6.73 14.27

P6 16 4.24 23.84

P7 16 3.45 13.77

P8 16 17.18 27.51

P9 16 8.28 19.73

P10 16 2.48 9.46

P11 16 20.92 26.48

P12 16 8.93 15.94

P13 16 7.83 16.60

P14 16 15.73 20.52

ConCat 16 14.38 21.67

Merge(P) 128 38.05 39.91

DS1 1024 11.65 22.52

SPC1 4096 9.19 20.00

S1 2048 23.71 33.43

S2 2048 25.91 40.68

S3 2048 25.26 40.44

Merge(S) 4096 27.62 40.44

�

ST

O
RA

G
E

SY
ST

EM
S

ONE UP ON LRU �

http://www.usenix.org/events/fast03/

12 Vol. 28, No. 4 ;login:

what’s in a name?
[Editor’s note: In this article, Tina Darmohray relates an experience that many other
domain name owners have been facing. As desirable domain names have been registered
and locked up by their owners, the demand for good ones has exceeded the available sup-
ply. The result is twofold: a thriving market for the sale of domain name registrations and
an upswing in threats of legal action to dispossess owners of their domain name rights. In
this article, Tina describes the encounters she has had with others over her registered
domain name, and Dan Appelman suggests some strategies to deal with prospective buy-
ers and litigants.]

Tina: My email address rolls off my tongue these days as I’ve had it longer than some
of my kids have been alive. I registered my domain name many years ago when I
decided to go into consulting full-time. Initially, I only used it for email, but as the
Worldwide Web took hold, I put up a makeshift home page. I’ve never been much for
Web design, so my page isn’t very fancy; sometimes I don’t host one at all. Still, people
know to find me via my domain name, and I value the contacts that I receive through
it.

About five years ago I was responding to a request for my email address when the
recipient jotted it down, looked up and commented, “Three-letter domain name; that’s
got to be worth something.”

“Beg your pardon?” I said.

“Your three-letter domain name. They aren’t available any more. Yours has got to be
worth something,” he repeated.

Actually, I hadn’t tried to register a new domain name since I registered mine origi-
nally, and it had never occurred to me that the shorter domain names were mostly
taken and might have some inherent value. Maybe it was obvious to everyone else. I
suppose it didn’t dawn on me because I hadn’t considered selling it. I used it for my
business, and that was that.

Not long after the guy made the comment to me, I began receiving inquiries about
selling my domain. I get three or four inquiries a year these days. One gentleman has
been asking for years. I’ve learned that responding to such inquiries with “I’m not
interested in selling it” doesn’t always satisfy folks, so lately I’ve added a number that
usually conveys my message, something like, “I’m not opposed to selling it, but it’s
worth six figures to me, so it’s usually out of the price range folks are considering.”

To my surprise, I actually got a response to my “six figures” email recently. She wrote
back, “Give a figure and I’ll decide.” I was taken aback. Someone had called me on it. It
forced me to give some serious thought to what my domain name was actually worth
to me. To that end, I sent out mail to several of my consulting friends outlining my
dilemma, asking them to help me fairly and accurately determine what my domain
name was worth. But before I could receive a single response from my friends, I was
being pummeled by the requestor with somewhat pointed emails asking me if I had a
trademark on my name, telling me my phone number doesn’t work, and informing
me of ICANN’s Uniform Domain Name Dispute Resolution Policy (UDRP) (see
http://www.icann.org/udrp). Something just didn’t seem right, so I turned to Google.
Turns out, she was a “domain name attorney” for a large corporation.

With the help of my friends, I set a price and emailed it to her. Her response was
aggressive and incessant. She implied that she’d only approached me to be nice, and
that she intended to use other methods to take the domain away from me. What was of

by Tina
Darmohray

Tina Darmohray,

contributing editor

of ;login:, is a com-

puter security and

networking consult-

ant. She was a

founding member of

SAGE. She is cur-

rently a Director of

USENIX.

tmd@usenix.org

and Dan
Appelman

Dan Appelman is a

partner in the inter-

national law firm of

Heller Ehrman, White

& McAuliffe, LLP. He

practices intellectual

property and com-

mercial law, primarily

with technology

clients, and is presi-

dent-elect of the Cal-

ifornia Bar

Association’s Stand-

ing Committee on

Cyberspace Law.

dan@hewm.com

http://www.icann.org/udrp

13August 2003 ;login:

�

TH

E
LA

Wparticular concern about this was that several references on Google indicated that’s the
kind of thing she does. I decided I needed the help of an attorney.

I contacted Dan Appelman, USENIX’s attorney and a personal friend. After describing
my situation, Dan crafted a piece of email to her:

“I’m well aware of the Uniform Domain Name Dispute Resolution Policy; and I
know I have legitimate rights to the domain name and also to the service mark
associated with my consulting business. I wasn’t looking for an opportunity to sell
my rights in the domain name to anyone; but since you asked, I would need to
know who you are representing and what plans they would have for using it. Trans-
ferring the domain name registration would mean significant disruption to my
consulting business, so it would have to be worth my while financially. I’ve already
given you some idea what that would be. If your client is interested in discussing a
purchase price at that level, I’d be happy to continue this correspondence. Other-
wise, I’m sure your client can find another equally satisfactory domain name.”

I haven’t heard from her since.

Dan: Tina’s experience is not unusual. I’m getting calls more frequently now from peo-
ple who have either received offers to buy their domain names or been threatened with
litigation if they don’t agree to transfer their domain name registrations to someone
else. Often, the callers are confused about what they should do; and this confusion is
compounded by their uncertainty over what rights they have and how much their
domain names are worth.

Domain names are freely transferable, like most other personal property. The market
value of any given domain name is highly variable. One would have thought that the
addition of a number of top-level domains, such as .biz and .info, would have made
the value of second-level domain names such as Tina’s go down significantly, but that
doesn’t seem to be the case.

The value of some famous brand names used as domain names is probably easily
determined, but those cases are relatively few. On the other hand, the value of most
domain names seems to have a large subjective component, and that makes valuation
for purposes of sale somewhat difficult. When Tina asked me how much I thought her
domain name was worth, all I could tell her was to try to test it in the marketplace.
There are Web-based businesses that buy and sell domain names. You can even buy or
sell domain names on eBay. But most individual owners set the price for their domain
names by talking with their friends, reading about recent sales, and establishing a min-
imum value based on subjective factors.

The other aspect of Tina’s account is the confusion most people have about their rights
in their domain names. Although domain names are personal property, the registra-
tion of domain names does not give rise to any protectable intellectual property rights.
In fact, use of a domain name constitutes infringement if it causes, or could cause,
confusion with a valid trademark. This is true even if the domain name has been
accepted for registration by one of the domain name registries.

The solicitor who threatened Tina could have made her stop using her domain name if
she could prove that Tina’s use of that domain name was confusing the marketplace
for some good or service that was branded with her or her client’s trademark. Where
domain names and trademarks collide, trademark rights will win because trademark
rights are protected by law and domain name rights are not.

As an aside, in the United States trademark rights will trump domain name rights
whether the trademark is registered or unregistered. All that is required is a convincing
showing that the trademark has become associated in the minds of a relevant portion

You can even buy or sell

domain names on eBay.

WHAT’S IN A NAME? �

Vol. 28, No. 4 ;login:14

of the public with a particular commercial good or service. In most other countries,
the law only protects the owners of registered trademarks.

In Tina’s case, I did a search for uses of her domain name or its derivatives that
included the records of the US Patent and Trademark Office (USPTO) and also a com-
mon-law search of telephone directories, trade catalogs, and the Web. On the basis of
that search, I concluded that it was unlikely that anyone else was using Tina’s domain
name in the United States in conjunction with some product or service, and certainly
not the person who was threatening Tina. Thus, I advised Tina that she was probably
in no danger of being sued for trademark infringement or of having the rights to her
domain name trumped by the other’s trademark rights.

Domain name registrars have had to pay attention to the conflicts between domain
names and trademarks in order to avoid getting drawn into lawsuits. Most registrars
have adopted the UDRP, to which Tina’s contact referred. At its heart, the UDRP rec-
ognizes that the proper place for resolving such disputes is in court and that the regis-
trars should not be making legal determinations. But the UDRP does provide rules for
dealing with complaints by trademark owners in the interim (i.e., prior to a judicial
resolution of the dispute) and upon receipt of a court order. The UDRP tells domain
name registrants how they can challenge requests by trademark owners to suspend,
cancel, or transfer their domain name registrations.

The person threatening Tina was bluffing in order to get her to sell her domain name
at a low price. She couldn’t show us that Tina’s domain name conflicted with any
trademark she or her client was using in commerce. Consequently, she had no basis for
suing Tina for trademark infringement. And because she couldn’t demonstrate supe-
rior trademark rights, she also had no basis for asking Tina’s domain name registrar to
suspend, cancel, or transfer Tina’s registration.

As a generalization, most domain name owners are relatively secure against challenges
from third parties who seek to threaten them into selling their domain names inex-
pensively. Under the UDRP, absent a court order, domain name registrars will not sus-
pend, cancel, or transfer domain names unless the challenger can show (1) that the
domain name at issue is identical or confusingly similar to the challenger’s trademark,
(2) that the domain name registrant has no legitimate interests in the domain name at
issue, and (3) that the domain name is being used in bad faith. That’s a very high
threshold, and most challengers cannot meet it. And trademark infringement lawsuits
are expensive, so challengers are not likely to go that route unless they are convinced
that they have a likelihood of success.

The USPTO site, http://www.uspto.gov, supplies free trademark searches and is the best
site for searching for registered US marks. But since trademark owners have trademark
rights in the United States even with respect to unregistered marks, the USPTO data-
base does not tell the whole story. One would be wise to also do several Web searches
and to commission a professional search from a company such as Thomson & Thom-
son (http://www.thomson-thomson.com/), which will also include state trademark reg-
istrations, searches of trademarks that appear in industry directories and other
industry-specific publications, and domain name registrations. Professional searches
range from $350 to $800, depending on how comprehensive and how quickly one
needs the turnaround.

Tina was able to call this person’s bluff because the legal research we did gave us confi-
dence that her domain name was safe. However, many domain name registrants are
not aware of their rights nor the steps they need to take to properly assess those rights
in the face of a challenge. Undertaking a comprehensive trademark search prior to reg-
istering any domain name, and becoming familiar with the UDRP, will help.

Most domain name owners

are relatively secure against

challenges from third parties.

http://www.uspto.gov
http://www.thomson-thomson.com/

Overview
Over the years, production High Performance Computing (HPC) was syn-

onymous with scientific computing on “Big Iron” supercomputers. No

longer dominated by just physical scientists and their Grand Challenge

Equations, production HPC now embraces a variety of compute architec-

tures. Though framed in the broader context of non-traditional HPC, atten-

tion here focuses on parallel computing via the Message Passing Interface

(MPI). Problems cast as MPI applications are seen to have a parallel-com-

puting bias that reaches back into the numerical methods that have been

used and even to the originating science. Whereas MPI itself shows signifi-

cant promise in addressing current computing challenges, in practice some

serious shortcomings must be addressed in order for production HPC to be

realized.

Workload-management system software closes the gap between MPI applications and
their compute architectures, resulting in a solution for production HPC. A specific
example of production HPC for the Linux operating environment shows that such
solutions exist today. Moreover, the workload-management methodologies that apply
at the cluster level have a natural affinity for extension to the Grid. Overall, organiza-
tions are able to better empower the pursuit of science and engineering during MPI
application development, deployment, and use.

Five Steps to Scientific Insight
To motivate the applications and architectures discussion, consider a scientific-inquiry
example from the physical sciences.1 Once the problem under investigation has been
determined, the first task is to determine the relevant physics, chemistry, etc. (Figure 1,
Step 1). This consideration results in a mathematical description of the problem that
needs to be solved (Figure 1, Step 2). On the positive side, the mathematical descrip-
tion typically exists, i.e., there is rarely a need to invent the mathematical description.
In many cases, the required mathematical description can be formulated by combining
existing descriptions. Although mathematics is the oldest and most deeply explored
discipline, mathematical methods are often insufficient, except in idealized situations
subject to simplifying assumptions, to solve the resulting equations. In mathematical
terms, it is often difficult to near impossible to derive analytic solutions to many scien-
tific equations. To make matters worse, in some cases it is difficult to prove that such
solutions even exist. Such existence theorems serve as a cornerstone for the practice of
mathematics. Thus science exposes serious mathematical challenges – in stark contrast
to our childhood experiences with mathematics.

Given this challenging mathematical context, numerical methods are used to permit
progress on otherwise unsolvable scientific problems (Figure 1, Step 3). Typically, this
involves a discrete representation of the equation(s) in space and/or time, and per-
forming calculations that trace out an evolution in space and/or time.2 It’s important
to note that the underlying structure of the resulting set of equations influences the
types of numerical methods that can be applied.3

Thus, numerical experiments are acts of modeling or simulation subject to a set of
pre-specified constraints (Figure 1, Step 4). Problems in which time variations are key
need to be seeded with initial conditions, whereas those with variations in space are

production HPC
reinvented

15August 2003 ;login: PRODUCTION HPC REINVENTED �

�

D

EV
EL

O
PM

EN
T

by Ian Lumb

Ian Lumb is a product

solutions architect at

Platform Computing,

Inc. His interests

include computing

architectures, parallel

computing, paramet-

ric processing, and

grid computing. In a

former life, Ian was a

physical scientist

working on problems

in global geophysics

at York University

(Toronto, Canada).

ilumb@platform.com

1. The analogous steps for informatics-heavy
sciences such as the life sciences will be left for
future consideration.

2. Symbolic algebraic manipulation (SAM) pro-
vides a notable analytic exception to this dis-
crete approach. Maple ([1]) serves as a
representative example of SAM technology. It is
not uncommon to use SAM in conjunction
with the discrete approach described here.

3. There is an extensive literature base on this
topic. Implementations of equations involving a
collection of methods are often organized into
libraries.

4. “Numerics” is used here as a shorthand
for numerical methods.

5. If the interest is computing, then commu-
nication is viewed as the “overhead’ required
to achieve the computation. Similarly, com-
putation might be regarded as the overhead
required to facilitate certain communica-
tions.

6. The mathematical convention of number-
ing quadrants counter-clockwise from the
upper-right-hand corner is used here.

7. Although high-density, rack-mounted sin-
gle/dual processor servers have been used in
compute farms, there is an intensifying
trend toward the use of higher density blade
servers in these configurations.

subject to boundary conditions; it is not uncommon for prob-
lems to specify both kinds of constraints. The numerical model
or simulation subject to various constraints can be regarded as
a scientific application. Thus the solution of a scientific prob-
lem results in numerical output that may or may not be repre-
sented graphically (Figure 1, Step 5). One of four primary types
(see “Applications and Architectures”, below), this application is
further regarded as scientific workload that needs to be man-
aged as the calculations are carried out. Because the practices of
science and engineering are actually undertaken as a process of
discovery, Figure 1 should be regarded as a simplifying
overview that does not depict the recursive nature of investiga-
tion.

It may appear that numerical methods are the cure-all for any
scientific problem that cannot be solved by mathematical
methods alone. Unfortunately, that is not the case. On their

own, many of the equations of classical physics and chemistry push even the most
powerful compute architectures to the limits of their capability. Irrespective of numer-
ical methods and/or compute capability, these Grand Challenge Equations afford solu-
tions based on simplifying assumptions, plus restrictions in space and/or time.
Because these particularly thorny equations are critical in science and engineering,
there is an ongoing demand to strive for progress. Examples of Grand Challenge prob-
lems are provided elsewhere ([2]).

Applications and Architectures
Science dictates mathematics and mathematics dictates numerics4 (Figure 1). Thus a
numerics bias exists in all applications of scientific origin. This predisposition moti-
vates four types of applications (Figure 2) revealed by exploring process granularity.
Granularity refers to the size of a computation that can be performed between com-
munication or synchronization points ([3]). Thus, any point on the vertical axis of
Figure 2 identifies a specific ratio of computation (increasing from bottom to top) to
communication (increasing from top to bottom).5 Task parallelism, increasing from
left-to-right on the horizontal axis, refers to the degree of parallelism present in the
application; “fine” through “coarse” are used as qualitative metrics, as shown.

Most scientific problems are implemented initially as serial applica-
tions (Figure 2, Quadrant II).6 These problems require that each step
of the scientific calculation be performed in sequence. Serial applica-
tions can be executed on compute architectures ranging from isolated
desktops, servers, or supercomputers to compute farms. Compute
farms are loosely coupled compute architectures in which system
software is used to virtualize compute servers7 into a single system
environment (SSE).

Various factors – time-to-results, overall efficiency, etc. – combine to
demand performance improvements beyond what can be achieved by
“legacy” serial applications alone. For those applications whose focus
is on data processing, it is natural to seek and exploit any parallelism
in the data itself. Such data parallel applications (Figure 2, Quadrant
I) are termed embarrassingly parallel since the resulting applications

Vol. 28, No. 4 ;login:16

1. Determine relevant physics/chemistry/etc.

2. Represent the science mathematically

3. Represent the mathematics numerically

4. Model/simulate numerically

5. Produce numerical/visual results

Initial

Conditions

Boundary

Conditions

Figure 1. Five steps to scientific insight

Task Parallelism

C
o

m
p

u
ta

ti
o

n
/
C

o
m

m
u

n
ic

a
ti

o
n

Serial
Farms

Compute Parallel
SMP, Clusters

Service
N-Tier

Data Parallel
Farms, Desktops

Fine

Coarse

Figure 2. Applications and architectures

August 2003 ;login: 17

are able to exploit the inherent coarse granularity. The parallelism in data is leveraged
by (Figure 3):

� Subdividing input data into multiple segments;
� Processing each data segment independently via the same executable; and
� Reassembling the individual results to produce the output data.

This data-driven approach accounts for one of four classes of
parametric processing (Figure 4). Although data-parallel appli-
cations are a solid match for isolated systems and compute
farms, there is an increasing trend to harvest compute cycles
from otherwise idle desktops. Regarded as opportunistic com-
pute resources, desktops “pull” processing tasks from coordi-
nating servers that they will execute as a background process –
especially in place of a traditional screensaver. Desktops as
compute elements gained initial popularity through the peer-
to-peer (P2P) movement and more recently in the context of grid computing. Ray-
tracing applications provide a classic demonstration of this processing architecture.
Despite the added challenge of managing data, successful implementations of embar-
rassingly parallel applications exist in many industries – genome sequencing in the life
sciences, Monte Carlo simulations in high energy physics, reservoir modeling in petro-
leum exploration, risk analysis in financial services, and so on. This approach is so
appealing and powerful that it’s often perceived to be of general utility. Unfortunately,
this simply isn’t the case – and this is especially true for the Grand Challenge Equa-
tions identified previously.

If it exists at all, parallelism in the Grand Challenge Equations can be exploited at the
source-code level – e.g., by taking advantage of loop constructs in which each calcula-
tion is independent of others in the same loop. Parallelism in data is absent or of
minor consequence. This code-level parallelism lends itself to compute parallel (Figure
2, Quadrant IV) applications. Compute parallel applications are further segmented on
the basis of memory access – i.e., shared versus distributed memory. With minimal
language extensions, and explicit code-level directives, OpenMP ([5]) and, more
recently, Unified Parallel C (UPC, [6]) offer up parallel computing with shared-mem-
ory programming semantics. Symmetric multiprocessing (SMP) systems allow for
shared-memory programming semantics via threads8 through uniform (UMA) and
nonuniform (NUMA) memory access architectures.

Parallel Virtual Machine (PVM, [7]) has given way to the Message Passing Interface
(MPI, [8]) as the standard for parallel computing with distributed-memory program-
ming semantics. Likened to the “assembly language” for parallel programming ([9]),
MPI requires a significant investment at the source-code level.9 In contrast to the use
of threads in the shared-memory context, distributed processes are employed in the
MPI case to achieve parallelism. MPI applications are typically implemented for
tightly coupled compute clusters (see HPC Application Development Environment,
below, for additional details). Although other factors (e.g., architecture access) need to
be considered, numerics do influence the choice of parallel computing via shared ver-
sus distributed memory.10 Both shared and distributed-memory parallel computing
methodologies have been applied to scientific and engineering problems in a variety of
industries – e.g., computational and combinatorial chemistry in the life sciences, com-
putational fluid dynamics, crash simulations and structural analyses in industrial
manufacturing, Grand Challenge problems in government organizations and educa-

PRODUCTION HPC REINVENTED �

8. In addition to the fork-and-exec creation of
child processes, a parent process may also
involve threads. Distinguishable by the operat-
ing system, threads can share or have their own
memory allocations with respect to their parent
process.

9. Recent advances allow serial applications to
be automatically enabled for MPI ([10]). By
identifying code regions suitable for paralleliza-
tion (e.g., repetitive calculations) via a templat-
ing mechanism, code-level modifications are
applied. This approach is being applied exten-
sively in financial services, where numerical
models change frequently.

10. Hybrid OpenMP-MPI applications allow
scientists and engineers to simultaneously use
threads and distributed processes when using a
combination of SMP and clustered architec-
tures.

�

D

EV
EL

O
PM

EN
T

Input Output

Engine

Figure 3. Data-driven parametric processing

Vol. 28, No. 4 ;login:18

tional institutions, and scenario modeling in financial services. MPI compute parallel
applications, traditional HPC, will be the focus of our attention here.

Because MPI provides such a rich framework for computing in general, there are
examples of MPI applications that communicate extensively while carrying out mini-
mal processing (Figure 2, Quadrant III) – e.g., remote-to-direct-memory applications
(RDMA), or certain classes of search algorithms. In addition, service applications
whose focus is networking itself or Web services ([11]) themselves would also fall into
this area. As before, MPI applications would require tightly coupled architectures;
whereas networking applications can be applied in a variety of contexts, loosely cou-
pled architectures can be used in the instantiation of Web services.

HPC Application Development Environment
Together with the “commoditization” of low-processor-count, high-density servers
and the emergence of low-latency, high-bandwidth interconnect technologies, MPI has
played a key role in the widespread adoption of tightly coupled compute clusters for
distributed memory-parallel computing ([12]):

MPI is available everywhere and widely used in environments ranging from small
workstation networks to the very largest computers in the world, with thousands of
processors. Every parallel computer vendor offers an MPI implementation, and
multiple implementations are freely available as well, running on a wide variety of
architectures. Applications large and small have been ported to MPI or written as
MPI programs from the beginning, and MPI is taught in parallel programming
courses worldwide.
Applied through source-code-level modifications, MPI-specific directives are refer-
enced against an MPI library at application link time. MPI libraries are architecture
specific and may come from a variety of sources – e.g., a system vendor, an inter-
connect vendor, or via an open source contribution. In each case, the relevant
library implements the MPI specification11 to some degree of compliance. This
MPI library, in combination with the tools and utilities that support developers,
collectively forms the application development environment for a particular plat-
form (Figure 4).

The situation described above might lead one to conclude that all of the requisites are
present to smoothly enable MPI adoption. In practice, however, MPI has the following
challenges:

� Resynchronization and reconnection were not even factored in at the specification
level ([9]). There are no MPI implementations that account for this shortcoming.
This is in striking contrast to PVM, whose implementation allows for this.

� Fault tolerance was not factored in, even at the specification level ([9]); again,
there are no MPI implementations that account for this shortcoming. This can
mean, for example, that an application can lose some of its processes, run to com-
pletion, and yield results of dubious validity.

� Hosts and numbers of processors need to be specified as static quantities, irre-
spective of actual usage conditions.

� Single point of control is absent. Although some recent MPI implementations
offer a process daemon to launch MPI applications, there is little in the way of real
application control.

� Multiple versions of MPI may exist on the same architecture. Applications need to
carefully identify the relevant MPI libraries. The situation is more complex for
MPI applications that span more than one execution architecture.

11. Most MPI libraries fully implement version
1.x of the MPI specification, while many
libraries are today supporting some subset of
the version 2.x specification.

19August 2003 ;login:

The upshot is clear: MPI places the responsibility for these shortcomings on the
application developer and user. Because MPI applications are a challenge to con-
trol and audit, a better production HPC solution is required.

Production HPC Reinvented
There is a gap between the potential for distributed-memory parallel computing
via MPI and what is actually achievable in practice. The use of system software
allows this gap to be closed and the promise of MPI to be fully realized. In the
process, the notion of production HPC is redefined. To start, consider a modified
version of Figure 4 in which the newly added workload-management system
software is shown in black on white (Figure 5).

Figure 5 introduces the following three components to the MPI application devel-
opment environment:

� Core workload management services. This system software component allows
a heterogeneous collection of compute servers, each running its own instance
of an operating system, to be virtualized into a compute cluster.12 Sensory
agents are used to maintain static and dynamic information in real time across
the entire compute cluster. Primitives for process creation and process control
across a network are also provided.

� Parallel application management. Challenges specific to the management of
MPI parallel applications include the need to:

� Maintain the communication connection map;
� Monitor and forward control signals;
� Receive requests to add, delete, start, and connect tasks;
� Monitor resource usage while the user application is running;
� Enforce task-level resource limits;
� Collect resource usage information and exit status upon termination;

and
� Handle standard I/O.

� Parallel scheduling services. Workload management solutions typically
employ a policy center to manage all resources – e.g., jobs, hosts, intercon-
nects, users, and queues. Through the use of a scheduler, and subject to prede-
fined policies, resource demands are mapped against the supply of resources
in order to facilitate specific activities. Scheduling policies of particular rele-
vance in parallel computing include advance reservation, backfill, preemption,
and processor and/or memory reservation.

The combined effects of these three layers of a workload-management infrastructure
allow the shortcomings of MPI to be directly addressed:

� Absence of resynchronization and reconnection: Although the workload-manage-
ment infrastructure (Figure 5) cannot enable resynchronization or reconnection,
by introducing control across all of the processes involved in an MPI application,
there is greatly improved visibility into synchronization and/or connection issues.

� Absence of fault tolerance: At the very least, the introduction of a workload-man-
agement infrastructure provides visibility into exceptional situations by trapping
and propagating signals that may be issued while workload is executing. These
signals can be acted upon to automatically re-queue workload that has thrown an
undesirable exception. Even better, when integrated with the checkpoint/restart
infrastructure of a workload manager, interrupted workload can continue to exe-
cute from the last successful checkpoint, often without user intervention.

PRODUCTION HPC REINVENTED �

12. This layered-services approach has been
contrasted with Beowulf clustering (via a dis-
tributed process space) elsewhere ([13]).

�

D

EV
EL

O
PM

EN
T

User Application

MPI LIbrary

Architecture-Dependent Layer

Hardware and OS

Figure 4. MPI application development
environment

User Application

MPI LIbrary

Architecture-Dependent Layer

Hardware and OS

Parallel Scheduling Services

Parallel Application Manager

Core WM Services

Figure 5. Enhanced application development
environment via workload-management system

software

Vol. 28, No. 4 ;login:20

� Absence of load balancing: The need to explicitly identify hosts and numbers of
processors can be regarded as an absence of load balancing – i.e., the specification
of resources that ignores current resource-usage conditions. Because workload-
management infrastructures maintain dynamic load state across the entire com-
pute infrastructure in real time, this shortcoming is completely eliminated.

� Absence of single point of control: A parallel application manager provides a sin-
gle point of control. This ensures that all the distributed processes that collectively
make up the MPI application are managed and accounted for. Again a key short-
coming becomes a core competence via workload-management system software.

� Multiple versions of MPI: Through configuration information, MPI applications
are able to specify the relevant MPI library. A very flexible architecture also allows
the workload-management system software to work in concert with the existing
parallel application development and runtime environment.

Together with the existing parallel application development and runtime environment,
workload-management system software allows the inherent shortcomings of MPI to
be effectively eliminated. The cumulative effect is to practically reinvent HPC via MPI.
This threefold reinvention is captured in Figure 6.

The process starts with MPI applications that are developed in-house or acquired from
commercial providers.

On job submission, these applications are accompanied by a description of their run-
time resource requirements – e.g., a processor-count range,13 data-management direc-
tives (e.g., a file transfer), plus other environmental requirements.14 The scheduling
agent takes into account the pre-specified resource requirements, the unique charac-
teristics of the compute architectures that it has available, and the policies that reflect
organizational objectives. Because the scheduler creates a runtime environment for the
workload, its task is one of dynamic provisioning. On dispatch, the scheduler has opti-
mally matched the workload to an appropriate runtime architecture subject to estab-
lished policies. The application executes in a fully managed environment. A
comprehensive audit trail ensures that all activities are accounted for. In this way, there
is a closed loop for production HPC, one that enhances the developer and user experi-
ence rather than encumbering it. A specific solution example is provided in the follow-
ing section.

Production HPC for Linux
It has been suggested that production HPC can be reinvented through the use of an
integrated development and runtime environment in which workload-management
system software plays a key role. A complete example is considered here to further
illustrate this reinvention. Consider the integrated production HPC solution stack
shown in Figure 7. Although this example is based on the Linux operating environ-
ment, similar stacks for other operating environments can be crafted.

At the base of the production HPC solution stack for Linux are low-processor-count
servers,15 each running its own instance of the GNU/Linux operating system. Ether-
net-based network interface cards (NICs) allow for standard TCP/IP-based services
between these systems. Because TCP/IP over Ethernet necessitates assumptions regard-
ing shared access and the occurrence of collisions, the result is a communications pro-
tocol that is latency heavy and therefore inefficient for message-passing in support of
parallel computing. Hence, each system implements Myricon’s GM message-passing

13. Experience dictates that every parallel appli-
cation show acceptable performance character-
istics over a range of processors. A typical
criterion is that the performance remain close
to linear as the number of processors increases.
This is referred to as “linear speedup.” Effective
workload-management systems allow this
processor count to be specified as a range at
workload submission time. This serves to auto-
mate the load balancing situation and to
enhance overall effectiveness of the scheduling
services.

14. The need to bind processes to processors
serves as one example of an execution environ-
ment requirement. In such cases, the workload-
management infrastructure works in tandem
with the operating system, interconnect man-
ager, etc., to address the requirement.

15. Historically, Alpha-based processors were
used because of their excellent floating-point-
performance characteristics. With the advent of
first-generation Itanium processor family
CPUs, it is expected that 64-bit Intel Architec-
ture (IA-64) will eventually dominate in this
space. In the interim, fourth-generation IA-32
Pentium processor family CPUs hold the
price/performance niche.

Applications

Architecture

Provisioning

MPI Application

MPICH-GM Library

Platform HPC for Linux

Myrinet Interconnect

Linux

Figure 6. Production HPC reinvented

Figure 7. Production HPC for Linux

21August 2003 ;login:

protocol across low-latency, high-bandwidth, multi-port Myricom Myrinet switches
([14]) used solely to support parallel computing via MPI and the GM driver. By iden-
tifying each available Myrinet port as a resource to the core workload-management
services provided by Platform HPC for Linux ([15]), the provisioning component of
this infrastructure is aware of the static and dynamic attributes of the architecture it
can apply parallel scheduling policies against. Platform HPC for Linux also provides
the control and audit primitives that allow parallel applications to be completely man-
aged. Users’ MPI applications need to be compiled and linked against the application
development environment provided by Myricom. This ensures that the appropriate
GM-protocol modifications to the widely adopted open source MPICH implementa-
tion of MPI are used. Through configuration information, the workload-management
system software based on Platform HPC for Linux is made aware of the enhanced MPI
runtime environment.

Portability was identified as a design goal for MPI. This objective has been carried
through in MPI implementations such as MPICH. Despite this fact, heterogeneous
parallel applications based on MPI must not only use the same implementation of
MPI (e.g., MPICH) but also the same protocol implementation (e.g., GM). In other
words, MPI is a multi-protocol API (Figure 8) in which each protocol implements its
own message formats, exchange sequences, and so on.

Because they can be regarded as a cluster of clusters, it follows that computational
grids might provide a suitable runtime environment for MPI applications. The fact
that grids are concerned with resource aggregation across geographic (and other)
domains further enhances the appeal. Fortunately, Platform HPC for Linux is consis-
tent with Platform MultiCluster – system software that allows independent clusters
each based on Platform LSF to be virtualized into an enterprise grid. This combination
introduces the possibility for exciting new modes of infrastructural provisioning
through various grid-centric scheduling policies – e.g., Grid Advance Reservation,
Grid Fairshare, and Grid Resource Leasing.

Of these grid-centric policies, Grid Resource Leasing (GRL) is par-
ticularly novel and powerful. GRL allows sites to make available
fractions of their resources for use by other sites participating in
their enterprise grid. These collective resources can be occupied by
MPI applications through requirement specifications. In this fash-
ion, users can co-schedule MPI applications to span more than one
geographic location. Even more impressive is the fact that this co-
scheduling is automatically enabled at runtime, that is, existing
MPI applications do not need to be re-linked with special libraries. By jointly leverag-
ing the parallel application management capability already present in Platform HPC
for Linux, in concert with this grid-level scheduling policy of Platform MultiCluster,
MPI application users take advantage of their entire enterprise grid in a transparent
and effective fashion. Platform MultiCluster and its grid-level scheduling policies are
considered in detail elsewhere ([17]).

Summary
Production High Performance Computing (HPC) incorporates a variety of applica-
tions and compute architectures. Widespread use of the Message Passing Interface
(MPI) is better enabled through the use of workload-management system software.
This software allows MPI applications and the compute architectures on which they
execute to be provisioned on demand. This critical link significantly reduces complex-

PRODUCTION HPC REINVENTED �

�

D

EV
EL

O
PM

EN
T

MPI Application

MPI API

MPICH-GM SDK

GM protocol

TCP/IP

MPI Application

MPI API

MPICH-P4 SDK

P4 protocol

TCP/IP

Figure 8. The multi-protocol nature of MPI (after [16])

Vol. 28, No. 4 ;login:22

ity for the scientist or engineer, thus reducing time to results and ensuring overall
organizational efficiency. A tightly coupled cluster based on the Linux operating envi-
ronment was shown to be a particularly attractive and viable compute architecture.
The incorporation of this environment into a compute grid was also shown to be a
natural progression. Overall, organizations are able to better empower the pursuit of
science and engineering during application development, deployment, and use.

ACKNOWLEDGMENTS
Chris Smith, Brian MacDonald, and Bill McMillan are all acknowledged for their con-
tributions to this article.

REFERENCES
[1] Maple, http://www.maplesoft.com.

[2] The Grand Challenge Equations, http://www.sdsc.edu/Publications/GCequations.

[3] B. Wilkinson & M. Allen, Parallel Programming: Techniques and Applications Using
Networked Workstations and Parallel Computers (Upper Saddle River, NJ: Prentice-
Hall, 1999).

[4] I. Lumb, B. Bryce, B. McMillan, and K. Priddy, “From the Desktop to the Grid:
Parametric Processing in High-Performance Computing,” Sun User Performance
Group, Amsterdam, Netherlands, October 2001.

[5] OpenMP, http://www.openmp.org.

[6] Unified Parallel C, http://upc.gwu.edu.

[7] Parallel Virtual Machine, http://www.csm.ornl.gov/pvm/pvm_home.html.

[8] Message Passing Interface, http://www.mpi-forum.org.

[9] K. Dowd and C.R. Severance, High Performance Computing, 2d ed. (Sebastopol,
CA: O’Reilly & Associates, 1998).

[10] Powerllel, http://www.powerllel.com/powerllel/content/index.shtml.

[11] Web services, http://www.w3.org/2002/ws/.

[12] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming
with the Message-Passing Interface, 2d ed. (Cambridge, MA: MIT Press, 1999).

[13] I. Lumb, “Linux Clustering for High-Performance Computing,” ;login:, vol. 26, no.
5, August 2001, pp. 79–84.

[14] Myricom Myrinet, http://www.myricom.com/myrinet.

[15] Platform Computing Corporation, “Using LSF with MPICH-GM,” technical doc-
umentation, April 2002.

[16] MPICH-G2, http://www.hpclab.niu.edu/mpi.

[17] Platform Computing Corporation, Platform MultiCluster Guide, technical docu-
mentation, June 2002.

http://www.maplesoft.com
http://www.sdsc.edu/Publications/GCequations
http://www.openmp.org
http://upc.gwu.edu
http://www.csm.ornl.gov/pvm/pvm_home.html
http://www.mpi-forum.org
http://www.powerllel.com/powerllel/content/index.shtml
http://www.w3.org/2002/ws/
http://www.myricom.com/myrinet
http://www.hpclab.niu.edu/mpi

23August 2003 ;login:

�
SE

C
U

RI
TYA funny thing happened to me last May. I was asked a question about Microsoft Win-

dows desktop security that actually caught my attention.

In a single week, two women contacted me wanting to know how to stop their ex-
boyfriend from reading their email. I immediately thought of a trojan running a key-
stroke logger and suggested that they get, or update, their antiviral software. But then I
decided to look further.

I didn’t have very far to look. Just enter “keystroke loggers” into a Google search, and
you will turn up thousands of entries, as well as sponsored ads for spyware, the more
common name for keystroke loggers. Based on the advice of compadres in the world
of security more familiar with Windows, I pointed both women to SpyCop, a spyware
detector. But I didn’t stop there.

As I continued to search, I found a site (http://spywareinfo.com) that listed 223 spyware
products (this is actually an anti-spyware site). Another vendor stated that there were
over 300 spyware programs available. I found a hardware dongle (Keyghost) as well as
a number of spyware detectors.

Spyware, in the generic sense, is nothing new. Microsoft made headlines when it
included a mechanism to scan hard drives for software and upload those listings with
pre-release versions of Windows 95. Microsoft quickly removed that feature. But cur-
rent versions of Windows Media Player contact Microsoft every time you play a CD or
DVD, to collect a track listing for you. Unscrupulous programs could, in fact, log that
data for later reference or analysis (a unique ID is registered for each copy of the
WMP).

And spyware for X Window has been around even longer than Windows. You can
search for and find versions of the xkey program, an X client that collects all keypress
events in any X Window server it can connect to. Of course, you are protecting your X
Window server (it appears that any reasonable UNIX distribution uses xauth, but X
Window for Windows products often fail to do this). One weakness of xkey is that it
reports all keypresses, without identifying the application reading those keys. X events
do include a window ID, and it should be possible to actually match keys with applica-
tions with a bit of programming.

Note that someone who adds a line to a UNIX user’s startup files can run xkey as that
user and will have complete access. Protect your dot (startup) files!

But Microsoft makes things much easier for Windows programmers, one of the rea-
sons for Microsoft’s phenomenal success. Just as personal firewall products for Win-
dows can identify which application has requested a network connection, keystroke
loggers for Windows can identify the application that will receive any keystrokes. That
made it possible for the Badtrans.B trojan to focus on the characters presented to par-
ticular applications, such as Telnet and connections to RAS (Remote Access Servers). A
similar keystroke logger helped someone invade Microsoft’s networks in the summer
of 2000 by capturing a username, password, and RAS server address.

Anti-spyware products often work like antiviral products, looking for signatures.
Another sign of a spyware installation is changes to certain registry keys and startup
files. I have been told that there are at least 56 different methods that a trojan writer
can use so that the trojan gets restarted with every reboot or login. The most common
ways include modifications to the various Run keys in the registry, to startup files like
WIN.INI, and to users’ startup folders. You can actually download a free program

musings
by Rik Farrow

Rik Farrow provides

UNIX and Internet

security consulting

and training. He is

the author of UNIX
System Security and

System Administra-
tor’s Guide to System
V.

rik@spirit.com

MUSINGS �

http://spywareinfo.com

Vol. 28, No. 4 ;login:

from Sysinternals (http://www.sysinternals.com/ntw2k/source/misc.shtml#autoruns) that
will report on the list of all software started with each reboot, including services.
Installing a “special” service, such as slanret, has become a popular way of rootkitting
Windows 2000 systems, so you do want to pay attention to the .sys files included when
your system boots. Microsoft wants you to stick to signed drivers, which should help
you avoid being rootkitted.

And if you are wondering about how someone installs a keystroke logger, a common
way to do it is through physical access. But Windows viruses and trojans will also do
this. Note that the virus Bugbear.B, which was making the rounds in early June, uses as
one of its vectors the MIME-auto-exec bug that Microsoft announced a patch for in
March 2001 (http://www.microsoft.com/technet/security/bulletin/MS01-020.asp). Bug-
bear.B also uses a more recent, just patched, vulnerability in Internet Explorer to exe-
cute its code. If you use IE, check for patches often.

As I learned just how common spyware has become, I wondered about the legality of
it. I heard from a police dispatcher, for example, about a father who had installed spy-
ware to monitor his daughter’s Internet usage. So I contacted an acquaintance within
the US Department of Justice who deals in computer crime and asked him if he could
help me. He agreed, but only as a background source.

Using spyware without authorization is a federal crime, a felony in the US. But that
word, “authorization,” is the slippery one. Your employer is authorized to sniff your
keystrokes or network connections if you have agreed to a policy that includes moni-
toring or the systems you use have logon banners announcing that use amounts to an
agreement to be monitored.

Parents have been given a free ride by the courts when they are acting as responsible
custodians for their children. But an ex-boyfriend, girlfriend, or husband who installs
software that collects electronic communications would be considered to be commit-
ting the same offense as tapping a telephone (the same laws apply). Same thing when
someone, without permission, installs spyware in your computer to collect keystrokes.
My Justice Department contact told me that if that information were used to break
into a computer, he would be more likely to use the break-in during a prosecution,
because it would be easier for a jury to comprehend than keystroke logging.

But keystroke loggers are not the only applications spying from within Windows desk-
tops these days. Many “free” services include clauses within the EULAs that permit
them to install software that monitors Web usage, music tracks downloaded, and so
on, all the better to target the user for advertising and spam. And this is an authorized
use, because the end user agreed to the EULA. Kazaa users beware!

In these scary times, it turns out that the government is much too busy watching for
terrorists – that is, anyone from certain countries who is visiting on a visa or praying
in a certain church – to spy on most citizens. It is actually much more difficult for a
government agency to go through the red tape necessary to wiretap you (even after
PATRIOT Act v1) than it is for private industry to include a request to bug your desk-
top in their EULA. If only George Orwell (1984) had known about PCs, it wouldn’t
have been the TV watching its viewers.

If only George Orwell (1984)

had known about PCs, it

wouldn’t have been the TV

watching its viewers.

24

http://www.sysinternals.com/ntw2k/source/misc.shtml#autoruns
http://www.microsoft.com/technet/security/bulletin/MS01-020.asp

25August 2003 ;login:

ISPadmin
Service Provider Book Reviews II

ISPADMIN �

�

SY

SA
D

M
IN

LDAP SYSTEM ADMINISTRATION

BY GERALD CARTER

Sebastopol, CA: O’Reilly and Associates.

Pp. 294. ISBN 1-565-92491-6.

In this edition of ISPadmin, I review two new books that are of interest to

most in the service provider business and many in the field of information

technology. (No, I am not going to turn this column into a book review col-

umn; I promise these are my last book reviews for a while!)

In the interests of full disclosure, I must state that I was paid to evaluate the manu-
script of LDAP System Administration. However, I purchased both of the books
reviewed (even with my complimentary copy of the LDAP book!).

LDAP System Administration
You might already be asking yourself, “Why would anyone write a book on LDAP
when a major author of the protocol (Tim Howes) has already written a book on it?”
While there is nothing wrong with the Howes et al. book, it is not “hands-on” enough
to be useful for everyone. It covers the theory very well, leaving most of the implemen-
tation as an “exercise for the reader.” That’s where the O’Reilly book is different.

One of the issues with many open source projects is the lack of high-quality documen-
tation to go along with the project. This book is very close to what I would have
wanted to produce if I were to write a book on LDAP. Gerald Carter has created an
outstanding, well-rounded reference for the OpenLDAP 2.x server, covering enough
LDAP basics to enable most system administrators to complete their (LDAP-related)
tasks with minimal overhead. If what you are looking for is a protocol reference, then
the Howes book will do the trick. However, if you are looking for an LDAP nuts-and-
bolts “how to” manual, then the O’Reilly book is what you need.

The book’s first section (“LDAP Basics”) lays down the necessary theory a typical sys-
tem administrator needs to know to be able to implement an LDAP-based project. It
does an acceptable job of building a foundation from which to base the second section
of the book (“Application Integration”). It is by no means an in-depth reference, nor is
it intended to be.

The example chapter in this section (Chapter 4: “Building a Company White Pages”)
does an adequate job of tying the pieces together, though it also exemplifies the “out of
order–ness” of some aspects of the book. It would have made more sense to have chap-
ter 5, “Replication, Referrals, Searching, and SASL Explained,” come before the exam-
ple chapter, which, it seems to me, should come last and tie everything in the section
together. The book contains other organizational missteps, but these qualify as annoy-
ances more than substantive flaws.

The second section is where this book really shines. The integration of LDAP into
applications is much needed coverage for those administrators who like the “cook-
book” format. Chapter 6, “Replacing NIS,” is an excellent tutorial on how one could
use LDAP to handle authentication for a large group of users, either from an existing
NIS infrastructure or from scratch. Chapter 7, “Email and LDAP,” does a fine job cov-
ering integrating mail clients and servers with LDAP. Chapter 8, “Standard UNIX Ser-
vices and LDAP” excellently explains how to integrate LDAP with Apache, ProFTPD,
Samba, FreeRADIUS, BIND 9, and printers.

Chapter 9, “LDAP Interoperability,” addresses the issues surrounding LDAP’s integra-
tion with other types of directory servers such as Microsoft Active Directory and Ker-
beros. Finally, no book with “System Administration” in the title would be complete
without some sort of Perl coverage, and Chapter 10 nicely documents the “Net::LDAP”
Perl module. The book contains five appendixes, the most useful being Appendix B,

by Robert Haskins

Robert D. Haskins is

an independent con-

sultant specializing

in the Internet Ser-

vice Provider (ISP)

industry.

rhaskins@usenix.org

Vol. 28, No. 4 ;login:

which contains the OpenLDAP command options. Anyone who has searched through
the sources to find the debug levels will appreciate this appendix.

So what’s not to like about this book? Not much. Some might object to the “light” the-
ory coverage, but that is a plus in my estimation. The only minor thing missing would
be in-depth coverage of the more useful Web-based LDAP browsers/editors available;
the single-page coverage here is insufficient in, my opinion.

RADIUS
I was very pleased to see a book on RADIUS finally; it’s about time something was
published on this topic, though I can understand publishers’ reluctance to bring out
books in such a limited subject area.

After presenting a good overview of the theory behind RADIUS, the book describes
such RFC material (though more accessibly) as packet types, TCP vs. UDP,
attribute/value pairs, authentication methods, and realms. Chapter 3 describes authen-
tication and authorization attribute properties and seems to focus on the “Livingston”
variant of the standard dictionary, with no coverage of the slight differences in the
“Merit” type of dictionaries. This seems like a significant omission, since these slight
differences have caused me great headache in the past. Also, no coverage of vendor-
specific attribute properties is available, nor of the de facto entries such as those on
Ascend.

Chapter 5 is where the FreeRADIUS server coverage begins. The documentation that
now ships with FreeRADIUS tells you to use replacement configuration files, which
renders obsolete those described in this book! In addition, the entries describing the
new format files are incomplete. Chapters 6 and 7 function as catch-all chapters; topics
include PAM, proxying, working with particular RAS gear, using MySQL to authenti-
cate (but not for RADIUS accounting), Web authentication, LDAP (this should have
had its own chapter), and processing RADIUS accounting records with RadiusReport.

Chapter 8 provides a nice treatment of RADIUS’s security issues, and what (little) can
be done about them. Chapter 9 describes some of the more widely used RADIUS-
related draft standards, including VPN tunnels, the Extensible Authentication Proto-
col, and interim accounting. Again, there isn’t anything here that one cannot get out of
the draft RFCs, it’s just a little easier to read and understand. Chapter 10, “Deployment
Techniques,” covers deployment from a broad high-level view but doesn’t get into
enough detail. Such topics as scaling and switching were omitted, and I found the “case
studies” a little too contrived for my liking.

A number of relevant topics are missing from this book. How about some concrete
example configurations? (I am a big fan of the cookbook approach.) For example, I
wanted to set up a RADIUS proxy environment, but this book was not helpful in my
research. There is also no discussion of such basic RADIUS-related Perl modules as
perl-RADIUS, and treatment of RADIUS’s application to authentication problems is
limited. Why not detail how to set up a news server that authenticates via RADIUS, or
how to perform wireless authentication via RADIUS?

The book’s primary weaknesses – not enough detail and spotty coverage of important
topics – are magnified by the fact that FreeRADIUS has evolved significantly since this
book was written. Despite its numerous shortcomings, this is currently the only book
on RADIUS that I am aware of, so if you have RADIUS and want a reference, this will
have to do. Perhaps O’Reilly will publish a second edition after the FreeRADIUS has
moved past its current active-development phase, so that some of the book’s more
glaring deficiencies can be corrected.

Next time, I will take a look at the ISPman LDAP-based software for providing and
provisioning ISP-type services. In the meantime, please send me your questions and
comments!

RADIUS

BY JONATHON HASSELL

Sebastopol, CA: O’Reilly and Associates.

Pp. 190. ISBN 0-596-00322-6.

26

27August 2003 ;login:

�

SY

SA
D

M
INAbsolutely no one in this audience needs an introduction to patching. It’s a

pervasive requirement as well as a pervasive nuisance, and that’s putting it

mildly. If it weren’t such a nightmare it wouldn’t be as interesting, and vice

versa.

This is not a security article. For a mature environment, security is a subset of reliabil-
ity; in other words, this is a reliability article. The logic is thus:

If a system is insecure, then
It is unreliable, therefore

Security is necessary for reliability, yet
Security is insufficient for reliability, therefore

Security is a subset of reliability.

The axis of evaluation of a single patch or a system for patching or a regime for the
management of patches is one that begs for the metrics of reliability. Reliability met-
rics are well defined in other fields, so just steal them fair and square. While we’re at it,
let’s not ignore business reality – just as public lotteries are a tax on those who cannot
do math, a patch is a tax on those, upstream or down, who make software reliability
something that can only be bought on the installment plan.

What, then, is the “physics” of patching? First: The more serious the hole that the patch
is to fill, the less time you have to fill it. This is especially true for security patches,
because security patches come with the shortest fuses, already lit. For those who actu-
ally know physics, this might be our equivalent of “inflation.”

Second: Patch density is itself a function of risk over space and time. It is a function
over space since no automatic system ever works completely, hence shoe leather is still
required, which breaks the first rule of scalability for distributed systems: No shoe
leather. It is a function over time as exploitability increases monotonically once a flaw
has been discovered and one must always assume that a flaw that is officially known
was discovered unofficially much earlier, i.e., the countdown clock is already running
by the time you realize that there is something to patch.

Third: Patches are the high-energy radiation around the black hole of a desktop
monoculture. The more massive the black hole, the higher the energy of that radia-
tion. The gravity of the desktop monoculture in particular absorbs such a huge mass
of the slings and arrows of outrageous fortune seekers (the exploit writers) that it radi-
ates particularly high energy photons (patches whose terminal velocity is proportional
to the curve of susceptibility, which in true platform monocultures is a singularity).

Fourth: Critical mass – it’s not just for weapons anymore. All the failures that actually
matter are cascade failures. Cascade failure, like an epidemic or a chain reaction, is a
big-number interaction of virulence (radioactivity) and immunity (isotope stability).
What may matter most to you is not whether you patch but whether your communi-
cating counterparties patch. If they are all sending you a tsunami of Slammer, it might
not actually matter if you are patched or not. Your susceptibility to the clumsiness of
others is the other half of Metcalfe’s Law, the half with the sign bit reversed. In the
sense of critical mass, “we” are all in this together even if it approximates roping
together amateur mountain climbers.

If you're losing a game, first try to change the rules. What might that mean here? For
starters, we might consider source reduction, delivery automation, mitigation by inter-
diction, and risk transfer.

Source reduction means what it sounds like, and it is easier to say than to do. Let’s be
abundantly clear: This is a reliability matter related to trying to cram 10 pounds of

patch work

PATCH WORK �

by Dan Geer

Dan Geer is a

USENIX Past Presi-

dent and is Chief

Technology Officer

at @Stake, Inc.

geer@atstake.com

Vol. 28, No. 4 ;login:28

functionality into a five-pound bag, and the only way we’ll get more reliable software
is to raise prices for software. The richest software vendor in the world mostly doesn’t
care how much it costs to cure quality flaws so long as it doesn’t cost time to market,
but source reduction can come as a side effect of liability judgments against suppliers,
directly gated by quality metrics imposed by energized buyers, or the market pricing
impacts of differential insurance premiums driven by payouts. Somebody will pay; if
not, you call it risk transfer.

Delivery automation, also known as automatic update, takes a tough problem and
makes it brittle. So long as the automatic update works it is a solid win. When it fails,
whether by incompetence or treachery, it demonstrates that while to err is human, to
really foul things up you need computers. Nevertheless, it is in our future by contract
even if not by technical evaluation. Absent real emergencies, pushed patch notifica-
tions with lazy evaluation by the notified client recommends itself, especially if cou-
pled with . . .

Mitigation by interdiction has scaling factors that strongly recommend it if, and this is
a big if, there is a perimeter at which to apply that interdiction. Removing toxic attach-
ments from email is a kind of patching – not that the Devil didn’t have a backslap-
pingly good day when some clown decided that shoe-horning executables into text
messages sounded cool – and “we” think nothing of automated patching of email these
days just as I’m sure we’ll soon think nothing of patching instant messages, SMS opac-
ities, and even the stuff that comes from P2P “networks.”

But let’s get back to the net-net of patching with respect to reliability, which is what
this is about. As Mike O’Dell used to say, left to themselves creative engineers will
deliver the most complex system they think they can debug. He was talking about the
counterweight of having enough old hands around whose “sadder but wiser” experi-
ence balanced out “what could go wrong?”; but I’m thinking about complexity and the
debuggability margin as where complexity and reliability meet. There’s no doubt that
reliability and complexity have a difficult marriage where each has caused the other
pain. Reliability can enable complexity and complexity can enable reliability, but cre-
ativity-fueled high rates of change generate the kind of complexity that is decoupled
from reliability. That can be good in a greenfield startup; it can be bad in the long dis-
tance call switching system.

The needed maturity of the area of application determines the rate of change that can
be tolerated, which brings me to a central point: If you think of a patch as a software
release, then you divide the world of software releases into the voluntary and the invol-
untary from your, the end-using customer’s, point of view. That, dear friends, allows
you to use the ratio of involuntary to voluntary software releases to just flatly rank
software vendors. You know what I am thinking, but this is a family magazine.

There are not enough of us (USENIX) to go around, so there has to be substantial
automation of patch delivery or a substantial reduction in patch necessity. If the num-
ber of people with Internet access is more-or-less doubling every six months, then only
one in a million was here when Mosaic first appeared. That’s boring, but curves like
that absolutely tell you that automation is going to have to substitute for “been there,
done that” levels of experience among the great mass of the patch-needy. If what
obtains is that there’s neither automation nor enough of “us” to go around, then the
inevitable injuries to “the innocent” guarantee that the liability law system will take
over and genuine innovation will get harder to fund and deploy.

This is bad news, overly simplistic, unignorable. Those of you who can measure things
– please do some measurement and publish your numbers. Numbers get believed.
Bellyaching gets a cool compress. Clock’s ticking.

To err is human; to really foul

things up you need

computers.

29August 2003 ;login:

Introduction
I am not really a DBA. However, like many UNIX sysadmins, I am charged

with the care and feeding of a number of Oracle database servers. In this

short article I will explain the concepts behind various methods of backing

up Oracle database servers, a critically important subject for anyone in my

position. This is not an introductory article to Oracle, and I do assume at

least a basic understanding of SQL and Oracle command line utilities.

Enterprise database servers can seem complex and daunting, but Oracle has a long his-
tory and is based on proven technology and concepts that most UNIX system admin-
istrators are comfortable with, like textual configuration files, scripting capability, and
command line interfaces. Even if your DBAs or programmers manage their own Ora-
cle backups, it can be of value to understand the methods and possibilities.

Oracle Concepts
Oracle database servers are composed of “instances” which are identified by an SID
(system identifier). An instance contains memory structures, processes, tablespaces,
and various data and configuration files. In most circles, the word “database” is syn-
onymous with “instance,” at least in Oracle, but in actuality the database is a compo-
nent of the instance.

Tablespaces comprise a group of datafiles which can be dynamically allocated. During
normal operation, Oracle is constantly updating various files inside the instance; these
files can be (and usually should be) spread between physical partitions/devices on the
system. If Oracle files are spread across physical partitions in a logical manner, the loss
of any one partition should not result in any data loss. Oracle calls this layout “OFA”
(Oracle Flexible Architecture). Using the concepts of OFA is key in creating a recover-
able and manageable Oracle installation. After all, the first step in implementing a suc-
cessful backup system is having a properly configured database server.

In most cases, Oracle gives you the option to maintain multiple copies of critical files
(such as control files(s) and online redo logs) automatically; Oracle calls this “multi-
plexing.” This can give you an extra layer of protection against physical media failure.
Every update applied to a datafile is handled as a transaction and can be “rolled back.”
This is handled internally by maintaining sets of online redo logs. For additional data
recoverability, the online redo logs will be automatically archived if an instance is
placed in ARCHIVELOG mode. Archive logs enable one to play back every update
applied to datafiles/tables literally. This is very useful for recovery from disaster or
human error. Using archived redo logs, a DBA can “time travel” and restore any table
to any point for which uninterrupted archive logs are available, a truly powerful fea-
ture.

Types of Oracle Backup
Three major methods exist for backing up Oracle databases: offline, RMAN, and
“online hot.” Offline backup is virtually unacceptable in 24/7 production environ-
ments, but it is the safest and also easiest from which to restore. During offline
backup, the Oracle instance is completely shut down and all files can be safely backed
up using normal backup tools (since none of them is changing). Offline backups are
still very useful; it is quite common to perform an offline backup both before and
after applying Oracle software patches/upgrades.

Oracle hot backup

ORACLE HOT BACKUP �

�

SY

SA
D

M
INby Matthew E.

Hoskins

Matthew Hoskins is a

UNIX system admin-

istrator for the New

Jersey Institute of

Technology, where he

maintains many of

the corporate admin-

istrative systems. He

enjoys trying to get

wildly different sys-

tems and software

working together,

usually with a thin

layer of Perl (aka

“MattGlue”).

matt@njit.edu

User Processes
Connections

User Processes
Connections

User Processes
Connections

Oracle
Processes

User Processes
Connections

Oracle
Processes

Oracle
Processes

Oracle
Processes

Oracle
Processes

The Database

Datafiles Logfiles Config

Control−
files

o o o

System Global Area
(Shared Memory)

The Oracle Instance

Vol. 28, No. 4 ;login:

RMAN (Recovery Manager) is a relatively new method of online backup and is mainly
designed to provide an API for integrating automated enterprise backup software with
Oracle. One major feature of RMAN is its ability to make incremental backups, which
is sometimes necessary for huge tablespaces. However, RMAN has a large overhead of
complexity that can be avoided unless you need its advanced features.

Finally, “hot backups” put individual tablespaces in a special mode that enables
datafiles to be copied or archived using normal backup tools. The instance is required
to be in ARCHIVELOG mode for online hot backups to work. Hot backups generally
make the most sense to the average sysadmin, because they may be scripted using tools
with which we have great familiarity.

A fourth method of backup, mentioned only for completeness, is the “logical backup”
in which one does a partial or full export of the schema and data in an instance. An
export creates a single file (which might be broken up) that contains the data and
commands to recreate whatever was exported. While this method might seem elegant
for backups, in order to do a restore one has to have an already working Oracle instal-
lation, which would require running Oracle Universal Installer (OUI) and applying all
patches to the same point as the export was created from. This can be rather time-con-
suming in Oracle and is not recommended as a backup method. Logical imports/
exports are better used for point-in-time archives and moving data from one server to
another. Import/export can also be useful for copying data from a production instance
to a test or development instance. Since import/export recreates database components
using data manipulation operations, it can be quite time-consuming on large data-
bases, because the data must be re-indexed as it is loaded.

Hot Backup Concepts
The remainder of this article focuses on hot backups. In my opinion, they are the most
flexible method from the standpoint of a sysadmin for small to medium-sized table-
spaces. When datafiles are put into hot backup mode, Oracle is still writing to them;
this makes your average system administrator raise an eyebrow. Oracle slightly changes
the way it performs updates to datafiles by copying whole datafile blocks, rather than
just what has changed, into the online redo logs. Hot backups, by their very nature,
take a corrupt copy of the datafiles. But relax, it’s OK. Since the instance is in
ARCHIVELOG mode, all changes to the datafiles are available upon restore to correct
any discrepancies created as the archiving process passes over any given datafile. This is
why Oracle records redo information in whole blocks during hot backup: to help
recover any inconsistent blocks in the datafiles upon restore. The basic steps in online
hot backups are as follows (SQL statements are in parenthesis):

1. Get listing of tablespaces and datafiles (SELECT tablespace_name, file_name
FROM sys.dba_data_files).

2. For each tablespace
a. Put tablespace in hot backup mode (ALTER TABLESPACE $TABLE-

SPACENAME BEGIN BACKUP).
b. Copy, archive, or snapshot each datafile in this tablespace.
c. End hot backup mode for this tablespace (ALTER TABLESPACE $TABLE-

SPACENAME END BACKUP).
3. Back up the Oracle “controlfile” (ALTER DATABASE BACKUP CONTROLFILE

TO TRACE and/or ALTER DATABASE BACKUP CONTROLFILE TO $FILE).

30

4. Confirm all tablespaces returned to normal mode (SELECT
FILE#,STATUS,CHANGE#,TIME FROM v$backup WHERE STATUS != 'NOT
ACTIVE').

5. Perform an archive log switch (ALTER SYSTEM ARCHIVE LOG CURRENT).
6. Backup archived redo logs.
7. Backup everything else (binaries, config files, etc . . .).

Most of the steps are performed by executing SQL statements in SQL*Plus or some
other method; the archiving of datafiles and software can be done with any normal
methods (e.g., tar, cp, cpio). As you can see, this process spans two distinct operating
environments. Steps must be performed inside Oracle, then further operations must
be executed at the OS and file-system level. This sounds like a job for a script! More on
that later.

Proper Treatment of Archive Logs
Archive logs are rather important and should always be hosted on a separate physical
disk or array from the datafiles. If you lose the partition that houses datafiles, the
archive logs can be used to completely recover the datafiles up to the moment they
were lost. Depending on the application and its importance, it might be beneficial to
copy archive logs off-site a number of times per day.

The “rsync” (http://rsync.samba.org/) utility works well for this task, because it can
keep a remote copy of a file system up to date by only transferring incremental
changes. Since every restore done from hot backups requires datafile media recovery
using archived redo logs, these logs should always be archived after all tablespaces are
taken out of hot backup mode and kept with the archived datafiles. Archive logs must
be treated with respect; a single missing or corrupt archive log file will cause all the
logs created after it to be useless! Generally archive logs compress well – many DBAs
use gzip or bzip2 to compress the archive logs nightly with a cron job – but make sure
you don’t try to compress the one that Oracle is writing to.

The Restore
Restoring from hot backups is a multi-step process that is mostly handled by Oracle
itself, provided you supply all the files necessary. When one or more datafiles have
been lost, the following high-level steps are performed:

1. Take the affected tablespace offline (if Oracle is still running, ALTER TABLE-
SPACE $TABLESPACENAME OFFLINE TEMPORARY, where $TABLESPACE is
the tablespace that lost the datafile).

2. Restore lost datafile(s) from last available hot backup.
3. Confirm that archived redo logs are available in the location Oracle expects them

to be, and that they are uncompressed. (Oracle will prompt interactively if the
ones it’s looking for are not found.)

4. Tell Oracle to recover the datafile(s) automatically (ALTER DATABASE
RECOVER AUTOMATIC TABLESPACE $TABLESPACE). You can monitor the
progress by tailing the alert.log files.

5. Bring tablespace online (ALTER TABLESPACE $TABLESPACE ONLINE).

And you’re open for business again.

For a complete listing of scenarios and proper restore procedures, see the Oracle
Backup and Restore manual referenced at the end of this document. It is important to
make a regular habit of testing your backups. In fact, I would go so far as to say it

31August 2003 ;login:

�

SY

SA
D

M
IN

ORACLE HOT BACKUP �

http://rsync.samba.org/

Vol. 28, No. 4 ;login:

would be insane to move forward with a backup solution without testing various
restore scenarios. I would suggest testing at least loss of a single datafile and loss of the
entire ORACLE_HOME and all datafiles. For testing, it is quite easy to set up a second-
ary Oracle instance which can be used to test backups. If this system is in a different
geographic location, it can be used for disaster recovery also.

In any event, it is a good idea to completely script the process of restoring all datafiles
and recovering the instance. This can make disaster recovery much less painful. If you
are the person people come looking for when things are broken, this is definitely a
good thing. It is, of course, important to keep this script up-to-date as circumstances
change around it. Also, while this standby system is not being used for disaster recov-
ery, it can be used as a perfect playground for development.

Script Design
There is no shortage of good Oracle hot backup scripts freely available; simply do a
Google search for “Oracle hot backup script”. However, none of the ones I found
exactly scratched my itch. The solution I designed uses disk-to-disk backups for our
various databases (MySQL, LDAP, Oracle, etc.). Disks are quite cheap these days; large
IDE RAID systems and either direct attached or NAS (Network Attached Storage)
devices are surprisingly affordable. These high-capacity/low-cost disk arrays can be
used to widen your backup window by first staging data to disk before tape. Also note,
bandwidth permitting, these disks might be off-site, thus automating off-site backups
and eliminating the expense of an off-site backup service.

For certain high importance databases, we may keep several backup images on disk to
save time if we need a restore. Using this methodology, our database dump process
does not have to be synchronized with our enterprise network backup system which
finally puts the data on tape. Another method we use (snapshots) exploits features
available in some modern file systems that enable you to create a temporary read-only
view of a file system from a particular point-in-time. Since these snapshots are nor-
mally instantaneous, it is common to place all tablespaces in hot backup mode during
snapshot, then immediately disable hot backup after snapshot is completed. Since I use
both of these methods of backing up databases, the script I constructed is able to han-
dle both procedures. Some considerations when selecting any hot backup solution are:

1. Graceful error handling. If an error occurs during a hot backup, it is vitally
important that the tablespace be taken out of hot backup mode before the script
bombs out. During hot backup mode, Oracle takes a performance hit because it
is recording redo data in full blocks, and it is important that the database not be
allowed to remain in this mode for long periods.

2. Sanity checking. It is very important that the script check that the proper envi-
ronment variables are set and are sane values. Also, some checking should be
done to confirm the database is in a good state to be backed up. For instance, no
datafiles should be listed as “Needs recovery.” The solution should also have suffi-
cient locking that overlapping instances of the backup process will not clobber
each other.

3. Event reporting. Errors (and success) should be reported. Syslog works nicely for
this; in my organization we use a home-grown solution for real-time monitoring
logs from all our systems for various events and use this as a basis for sending
alerts.

32

4. Ease of restoring. Backups created should be in a universal and open format that
preserves owner, mode, and original location of the datafiles (like tar with full
path).

5. Should be able to clean up its own messes. If a backup is interrupted in the mid-
dle of its execution, it can leave tablespaces in hot backup mode. This condition
should be detected and there should be a method for correcting the situation
without needing to enter SQL*Plus manually.

The script I cooked up is written in Perl, has been tested on Oracle 8i and 9i on Linux
and Solaris, and is released under GPL, so it is free for use in your organization. Get it
at http://www.njit.edu/~matt/oracle-hot-backup/.

REFERENCES
Oracle, Oracle9i User-Managed Backup and Recovery Guide, June 2001, Part No.
A90134-01.

Michael Wessler, Oracle DBA on Unix and Linux (Sams, 2002).

33August 2003 ;login:

�

SY

SA
D

M
IN

ORACLE HOT BACKUP �

USENIX and SAGE Need You
People often ask how they can contribute. Here is a list of tasks for which we hope to find
volunteers.

The SAGEwire and SAGEweb staff are seeking:

� Interview candidates
� Short article contributors (see http://sagewire.sage.org)
� White paper contributors for topics like these:

Back-ups Emerging technology Privacy
Career development User education/training Product round-ups
Certification Ethics SAGEwire
Consulting Great new products Scaling
Culture Group tools Scripting
Databases Networking Security implementation
Displays New challenges Standards
Email Performance analysis Storage
Education Politics and the sysadmin Tools, system

� Local user groups: If you have a local user group affiliated (or wishing to affiliate) with SAGE, please email the particulars to
kolstad@sage.org so they can be posted on the Web site.

;login: always needs conference summarizers for USENIX conferences. Contact Alain Hénon, ah@usenix.org, if you’d like to help.

http://www.njit.edu/~matt/oracle-hot-backup/
http://sagewire.sage.org

34 Vol. 28, No. 4 ;login:

In previous columns, we’ve looked at some of the

basics of the C# language. It’s now time to start exam-

ining in more detail how C# classes work. A class is a

user-defined type, and serves as the fundamental unit

of design and composition for C# programs.

A Class to Represent X,Y Points
Let’s start our discussion by looking at a class whose instances
represent X,Y points. Previously we defined a class as being a
combination of some data (think of a C struct) plus operations
that manipulate instances or objects containing that data. For a
Point class, the data would likely be a couple of integers repre-
senting the point (like 25,100), along with operations to initial-
ize a point object, access the X,Y values in an object, compare
an object to other point objects, convert an object to a string for
printing and formatting, and so on.

Here’s some C# code that illustrates these ideas:

using System;

public class Point {

private int x, y; // X,Y data fields

// constructor
public Point(int x, int y) {

this.x = x;
this.y = y;

}

// copy constructor
public Point(Point p) {

this.x = p.x;
this.y = p.y;

}

// accessor methods
public int getX() { return x; }
public int getY() { return y; }

// conversion to string

public override string ToString() {
return String.Format("({0},{1})", x, y);

}

// equality check against another Point object
public override bool Equals(object obj) {

if (!(obj is Point))
return false;

Point p = (Point)obj;
return x == p.x && y == p.y;

}

// hash code for the object
public override int GetHashCode() { return (x << 16) | y; }

}

public class Test {
public static void Main() {

// create some Point objects on the heap:

Point p1 = new Point(50, 75);
Point p2 = new Point(50, 75);
Point p3 = new Point(100, 150);
Point p4 = new Point(p3);// copy constructor for Point
// access the X,Y values of an object

Console.WriteLine("p1 X,Y = {0},{1}", p1.getX(), p1.getY());

// convert object to string and print it

Console.WriteLine("p4 = {0}", p4);

// exercise the overridden Equals() method

if (p1.Equals(p2))
Console.WriteLine("p1/p2 equal");

if (p2.Equals(p3))
Console.WriteLine("p2/p3 equal");

// get the hash code for an object

Console.WriteLine("p1 hash code = {0}", p1.GetHashCode());
}

}

The Point class defines two data fields to hold the X,Y values.
These are private fields, which means that only methods of the
Point class can access the fields. In particular, it’s not legal to
say:

Point p = new Point(10, 20);
p.x = -125;

If this kind of operation is allowed, then the internal represen-
tation details of a Point object are exposed to the user, generally
an undesirable thing (especially if the representation changes at
a later time). Also, allowing the field to be set directly may vio-
late the integrity and domain of the object. For example, if a

working with C# classes
by Glen
McCluskey

Glen McCluskey is a

consultant with 20

years of experience

and has focused on

programming lan-

guages since 1988.

He specializes in Java

and C++ perfor-

mance, testing, and

technical documen-

tation areas.

glenm@glenmccl.com

35August 2003 ;login:

�

PR

O
G

RA
M

M
IN

Gcheck is made that X,Y are positive integers when the object is
created, then setting the X value to -125 might cause havoc.

The first two methods of the Point class have the same name as
the class itself (Point), and thus are constructors, special meth-
ods used to initialize Point objects. The memory for objects is
allocated from the heap, and the constructor is called to initial-
ize the raw memory.

The second constructor is a copy constructor, used to make a
copy of an already existing Point object. In lieu of using such a
constructor, we could instead say:

Point p1 = new Point(10, 20);
Point p2 = new Point(p1.getX(), p1.getY());

but a copy constructor is a more general mechanism. Note that
a byte-by-byte copy of an object is rarely the right choice, given
that an object may contain internal references to other objects.

getX and getY are accessor methods, used to access the private
X,Y fields in Point objects.

ToString, Equals, and GetHashCode are methods found in the
root class (System.Object), and overridden in Point to provide
custom behavior.

For example, the method System.Object.ToString has certain
generic behavior, illustrated in this example that defines a
dummy Point class:

using System;

public class Point {}

public class Test {
public static void Main() {

Point p1 = new Point();
Console.WriteLine(p1);
Point p2 = new Point();
Console.WriteLine(p2);

}
}

When Console.WriteLine is called, its argument (p1 or p2)
must be converted to a string for printing; the method
System.Object.ToString is used for this because we didn’t
override ToString in the dummy class. The default ToString
behavior uses the name of the class itself as the value returned
by ToString, so the result of running this program is:

Point
Point

For real classes, ToString should have per-object customized
behavior, by including, for example, the distinct X,Y values
found in a Point object.

The same consideration applies to the Equals method, used to
compare two Point objects for equality. Such equality checking
needs to be more sophisticated than merely doing a binary
comparison of the corresponding bytes in the two objects. For
example, objects may contain references to sub-objects, and
comparing the memory pointers of the sub-objects will not
work.

GetHashCode is used to compute a hash code for an object.
The hash code is used by collection classes that represent groups
of objects, such as a hashtable.

When the Point class demo is executed, the output is:

p1 X,Y = 50,75
p4 = (100,150)
p1/p2 equal
p1 hash code = 3276875

Other Ways to Implement the Point Class
There are other ways we could define a Point class. For example,
we could use a struct instead of a class. A struct is a simpler
form of a class, with some restrictions and differences. Struct
objects are allocated on the stack instead of the heap, and, as
discussed in our previous column, have value rather than refer-
ence semantics.

Another possibility is to use a class in a very simple and low-
level way:

public class Point {
public int x, y;
public Point(int x, int y) {

this.x = x;
this.y = y;

}
}

This approach is not much different from using a C struct.
Doing things this way violates the whole object-oriented para-
digm but, at the same time, is a simple approach sometimes
useful in casual programming, e.g., when you’re building a pro-
totype.

A third alternative is to use C# properties. A property is kind of
a cross between a data field and a method. Properties are refer-
enced like data fields, but have get/set methods to control the
access.

Creating and Reclaiming Objects
In the discussion above, we talked about how memory is allo-
cated for class objects, with the class’s constructor called to ini-
tialize the memory. What happens when an object is no longer
in use? How do you get rid of it and reclaim the space?

WORKING WITH C# CLASSES �

Vol. 28, No. 4 ;login:36

C# uses automatic garbage collection to reclaim objects, so
most of the time you don’t need to worry about the details of
memory management. What does this mean in practice? Let’s
look at an example:

using System;
using System.Threading;

public class CtorDtor {

// constructor
public CtorDtor() {

Console.WriteLine("constructor called");
}

// destructor (actually the finalize method
// commented below)
~CtorDtor() {

Console.WriteLine("destructor called");
}

//protected override void Finalize() {}
}

public class Test {

// create a CtorDtor object, which
// becomes garbage when f() exits

static void f() {
CtorDtor cd = new CtorDtor();

}

public static void Main() {
f();

//GC.Collect();
//Thread.Sleep(500);

Console.Write("Press Enter to quit program: ");
Console.ReadLine();

}
}

In this code, the Main method calls f, and f calls new to create
an object of the CtorDtor class on the heap. Then f returns, and
at this point, there is no way to reference the CtorDtor object
created in f, and thus this object has become garbage.

Such garbage is subject to reclamation at any time, but garbage
collectors typically run in a separate program thread and try to
minimize performance overhead. For example, a garbage collec-
tor may run only when free memory is getting low. It’s unwise
to assume particular garbage collection behavior.

When the garbage collector runs, one of the things it does is call
finalize methods on objects. A finalize method is used to per-
form any cleanup that is required (other than reclaiming space)
– for example, freeing up system resources not under the con-
trol of the C# runtime system.

C# supports C++ destructor syntax, like this:

~CtorDtor() {}

but this syntax is actually an alias for:

protected override void Finalize() {}

Finalize methods are not really the same as destructors. In the
C++ world, a destructor is called when an object goes out of
scope (such as a stack-based object at function exit) or when
the delete operator is called for a heap-allocated object.

By contrast, a finalize method is called by the garbage collector,
and it’s risky to rely on the garbage collector behaving in a spe-
cific way (or running at all).

When the CtorDtor demo program runs, the output indicates
that the destructor (finalize method) is not called until the pro-
gram exits. One way of forcing the finalizer to run sooner is to
explicitly call garbage collection, using the commented lines of
code. This approach works, but is not recommended. Before
you start relying on explicit garbage collection calls, it pays to sit
down and really study how garbage collection works – it’s a
tricky area to make assumptions in.

Explicitly Disposing of Objects
Garbage collection isn’t always effective in calling finalize meth-
ods in a timely way. What do you do if you have a class whose
objects represent critical system resources, resources that are in
short supply? One solution is to implement the IDisposable
interface in a class:

using System;

public class CtorDispose : IDisposable {

// a resource, with a value of -1 indicating
// that the resource is currently unallocated

private int resource = -1;

public CtorDispose() {
// allocate resource
resource = 100;

}

~CtorDispose() { DoDispose(); }
void DoDispose() { // free up resource

resource = -1;
}

public void Dispose() {
DoDispose();
GC.SuppressFinalize(this);

}
}

37August 2003 ;login:

�
PR

O
G

RA
M

M
IN

G

Monitor your system
with expect

The previous few Tclsh Spot articles described generating IP
packets to attack a firewall system being tested. Once the packets
can be generated, the next step is to confirm that they are cap-
tured and logged correctly.

For someone familiar with the log files, this is a simple exercise.
You can tail -f the appropriate file and watch for the log mes-
sages, or grep for the expected pattern.

For someone familiar with the log files, this is also a tedious
exercise. Not too bad when you are looking for something tricky,
but too much monkey-work if you are generating hundreds of
attacks and need to confirm that all are caught correctly.

Automating tedious tasks that would otherwise be done by a
skilled (or at least easily bored) human is what the expect exten-
sion was written for.

The expect extension to Tcl was developed by Don Libes of the
NIST in 1990, very shortly after John Ousterhout’s first Tcl
paper was presented at the USENIX Annual Technical meeting.

Expect will interact with a text-oriented task, looking for pat-
terns, and sending responses as appropriate.

For those with fond memories of UUCP chat scripts, you can
think of expect as a chat script with much more power.

The expect extension can be dynamically loaded into a running
Tcl shell with the package require command like this:

% package require expect
5.38.0

by Clif Flynt

Clif Flynt is president

of Noumena Corp.,

which offers training

and consulting ser-

vices for Tcl/Tk and

Internet applications.

He is the author of

Tcl/Tk for Real Pro-
grammers and the

TclTutor instruction

package. He has

been programming

computers since

1970 and a Tcl advo-

cate since 1994.

clif@cflynt.com

the tclsh spot

THE TCLSH SPOT �

public class Test {
public static void Main() {

CtorDispose cd = new CtorDispose();
cd.Dispose();

}
}

An interface like IDisposable declares certain methods, in this case Dispose. A class that implements the interface must define the
methods. Implementing IDisposable and defining Dispose means that a class offers a way to directly force object cleanup, without
waiting for the finalize method to be called by the garbage collector (the finalize method cannot be called directly, and garbage col-
lection may not occur in a timely way).

In the code above, Dispose is called directly, and the method frees the system resource. The garbage collector is then informed that
the object (this) should not be finalized at garbage collection time.

In future columns, we’ll look at some further details of how classes work, and how classes and interfaces can be combined to build
applications.

38 Vol. 28, No. 4 ;login:

It’s more common to use the standalone expect shell – invoked
as expect. When invoked as expect a special prompt is pro-
vided showing the depth of the evaluation stack, and the num-
ber of commands that have been processed.

Defining a simple procedure within the expect shell looks like
this:

$> expect
expect1.1> proc a {a b} {
+> puts "$a"
+> }

expect1.2>

The expect package is extensive with many commands and
options to support the various interactions one might need to
perform. There are only three essential commands, however.

spawn Starts a new task for the expect script to inter-
act with.

expect Defines a set of patterns and actions to per-
form when a pattern is matched.

exp_send Sends a stream of data to the child task.

The spawn command starts a child process to be controlled by
the expect script. It starts a new process and connects the
process’s stdin and stdout to the expect interpreter.

Syntax: spawn options commandName commandArgs

options

The spawn command supports several options,
including
-noecho

The spawn will echo the command line and
arguments unless this option is set.

-open fileID
The -open option lets you process the input
from a file handle (returned by open) instead
of executing a new program. This allows you
to use an expect script to evaluate program
output from a file as well as directly control-
ling a program.

commandName
The name of the executable program to start.

commandArgs
The command line arguments for the executable pro-
gram being spawned.

Opening an ssh session would look like this:

expect1.1> spawn ssh -l clif 127.0.0.1
spawn ssh -l clif 127.0.0.1
1105
expect1.2>

Once a new child task has been spawned, your script needs to
interact with it. The expect command listens to the child task,
while the exp_send command talks to it.

The expect command will scan the input for one of several pat-
terns. When a pattern is recognized the associated action will be
evaluated.

Syntax: expect ?-option? pattern1 action1 ?-option? pattern2
action2 ...

-option Options that will control the matching are:
-exact Match the pattern exactly.
-re Use regular expression rules to match this

pattern.
-glob Use glob rules to match this pattern.

pattern A pattern to match in the output from the spawned
program.

action A script to be evaluated when a pattern is matched.

This code snippet will look for the password prompt and report
that the prompt was seen:

expect1.3> expect {
+> word: {puts "The password: prompt was seen"}
+> }

The pattern/action format of the expect command resembles
the switch command. The switch command uses the meta-pat-
tern default to process unexpected conditions. The expect
command also supports meta-patterns to process unexpected
input.

The eof meta-pattern matches when the expect interpreter
loses contact with a child task. Usually this happens when a
child task dies.

The timeout pattern will match if no other pattern has been
matched within a given period of time. This script checks for
the password prompt, and complains if it doesn’t appear:

expect {
word: {puts "The password: prompt was seen"}
timeout {puts "There was no password prompt!"}

}

The default timeout period is 10 seconds. This can be changed
by setting a variable named timeout to the number of seconds
to wait before matching the timeout pattern.

Note that the timeout value is a maximum value, not a mini-
mum value. The timeout is implemented by watching the sys-
tem’s one-second timer. Each time this fires, the timeout value
is decremented by one. When the value hits zero, the timeout
pattern is matched, and the associated script is evaluated.

39August 2003 ;login:

�
PR

O
G

RA
M

M
IN

GThus, setting the timeout value to 1 will never wait longer than
a single second, but could timeout in .0001 seconds.

This code snippet will watch for the password prompt and
complain if either the child task has lost contact with the
expect script or there is a timeout.

expect {
word: {puts "The password: prompt was seen"}
eof {puts "The child task has died!"}
timeout {puts "There was no password prompt!"}

}

The flip-side to listening to a child task is to send strings of data
to the child. The exp_send sends string to the child process.

Syntax: exp_send string
string The string to be transmitted to the slave process. Note

that a newline is not appended to this text.

A simple script to look for the password prompt and send a
password looks like this:

expect {
word: {exp_send "PASSWORD\n"}

}

Notice the \n at the end of PASSWORD. In order to interact
with applications that key off of single keystrokes, the expect
command sends exactly what you tell it to, and does not add
any new characters (like newlines) to the string.

A script to log into a remote system, look for the shell prompt,
and change to the /var/log directory would look like this:

spawn ssh 127.0.0.1

expect {
word: {exp_send "$password\n"}
timeout {error "Timeout waiting for password"}
eof {error "Eof waiting for password"}

}

expect {
"%>" {exp_send "cd /var/log\n"}
timeout {error "Timeout waiting for prompt"}
eof {error "Eof waiting for prompt"}

}

As with the switch statement’s default option, you don’t need to
use the timeout and eof patterns. But, as with the switch (or C
case statement), if you ignore catching the exception condi-
tions, you will live to regret it.

This can lead to a lot of repeated code if your application has a
lot of simple challenge/response interactions.

One solution to this problem is to create a procedure to main-
tain the process flow and provide the customization with the
procedure arguments.

The syntax for the proc command is:

Syntax: proc name args body

The args and body parameters are generally grouped with
braces when you define a procedure within your application.

This procedure generalizes the challenge/response nature of
many conversations.

###
proc challResp {pattern response info}
Hold a single interchange challenge/response
interaction.
Arguments
pattern: The pattern to wait for as a challenge
response: The response to this pattern
info: Identifying information about this interac-
tion for use with exception reporting
#
Results
#
#
proc challResp {pattern response info} {

expect {
$pattern {exp_send "$response\n"}
timeout {error "Timeout at $info"}
eof {error "Eof at $info"}

}
}

Using the challResp procedure, automating this conversation:

%> ssh -l root 127.0.0.1
root@127.0.0.1's password:
Last login: Thu Jun 5 05:45:02 2003 from localhost
Have a lot of fun...
%> cd /var/log
%> tail -f messages

can be done with these four lines of code:

spawn ssh -l root 127.0.0.1

challResp "word:" $passWord "password prompt"
challResp "%>" "cd /var/log" "first shell prompt"
challResp "%>" "tail -f messages" "second shell prompt"

We can create a generic procedure for watching log files for a
given pattern with this procedure.

THE TCLSH SPOT �

Vol. 28, No. 4 ;login:40

###
proc watchFile {host passwd fileName pattern}—
Watch a file on a remote system for a given pattern
Arguments
host: IP Address of the host on which the file
resides
passwd: Password for accessing the host
fileName: Full path to the file to be watched
pattern: A pattern to watch for in the file
Results
Throws an error if the expected pattern is not seen
#
proc watchFile {host passwd fileName pattern} {

global spawn_id
set stty_init -echo
spawn ssh -l root 127.0.0.1

challResp "word:" $passwd "password prompt"
challResp "%>" "cd /var/log" "first shell prompt"
challResp "%>" "tail -f messages" "second prompt"

expect {
"$pattern" {puts "ROOT LOGIN SUCCESSFUL"}
timeout {error "timeout" "Timeout \"$pattern\""}
eof {error "eof" "Eof waiting for \"$pattern\""}

}
}

Note the global spawn_id at the beginning of this procedure.
When spawn creates a new task, it creates a unique identifier
for that task and saves that value in the variable spawn_id in
the current scope. If the new task is spawned in a procedure,
spawn_id is created in the procedure scope, and it vanishes
when the procedure returns. Keeping the spawn_id in the
global scope is the simplest way to deal with this for applica-
tions that only have a single child task.

This discussion of expect barely scratches the surface of what
the package can do, but it’s enough to automate accessing a
remote system and scanning a log file for a pattern.

The next Tclsh Spot article will start looking at ways to coordi-
nate the packet generators described previously with this log file
scanner to generate attacks on a test system and confirm that
the test system responds to the attacks correctly.

41August 2003 ;login:

�
PR

O
G

RA
M

M
IN

G

A friend of mine who occasionally writes some Perl was

working on a CGI program to automate data entry into

a database. He is not a programmer by trade, but he

uses Perl to manage information critical to his job. Pro-

gramming is a hobby for him, more intellectually stimu-

lating than trainspotting and less important to him than

his true calling, studying the English language.

My friend asked me to look at some of his CGI programs. His
programs worked, but he felt they were “ugly.” A Java program-
mer colleague of his recommended that he clean them up by
creating a series of Java-like objects and classes. A better way to
clean up a Perl program is through a mixture of objects, classes,
and standard Perl data structures.

Every so often, we all write programs that just “feel wrong.” A
good indication is when it takes too much effort to do some-
thing that should be easy to do. Another indication is when
some Perl feature is used in what feels like an “unclean” fashion.
Such misuses can increase the cost of maintaining and extend-
ing a Perl program over time, and can lead to programs that
work yet are difficult to fathom.

Creating Dynamic Web Pages
Perl is a great language for casual programmers who write code
occasionally in service of a greater goal. These people often use
Perl to write small a CGI program that automates some task.
There are very many ways to write Web-based applications,
including using a templating system, building XML-based sys-
tems, and using the venerable CGI.pm module. Using CGI.pm to
generate dynamic HTML pages may not be the best system or
the most elegant mechanism, but it works well and is quite easy
to use.

Using CGI.pm can have its downsides, though. Its HTML-gen-
eration interface is an awkward way to replace HTML syntax
with Perl syntax to create static HTML. This technique obscures
the content of the document being created by hiding it within
nested Perl subroutine calls:

#!/usr/bin/perl -Tw
use strict;
use CGI qw(:standard);
print header('text/html');
print start_html("Test Page");
print h1("Test Page");
print table(Tr(td("a"), td("b")), Tr(td("c"), td("d")));
print end_html();

A better use of CGI.pm’s HTML-generation interface is to focus
on wrapping repetitive Perl data inside HTML tags through
simple loops. In this fashion, data can be abstracted into one of
many places: a configuration file, a module, or a database. The
structure of the HTML to be created is less likely to change fre-
quently, so separating the content (data) from the presentation
(HTML-generating code) will tend to simplify the program in
the long run. After all, it is easier to update a database or change
a configuration file than it is to modify and test a program for
every little data fix.

This is the approach my friend used with his code. The goal in
the following code samples is to create a simple HTML form
with a series of fields. The fields are specified in the @fields
array, and the code to generate the form simply iterates over all
of the fields to be displayed. Each element in the @fields array is
a hash reference that defines all of the aspects of an HTML
form field to be displayed.

#!/usr/bin/perl -Tw
use strict;
use CGI qw(:standard);

my @fields = (
{

-name => "name",
-label=> "Name",
-size=>50,
-maxlength=>50,
-procedure=>\&CGI::textfield,

},
{

-name => "subscribe",
-label=> "Subscribe",
-values=>[qw(Yes No)],
-procedure=>\&CGI::radio_group,

},
{

-name => "availability",
-label=>"Availability",
-values=> [qw(Mon Tue Wed Thu Fri)],
-procedure=>\&CGI::checkbox_group,

},
{

-name => "state",
-label=>"State",
-values=> [undef, qw(Maryland DC Virginia)],

practical perl
Cleaning Up with Modules

by Adam Turoff

Adam is a consultant

who specializes in

using Perl to manage

big data. He is a

long-time Perl Mon-

ger, a technical editor

for The Perl Review,

and a frequent pre-

senter at Perl confer-

ences.

ziggy@panix.com

PRACTICAL PERL �

Vol. 28, No. 4 ;login:42

-procedure=>\&popup_menu,
},
...

);
...

For added simplicity, each field definition within @fields con-
tains a reference to the CGI.pm function that will display that
field. This has the effect of making the @fields array a dispatch
table as well as a rudimentary data dictionary. The hash keys in
the element definition are taken from the keys used by the
CGI.pm HTML-generation subs that create each kind of input
field. By combining these two features, creating the HTML form
becomes very easy:

...
my @rows;
foreach my $row (@fields) {

my $sub = $row->{'-procedure'};
push (@rows, Tr(td($row->{-label}), td($sub->(%$row))));

}
print start_form(), table(@rows);
print submit(), reset(), end_form();
...

Designing with Modules
After working with this program for a while, my friend felt that
the code was starting to get ugly. His colleague, a Java program-
mer, recommended creating a class called a FieldList object to
represent a list of HTML form fields, represented by Field
objects. Processing a FieldList would involve creating a
FieldListIterator object to examine the elements one by one.

This is an area where Perl programmers and Java programmers
have differing opinions. Perl programmers generally feel that
creating artificial container objects like FieldList and
FieldListIterator are a waste of time. Perl’s array variables and
the foreach loop exist to hold lists of values and examine them
iteratively, thus obviating artificial container and iterator
classes.

There is some wisdom in creating a Field class, or rather a hier-
archy of field classes to handle different kinds of HTML form
fields. The field definitions listed above in @fields are somewhat
repetitive. Each field will contain very similar values for the
-label and -name keys. The -label key specifies the text to appear
to the left of a form field, and the -name key specifies the name
of the form variable to appear in the HTML output. Note that
there’s a very simple relationship between the -name and -label
values: In our sample program, the -name value can be derived
from the -label value by lowercasing it and removing space
characters.

There are other common behaviors shared by all field objects.
In this program, all fields are displayed within a two-element
HTML table row, with the text label appearing in the left cell

and the HTML form input field appearing in the right cell. And
then there are differences between individual field types. Setting
the maxlength makes sense only with text fields.

A better way to structure this code would be to create a simple
Field package (or class) that handles the common behaviors and
then create specialized packages that describe the actual differ-
ences between text fields, radio groups, checkboxes, and other
HTML form input fields. Here’s the Field class that describes
the common behaviors of HTML form input fields for this
application. Note that the init will create a default CGI variable
name from a field’s label, a technique that reduces redundancy
found in the older version of the program.

#!/usr/bin/perl -w
use strict;
package Field;
use CGI qw(:standard);
sub init {

my $self = shift;
my %params = @_;

Assign the key/value pairs for this object
while(my ($key, $value) = each %params) {

$self->{$key} = $value;
}
Create the field name from the text label
my $name = "\L$self->{-label}";
$name =~ s/ /_/g;
$self->{-name} = $name;
return $self;

}
sub display_row {

my $self = shift;
my $sub = $self->{-procedure};

return Tr(td($self->{-label}), td($sub->(%$self)));
}

Creating a package to describe text fields is not difficult. The
first step is to declare that this text field package inherits from
the Field package (via a use base; declaration). This package
needs a constructor (a method named new) that creates new
text field objects with a minimal amount of information speci-
fied by the user. The only information that is absolutely neces-
sary is the label for this input field. The CGI field name for this
input field can be derived using the Field::init method. Attrib-
utes like the field size and the maximum input length can be
defaulted to sensible values. Finally, all text fields will use the
CGI::textfield subroutine to display themselves.

Here is the complete package definition this application needs
to create CGI text input fields. The new method receives the
label for a text field and uses sensible default values for the rest
of the field’s attributes. The size and maxlength methods exist
to override the default values for the -size and -maxlength
attributes.

43

�

PR

O
G

RA
M

M
IN

G

August 2003 ;login:

package Field::Text;
use base 'Field';
use CGI;
sub new {

my $class = shift;
my $label = shift;
Create an object
my $self = bless {}, $class;
Finish initialization
$self->init(-label => $label,

-size => 50,
-maxlength => 50,
-procedure => \&CGI::textfield);

}
sub size {

my $self = shift;
$self->{-size} = shift;

}
sub maxlength {

my $self = shift;
$self->{-maxlength} = shift;

}

The other input field types (checkbox groups, pop-up menus,
radio groups) are all similar in that they have multiple values. A
good way to describe these similarities is to define a
Field::Group package and derive specializations of that package
for the specific input field types.

package Field::Group;
use base 'Field';

sub init_group {
my $self = shift;
my $procedure = shift;
my $label = shift;
my @values = @_;
$self->init(-label => $label,

-procedure => $procedure,
-values => \@values);

}

The last few packages handle creation of radio groups, check-
box groups and pop-up menus. They are all very similar; only
the procedure to display them varies:

package Field::RadioGroup;
use base 'Field::Group';
use CGI;

sub new {
my $class = shift;

my $self = bless {}, $class;
$self->init_group(\&CGI::radio_group, @_);

}
package Field::CheckboxGroup;
use base 'Field::Group';
use CGI;

sub new {
my $class = shift;

my $self = bless {}, $class;
$self->init_group(\&CGI::checkbox_group, @_);

}
package Field::PopupMenu;
use base 'Field::Group';
use CGI;

sub new {
my $class = shift;

my $self = bless {}, $class;
$self->init_group(\&CGI::popup_menu, @_);

}

Cleaning Up with Modules
Now that we have a set of packages for creating CGI input
fields, it’s time to revisit the application. Recall that the first step
was to create a list of field definitions, then create the HTML
form. With the Field modules created for this application, it is
easy to simply and succinctly declare what fields are used in this
CGI application. There is no repetition in defining -label and
-name attributes, and the common attributes of each type of
field are defined once and only once.

#!/usr/bin/perl -Tw

use strict;
use Field; ## pull in all the Field packages
use CGI qw(:standard);

my @fields = (
new Field::Text('Name'),
new Field::RadioGroup('Subscribe', 'Yes', 'No'),
new Field::CheckboxGroup('Availability', 'Mon',

'Tue', 'Wed', 'Thu', 'Fri'),
new Field::PopupMenu('State', undef,

'Maryland', 'DC', 'Virginia'),
);
...
my @rows;
foreach my $field (@fields) {

push (@rows, $field->display_row());
}
print start_form(), table(@rows);
print submit(), reset(), end_form();
...

Conclusion
Over time, all software has a tendency to be extended beyond its
original design and “get ugly.” One technique for improving
code that “feels wrong” is to restructure it and extract common
behaviors into modules. In this example, the code for construct-
ing CGI form fields was abstracted into a Field package and its
subpackages. The main CGI program was simplified and now
focuses on what fields need to be created, not the arcane details
of how to create those fields.

PRACTICAL PERL �

44 Vol. 28, No. 4 ;login:

Let’s say you’ve added up your income and expenses, crafted your ideal

retirement, and know what kind of return you need on your retirement

assets to make it happen just the way you want. Now, the only issue left is

where to invest your money.

Library shelves are loaded with books identifying the best way to invest. Every day, tel-
evision and radio programs offer financial advice from trained professionals. Emails
offer hot stock tips. Even, friends and colleagues have ideas for you. Given the thou-
sands of investment options available, how is someone supposed to pick a good place
to put one’s money?

For most people, putting their hard-earned dollars into specific investments is one of
the scariest things they do. This can be so stressful that people often keep their retire-
ment funds in cash to put off making such choices. It is easy to dismiss this invest-
ment-decision avoidance as an irrational fear of what might go wrong. However, I
believe that most of us experience this concern when our own money is being put on
the line.

As I discussed in my last column (“Isn’t That a Little Risky?” April 2003), you are tak-
ing some kind of risk no matter what you do with your money. We aren’t trying to
avoid risk; we simply want to use risk to our advantage. The key is to make invest-
ments that offer the return we need at the smallest risk.

You Bet Your Sweet Assets
The kinds of investments you can make may be limited by the kind of retirement
accounts you own. Different types of accounts provide varying degrees of choice.
Some retirement plans are completely self-directed and allow you to move your money
when and where you want. Some programs have a limited set of mutual fund families
to choose from. Other accounts are limited to a single family of mutual funds. Many
people have more than one kind of account, which often provides more flexibility but
increases complexity.

Regardless of the choices you do have, you still need to decide on exactly which invest-
ments you are going to make. How might you go about doing this?

The place to start is with the amount of return you need to meet your retirement
goals. That number, alone, will begin to winnow down your options. Put another way,
each possible investment has an expected return and risk level associated with it. Since
we want to minimize our risk while earning a specified return, we can begin eliminat-
ing those investments that don’t fit these criteria.

Recall that the key to minimizing risk is diversification. Thus, the question we want to
answer is, What collection of available investments will minimize the risk for our
desired return? In financial parlance, we are trying to set our “asset allocation.” That is,
we want to determine what percentage (allocation) of our investment dollars (assets)
we want to put into each chosen investment to meet our goals.

The first step in asset allocation is deciding how many asset classes to use. The basic
allocation is among cash, stocks, and bonds. In fact, investment advisors often identify
what percentage of each they recommend for their clients. A typical allocation might
be 5% cash, 55% stocks, 40% bonds. Using historical data, we could calculate the
expected return and risk of this allocation.

where can I find a
good investment?

by Ray Swartz

Ray Swartz ran his

own computer train-

ing and consulting

company for 20

years, until stepping

away from gainful

employment in 2000.

Watching the stock

market and his retire-

ment portfolio move

up and down like a

yo-yo has given him

a new appreciation

of his tolerance for

risk.

raybo@idiom.com

In reality, most asset allocations add detail by further sub-classing stocks and bonds.
Thus, you might divvy stocks into domestic and international and then into large-cap,
mid-cap, and small-cap. Bonds, too, might be separated by location (domestic and
international), length (short-, intermediate-, and long-term), and “quality” (govern-
ment, corporate, or junk).

Even cash has distinctions. There are CDs, money market accounts, and saving certifi-
cates. In addition, short-term bonds, government or corporate, are usually identified
as cash investments.

If we used just these categories, we’d have 18. Let’s simplify it a bit by representing all
international stocks and bonds as separate, single categories; that gets us down to 13.

Stocks
Domestic large-cap
Domestic mid-cap
Domestic small-cap
International stocks

Bonds
Domestic government intermediate-term
Domestic government long-term
Domestic corporate intermediate-term
Domestic corporate long-term
International bonds
Junk bonds

Cash
CDs
Money market account
Short-term bonds

While this is a fairly detailed list, it is only a simplified example. It doesn’t include one
of the biggest investments most people make, real estate, and lumps stocks by size but
not by type, such as growth or value.

Let’s suppose we decided to use these 13 categories. By assembling historical data into
expected returns and risk for each category and calculating the covariances for each
pair of asset classes, we can determine which combination of these possible invest-
ments would yield the least risk for the return we are seeking. That result would be our
asset allocation.

As I said in my last column, this data manipulation is done by a financial advisor using
one of several available software packages. One drawback to these asset allocation
packages is that they often use different asset classes, making it hard to compare
results. But, for the sake of demonstration, let’s say our (or our advisor’s) software uses
just the categories listed above.

The process would work something like this: We would specify the return we want to
achieve and the program would spit out a set of recommended percentages for each
asset class. Then we would compare these percentages to our current investment mix
to determine what changes we need to make in order to conform to our recommended
asset allocation. In virtually all cases, this will involve selling some investments and
buying others.

45August 2003 ;login:

�
TH

E
W

O
RK

PL
A

C
E

A GOOD INVESTMENT �

Vol. 28, No. 4 ;login:

Choosing Specific Investments
Above, I described a sample allocation as 5% cash, 55% stocks, 40% bonds. Let’s sup-
pose that our more detailed allocation broke it down to:

Cash (5%)
3% Money market account
2% CDs

Stocks (55%)
22% Domestic large-cap stocks
17% Domestic small-cap stocks
16% International stocks

Bonds (40%)
15% Domestic corporate long-term bonds
8% Junk bonds
7% Domestic corporate intermediate-term bonds
5% International bonds
5% Domestic government long-term bonds

The next step is to find specific investments that fit the categories listed. We could buy
individual stocks and bonds. However, my preference is for mutual funds, even though
they have much higher costs. I prefer to let the fund managers do the work of buying,
selling, and researching actual stocks. Here is where your choices might be limited due
to the type of retirement account you hold.

If you are in a company 401(k) plan or have your accounts with specific investment
companies, your selection of funds may be limited. Since mutual funds are required to
disclose how they invest money, it should be a straightforward task to assemble a list of
mutual funds that you can invest in and the asset class they belong to.

If you make your own investment decisions, getting a list of available mutual funds
that meet your asset-class definitions can be done online at a site like http://www.
morningstar.com (though they break things down even finer than we did here). You
also can take advantage of other specialized financial planning software that allows you
to search though all the available mutual funds by many different criteria.

Once we have determined, using our allocation, that we want to invest 22% of our
retirement money in domestic large-cap stocks, we can narrow our options in that
class by ratings, costs, fees, returns, risks, or whatever other performance categories we
come up with. In my experience, once the asset class is identified, it is relatively easy to
find several acceptable funds that cover that class.

By way of example, I went to Morningstar’s Web site and, using their free mutual fund
selector, I did a search for domestic large-cap growth stock mutual funds. Here are the
criteria I used (all pull-down selections on the search page):

Minimum purchase $10,000 or less
3-year return greater than category average
5-year return greater than category average
10-year return greater than category average
5-star rating only (Morningstar rating)

46

http://www

47August 2003 ;login:

�
TH

E
W

O
RK

PL
A

C
EIn less than a minute, I had a list of 13 mutual funds meeting these qualifications.

While it will take much longer to pick the fund(s) we actually want to sink money
into, it isn’t an unbounded search.

Discipline, Not Emotion
If picking a list of possible investments off the Internet in under a minute makes your
knees wobble, then that is all the more reason to follow an asset allocation plan. There
is a great deal of mystique surrounding the entire investment field, and it is easy to feel
overwhelmed by the available choices and the consequences of making a serious mis-
take.

In truth, such feelings are based on emotion: the desire to make money, the fear of los-
ing money, the worry of mismanaging retirement funds, the dread of making mone-
tary decisions. Emotional investing causes people to buy at the top of the market, hold
losing investments, sell at the wrong time, and make other bad choices.

It is much easier to follow a plan, based on our specific needs, that tells us what to do
and when to do it. If investing is a hard thing for you to do, then removing the emo-
tion from the decision process should make your investing life much easier.

Trying to find a good mutual fund from the thousands in the investment haystack is
hard. An asset allocation plan simplifies this by dividing the entire market into clear
asset classes. By listing a dollar amount for each class, you are given an easy-to-follow
financial guide. From there, it quickly gets down to picking one out of a selected list of
mutual funds. I find this task much more manageable, especially if all I have to do is to
make my choice from a set of highly rated funds.

Selling Your Winners and Buying Your Losers
Not counting the CDs and money market account, our sample asset allocation calls for
investment in eight different asset classes. After we make our investment decisions, we
might actually put money into 10 or more different mutual funds. We don’t know
which of these will make us money and which ones won’t. If our assumptions are cor-
rect (namely, that historical trends will continue on into the future), it won’t matter
because, over time, this mix of investments will earn us the return we are seeking.

To better demonstrate how this works, let’s suppose we need 9% to meet our retire-
ment goals. Using the asset allocation described above, our return might break down
like this:

Cash (5%)
3% Money market account (4% return)
2% CDs (5% return)

Stocks (55%)
22% Domestic large-cap stocks (10% return)
17% Domestic small-cap stocks (12% return)
16% International stocks (14% return)

Bonds (40%)
15% Domestic corporate long-term bonds (7% return)
8% Junk bonds (12% return)
7% Domestic corporate intermediate-term bonds (5% return)
5% International bonds (11% return)
5% Domestic government long-term bonds (6% return)

A GOOD INVESTMENT �

Vol. 28, No. 4 ;login:

Any deviation from the returns assumed here will alter the percentages called for by
our asset allocation. Since our asset allocation’s percentages are designed to minimize
risk for our selected return, we will either begin to take more risk than necessary or get
a lower expected return. In order to keep on using our allocation, we need to rebalance
our investments back to the allocation’s percentages every so often. This means selling
some shares that did well and buying those that did poorly.

A numerical example may help here. Our asset allocation calls for 22% of our retire-
ment assets in domestic large-cap stocks. One year after putting our money into the
market, it turns out that large-cap stocks had a better than 10% return and this class
now accounts for 27% of our retirement assets. Further, let’s say that it was a bad year
for long-term bonds and we now have only 10% of our assets in domestic corporate
long-term bonds. To get back into balance, we would sell our large-cap stock funds
and buy our domestic corporate long-term bond funds, so that our portfolio again
holds the percentages listed in our allocation.

Here is where emotion can get in the way. Most people would advise you to hold those
funds that are doing well and get rid of those that are doing poorly. The goal of such a
strategy is to maximize return regardless of risk. This is not what we are trying to do.

In order to maintain our asset allocation and minimize risk, we need to do exactly the
opposite. We sell those asset classes that have done well and, therefore, now constitute
a larger percentage than they should. At the same time, we buy more of our losing
investments. This not only requires discipline but the fortitude to withstand the jibes
of others who, no doubt, have made a killing in the stock market following their own
advice!

How often should you rebalance? There is no generally accepted amount of time.
Some people suggest every three months; others say once a year is plenty. I prefer bal-
ancing once a year, on my birthday. I do this simply to limit the time and effort I spend
worrying about and fussing with my investments. A different time frame might work
better for you.

One of the hardest things about investing is handling the emotional issues of commit-
ting money to an uncertain future and the roller-coaster of watching your retirement
funds rise and fall in value. Asset allocation investing aims to replace emotion with a
disciplined strategy based on the assumption that, in the long run, things will move
along historical trends.

Sometimes it is hard to focus on the long-term when your balance is reduced by thou-
sands of dollars in a single day. In the short-term, things might be great (dot-com
boom) or horrible (dot-com crash). However, by following an investment discipline,
you should be able to avoid making bad investments in the heat of the moment.

Following an asset allocation is no guarantee that you will meet your retirement goals
or that everything will go according to plan. After all, risk is involved and things might
not work out. The good news is that you can always choose to alter your allocation to
earn more return or take less risk if the future begins to turn out differently than you
hoped. The best reason to follow an asset allocation is that you have a specific plan to
implement and a disciplined way to handle the risk of investing. In my experience, this
not only reduces the stress of investing but also provides specific directions and dollar
amounts to guide one’s decisions.

48

One of the hardest things

about investing is handling

the emotional issues of

committing money to an

uncertain future.

49August 2003 ;login:

the bookworm
BOOKS REVIEWED IN THIS COLUMN

by Peter H. Salus

Peter H. Salus is a

member of the ACM,

the Early English Text

Society, and the Trol-

lope Society, and is a

life member of the

American Oriental

Society. He is Editorial

Director at Matrix.net.

He owns neither a dog

nor a cat.

peter@netpedant.com

a Public World, 2nd Ed., Prentice-Hall), I
really don’t think they’re worth a great
deal.

For example, Yeo’s Personal Firewalls
cites the 1995 [!] edition of Chapman
and Zwicky, but nowhere even mentions
Cheswick and Bellovin or Garfinkel and
Spafford.

Day’s book is “written in a manner that
anyone with the most basic IT knowl-
edge will be able to read it.” Possibly so.
It was so simplistic that I gave up on it.
Garfinkel and Spafford is the sole tech-
nical book in the “Recommended Read-
ing.”

Linda McCarthy’s book is supposed to
give the “big picture” of IT security. It’s
so big, I missed the trees. The best parts
of the book are Spafford’s “Foreword”
and the 40-page Appendix.

Java
On the other hand, there is a trio of
really good Java books from O’Reilly,
Java Data Objects, Head-First Java, and
Java Database Best Practices. I’ve been
coming across instances where Oracle-
fits-all just isn’t an appropriate solution.
JDO lets you manage data without con-
cerning yourself with db software or db
query languages. Hey, you don’t need
SQL and you don’t need to copy stuff
using JDBC calls. It looks (to me) like a
fine API; Jordan and Russell have writ-
ten a fine book.

Sierra and Bates have written an exciting
book that won’t be for everyone. It’s a
quick read, a “contemporary” sort of
learning experience, that incorporates
humor and puzzles into instruction.
This may be the best book on learning
Java I’ve seen.

In Java Database Best Practices, Reese
runs through the myriad APIs and tech-
nologies – EJB, JDO, JDBC, SQL,
RDBMS, OODBMS, and more. He
explains the various approaches and

This will be an “all over the map” col-
umn. I’ve been reading and thinking
about a variety of things.

For example, back in 1985 Peter Capek
organized a session on “UNIX on Big
Iron.” At that time, UNIX had moved
from being DEC-only to the Interdata
and the early SUN machines. But I cer-
tainly never thought about UNIX at
IBM – even though I worked at IBM
Research and knew Peter.

More recently, IBM has moved into
Linux, and so here’s Eilert et al. giving us
a fine volume concerning Linux on the
zSeries and the S/390.

Most interestingly, Linux runs on the
zSeries as z/VM, taking us back to the
late ’70s as well. Let’s try to recall that
the various software tools ran on Joe
Sventek’s VM. And, of course, those of
us running on IBM iron in the ’70s and
’80s ran on virtual machines.

Nostalgia aside, Linux on the Mainframe
is an interesting and valuable book pro-
duced by a group at Boblingen and in
Poughkeepsie. There is a good bibliogra-
phy of IBM “red books” and Web-avail-
able papers. The references to actual
books are the sole notable weak spot.

Security
In a sudden burst, I received several
more books on security. Outside of the
second edition of Kaufman et al. (Net-
work Security: Private Communication in

LINUX ON THE MAINFRAME

JOHN EILERT, ET AL.

Upper Saddle River, NJ: Prentice Hall, 2003.

Pp. 434. ISBN 0-13-101415-3.

PERSONAL FIREWALLS

LISA YEO

Upper Saddle River, NJ: Prentice Hall, 2003.

Pp. 216. ISBN 0-13-046222-5.

INSIDE THE SECURITY MIND

KEVIN DAY

Upper Saddle River, NJ: Prentice Hall, 2003.

Pp. 309. ISBN 0-13-111829-3.

IT SECURITY

LINDA MCCARTHY

Upper Saddle River, NJ: Prentice Hall, 2003.

Pp. 246. ISBN 0-13-101112-X.

JAVA DATA OBJECTS

DAVID JORDAN & CRAIG RUSSELL

Sebastopol, CA: O’Reilly, 2003. Pp. 356.

ISBN 0-596-00276-9.

HEAD FIRST JAVA

KATHY SIERRA AND BERT BATES

Sebastopol, CA: O’Reilly, 2003. Pp. 619.

ISBN 0-596-00465-6.

JAVA DATABASE BEST PRACTICES

GEORGE REESE

Sebastopol, CA: 2003. Pp. 267.

ISBN 0-596-00522-9.

IP STORAGE NETWORKING

GARY ORENSTEIN

Boston: Addison-Wesley, 2003.

ISBN 0-321-15960-8.

UNIX SYSTEMS PROGRAMMING:

COMMUNICATIONS, CONCURRENCY

AND THREADS, SECOND EDITION

KAY A. ROBBINS AND STEVE ROBBINS

Upper Saddle River, NJ: Prentice Hall, 2003.

Pp. 912. ISBN 0-130-42411-0

Vol. 28, No. 4 ;login:50

gives all the information necessary to
assess just which approach should be the
most effective.

Storage
Orenstein’s IP Storage Networking is a
fascinating, lucid exposition of a very
complex problem. I’m confident that
more and more of us will be employing
iSCSI. This book will be leading us in
the developing processes.

A Reappearance
Robbins and Robbins is far more than
merely a new edition of Practical UNIX
Programming (1995). In addition to put-
ting on pounds, it has gained in topics.
It’s now UNIX Systems Programming. As
I was sent galleys, I can’t tell exactly how
many pages the finished book will have
(nor its ISBN). And while it may never
replace Rich Stevens’ book in my affec-
tions, it is certainly more up-to-date.

And a 20-year note . . .

In January 1983, in San Diego, Armando
Stettner introduced the “UNIX” license
plate. Armando, it’s still up on my wall.
Hey! SCO! “Live Free or Die!”

Twenty-Five Years Ago in
UNIX
by Peter H. Salus

Some of you may recall reading in UNIX
NEWS that the long-announced UNIX
issue of the BSTJ was available. Only $2!

It was the July-August 1978 issue. A full
quarter-century ago.

I still consider the pale blue issue of the
BSTJ the very best “book” on UNIX. I
think the 21 papers are outstanding.
Doug McIlroy on the beginnings; Den-
nis and Ken on “The UNIX Time-Shar-
ing System”; Ken on implementation;
Steve Bourne on the shell; Dennis,
Brian, Steve Johnson, and Mike Lesk on
C; Johnson and Ritchie on C portability;
Heinz Lyclama on MERT; Ted Dolotta,
Dick Haight, and John Mashey on “The
Programmer’s Workbench”; and so on.

Prentice-Hall reprinted the issue in
1987, together with the second BSTJ
“UNIX” issue. I saw a two-volume set in
a bookstore for nearly $300 recently. I
presume Lucent now owns the copy-
right. Republish this, someone!

Browsing this old friend, I was repeat-
edly astounded at how relevant the arti-
cles still were.

No, Heinz, I’m not going to use MERT;
no, Ted, not PWB either.

But there are about 400 pages of really
first-rate ideas here. They are ideas, for
the most part, equally applicable to OS
X or any flavor of Linux.

(Maybe that’s SCO’s point in their silly
lawsuit: Those ideas which were impor-
tant to UNIX are the same ideas now
used in the BSDs, in Linux, in OS X.
Look out, Shakespeare! Your sonnets
have the look and feel of Petrarch’s. If
history repeats itself as farce, then SCO
is really into clown-paint. For a fine
analysis, I recommend Eric Raymond’s:
http://www.opensource.org/sco-vs-ibm.
html.

http://www.opensource.org/sco-vs-ibm

What’s New in Technical Corrigendum Number
1 for IEEE Std 1003.1-2001

The IEEE-SA Standards Board approved Technical Corrigendum
Number 1 (TC1) on 10th December 2002. The governing board
of The Open Group approved the document on 7 February
2003.

The following article presents an overview of what has been
changed by this corrigendum.

ISSUES RELATED TO THE BASE
DEFINITIONS
GLOB.H

Technical Corrigendum Number 1 item XBD/TC1/D6/8 is applied, correct-
ing the glob() prototype definition by removing the restrict qualifier from
the function pointer argument.

LANGINFO.H

Technical Corrigendum Number 1 item XBD/TC1/D6/9 is applied, adding a
sentence to the “Meaning” column entry for the CRNCYSTR constant. This
change is to accommodate historic practice.

LIMITS.H

Technical Corrigendum Number 1 item XBD/TC1/D6/10 is applied, updat-
ing the value of _POSIX_CHILD_MAX from 6 to 25. This corrects an edi-
torial error and is for FIPS 151-2 alignment.

NETDB.H

Technical Corrigendum Number 1 item XBD/TC1/D6/11 is applied, adding
a description of the NI_NUMERICSCOPE macro and correcting the get-
nameinfo() function prototype. These changes are for alignment with the
IETF IPv6 specification.

NETINET/IN.H

Technical Corrigendum Number 1 item XBD/TC1/D6/12 is applied,
adding “const” qualifiers to the in6addr_any and in6addr_loopback
external variables.

PTHREAD.H

Technical Corrigendum Number 1 item XBD/TC1/D6/13 is applied, cor-
recting shading errors that were in contradiction with the System Interfaces
Volume.

SIGNAL.H

Technical Corrigendum Number 1 item XBD/TC1/D6/14 is applied, chang-
ing the descriptive text for members of struct sigaction. Technical Corrigen-
dum Number 1 item XBD/TC1/D6/15 is applied, correcting the definition
of the sa_sigaction member of struct sigaction.

SYS/MMAN.H

Technical Corrigendum Number 1 item XBD/TC1/D6/16 is applied, cor-
recting margin code and shading errors for the mlock() and munlock()
functions.

SYS/STAT.H

Technical Corrigendum Number 1 item XBD/TC1/D6/17 is applied, adding
text regarding the st_blocks members of the stat structure to the RATIO-
NALE.

SYS/STATVFS.H

Technical Corrigendum Number 1 item XBD/TC1/D6/18 is applied, chang-
ing the description of ST_NOSUID from “Does not support setuid()/set-
gid() semantics” to “Does not support the semantics of the ST_ISUID and
ST_ISGID file mode bits”.

TERMIOS.H

Technical Corrigendum Number 1 item XBD/TC1/D6/19 is applied, chang-
ing ECHOK to ECHOKE in the APPLICATION USAGE section.

UNISTD.H

Technical Corrigendum Number 1 item XBD/TC1/D6/2 is applied, chang-
ing “Thread Stack Address Size” to “Thread Stack Size Attribute”.

Technical Corrigendum Number 1 item XBD/TC1/D6/20 is applied, adding
the _POSIX_IPV6, _SC_V6, and _SC_RAW_SOCKETS symbols.

Technical Corrigendum Number 1 item XBD/TC1/D6/21 is applied, cor-
recting the description in “Constants for Functions” for the
_CS_POSIX_V6_LP64_OFF64_CFLAGS,
_CS_POSIX_V6_LP64_OFF64_LDFLAGS, and
_CS_POSIX_V6_LP64_OFF64_LIBS symbols.

Technical Corrigendum Number 1 item XBD/TC1/D6/22 is applied, remov-
ing the shading for the _PC* and _SC* constants, since these are mandatory
upon all implementations.

Technical Corrigendum Number 1 item XBD/TC1/D6/23 is applied, adding
the _PC_SYMLINK_MAX and _SC_SYMLOOP_MAX constants.

Technical Corrigendum Number 1 item XBD/TC1/D6/24 is applied, cor-
recting the shading and margin code for the fsync() function.

Technical Corrigendum Number 1 item XBD/TC1/D6/25 is applied, adding
the following text to APPLICATION USAGE: “New applications should not
use _XOPEN_SHM or _XOPEN_ENH_I18N”.

WCHAR.H

Technical Corrigendum Number 1 item XBD/TC1/D6/26 is applied, adding
the APPLICATION USAGE section.

RATIONALE CHANGES RELATED TO THE BASE DEFINITIONS
A.4.10

Add to end of A.4.10, Memory Synchronization p37 l 1465.

Technical Corrigendum Number 1 item XBD/TC1/D6/4 is applied, adding a
new paragraph beneath the table of functions: “The pthread_once() func-
tion shall synchronize memory for the first call in each thread for a given
pthread_once_t object.”

A.7.3.3 LC–MONETARY

Line 1986, add after “Technical Corrigendum No. 1”, “item XBD/TC1/D6/6.”

Add another paragraph at end of this section:

51August 2003 ;login:

Standards Reports

WHAT’S NEW FOR IEEE STD 1003.1-2001 �

�

ST

A
N

D
A

RD
S

RE
PO

RT
S

a.josey@opengroup.org

by Andrew Josey
Andrew Josey is the director,

server platforms, for The Open

Group in Reading, England, and

the chair of the Austin Group, Inc.

52 Vol. 28, No. 4 ;login:

Technical Corrigendum Number 1 item XBD/TC1/D6/5 is applied, adding
the int_[np]_* values to the POSIX locale definition of LC_MONETARY.

A.8.3 TZ

Add to the end of the TZ section (line 2339).

Technical Corrigendum Number 1 item XBD/TC1/D6/7 is applied, adding
the ctime_r() and localtime_r() functions to the list of functions that use
the TZ environment variable.

ISSUES RELATED TO THE SYSTEM INTERFACES
ABORT

Technical Corrigendum Number 1 item XSH/TC1/D6/10 is applied, chang-
ing the DESCRIPTION of abnormal termination processing and adding to
the RATIONALE section.

BSEARCH

Technical Corrigendum Number 1 item XSH/TC1/D6/11 is applied, adding
to the last sentence at the end of the first non-shaded paragraph in the
DESCRIPTION and adding the three following paragraphs. The RATIO-
NALE section is also updated. These changes are for alignment with the
ISO C standard.

CLOSE

Technical Corrigendum Number 1 item XSH/TC1/D6/12 is applied, cor-
recting the XSI shaded text relating to the master side of a pseudo-termi-
nal. The reason for the change is that the behavior of pseudo-terminals and
regular terminals should be as much alike as possible in this case; the
change achieves that and matches historical behavior.

CLOSELOG

Technical Corrigendum Number 1 item XSH/TC1/D6/13 is applied, cor-
recting the EXAMPLES.

DLSYM

Technical Corrigendum Number 1 item XSH/TC1/D6/14 is applied, cor-
recting an example and adding text to the RATIONALE describing issues
related to conversion of pointers to functions and back again.

EXEC

Technical Corrigendum Number 1 item XSH/TC1/D6/15 is applied, adding
a new paragraph to the DESCRIPTION and text to the end of the APPLI-
CATION USAGE section. This change addresses a security concern, where
implementations may want to reopen file descriptors 0, 1, and 2 for pro-
grams with the set-user-id or set-group-id file mode bits calling the exec
family of functions.

EXIT

Technical Corrigendum Number 1 item XSH/TC1/D6/16 is applied, cor-
recting grammar in the description.

FORK

Technical Corrigendum Number 1 item XSH/TC1/D6/17 is applied, adding
text to the DESCRIPTION and RATIONALE relating to fork handlers reg-
istered by the pthread_atfork() function and async-signal safety.

FPATHCONF

Technical Corrigendum Number 1 item XSH/TC1/D6/18 is applied, chang-
ing the fourth paragraph of the DESCRIPTION and removing shading and
margin markers from the table. This change is needed since implementa-
tions are required to support all these symbols.

FREEADDRINFO

Technical Corrigendum Number 1 item XSH/TC1/D6/19 is applied, adding
three notes to the DESCRIPTION and adding text to the APPLICATION
USAGE related to the term canonical name. A reference to RFC 2181 is also
added to the informative references front matter.

Technical Corrigendum Number 1 item XSH/TC1/D6/20 is applied, mak-
ing changes for alignment with the IETF IPv6 API specification. These
include the following: adding AI_V4MAPPED, AI_ALL, and AI_ADDR-
CONFIG to the allowed values for the ai_flags field; adding a description of
AI_ADDRCONFIG; and adding a description of the consequences of
ignoring the AI_PASSIVE flag.

FSETPOS

Technical Corrigendum Number 1 item XSH/TC1/D6/21 is applied, delet-
ing an erroneous EINVAL error case from the ERRORS section.

GAI_STRERROR

Technical Corrigendum Number 1 item XSH/TC1/D6/22 is applied, adding
the EAI_OVERFLOW error code.

GETNAMEINFO

Technical Corrigendum Number 1 item XSH/TC1/D6/23 is applied, mak-
ing various changes in the SYNOPSIS and DESCRIPTION for alignment
with the IETF IPv6 specification.

Technical Corrigendum Number 1 item XSH/TC1/D6/24 is applied, adding
the EAI_OVERFLOW error to the ERRORS section.

GETRLIMIT

Technical Corrigendum Number 1 item XSH/TC1/D6/25 is applied, chang-
ing wording for RLIMIT_NOFILE in the DESCRIPTION related to func-
tions that allocate a file descriptor failing with [EMFILE]. Text is added to
the APPLICATION USAGE section noting the consequences of a process
attempting to set the hard or soft limit for RLIMIT_NOFILE less than the
highest currently open file descriptor+1.

GETSUBOPT

Technical Corrigendum Number 1 item XSH/TC1/D6/26 is applied, cor-
recting an editorial error in the SYNOPSIS.

GMTIME

Technical Corrigendum Number 1 item XSH/TC1/D6/27 is applied, adding
the EOVERFLOW error case.

IF_INDEXTONAME

Technical Corrigendum Number 1 item XSH/TC1/D6/28 is applied, chang-
ing {IFNAMSIZ} to {IF_NAMESIZ} in the DESCRIPTION.

INET_NTOP

Technical Corrigendum Number 1 item XSH/TC1/D6/29 is applied, adding
“the address must be in network byte order” to the end of the fourth sen-
tence of the first paragraph in the DESCRIPTION.

INITSTATE

Technical Corrigendum Number 1 item XSH/TC1/D6/30 is applied,
removing rand_r() from the list of suggested functions in the APPLICA-
TION USAGE section.

LOCALECONV

Technical Corrigendum Number 1 item XSH/TC1/D6/31 is applied,
removing references to “int_curr_symbol” and updating the descriptions of
p_sep_by_space and n_sep_by_space. These changes are for alignment
with the ISO C standard.

LOCALTIME

Technical Corrigendum Number 1 item XSH/TC1/D6/32 is applied, adding
the EOVERFLOW error case.

MAKECONTEXT

Technical Corrigendum Number 1 item XSH/TC1/D6/33 is applied, clari-
fying that the arguments passed to func are of type int.

53August 2003 ;login:

MMAP

Technical Corrigendum Number 1 item XSH/TC1/D6/34 is applied, chang-
ing the margin code in the SYNOPSIS from MF|SHM to MC3 (notation
for MF|SHM|TYM).

MODF

Technical Corrigendum Number 1 item XSH/TC1/D6/35 is applied, cor-
recting the code example in the APPLICATION USAGE.

MUNMAP

Technical Corrigendum Number 1 item XSH/TC1/D6/36 is applied, chang-
ing the margin code in the SYNOPSIS from MF|SHM to MC3 (notation
for MF|SHM|TYM).

NANOSLEEP

Technical Corrigendum Number 1 item XSH/TC1/D6/37 is applied, updat-
ing the SEE ALSO to include the clock_nanosleep() function.

POW

Technical Corrigendum Number 1 item XSH/TC1/D6/42 is applied, cor-
recting the third paragraph in the RETURN VALUE section.

PTHREAD_ATTR_GETSTACKSIZE

Technical Corrigendum Number 1 item XSH/TC1/D6/43 is applied, cor-
recting the margin code in the SYNOPSIS from TSA to TSS and updating
the CHANGE HISTORY from “Thread Stack Address Attribute option” to
“Thread Stack Size Attribute option.”

PTHREAD_CREATE

Technical Corrigendum Number 1 item XSH/TC1/D6/44 is applied, adding
text that the alternate stack is not inherited.

PTHREAD_RWLOCK_DESTROY

Technical Corrigendum Number 1 item XSH/TC1/D6/45 is applied, adding
APPLICATION USAGE relating to priority inversion.

PUTENV

Technical Corrigendum Number 1 item XSH/TC1/D6/48 is applied, clari-
fying wording in the DESCRIPTION and adding a new paragraph into
APPLICATION USAGE referring readers to exec.

QSORT

Technical Corrigendum Number 1 item XSH/TC1/D6/49 is applied, adding
to the last sentence to the end of the first non-shaded paragraph in the
DESCRIPTION and adding the two following paragraphs. The RATIO-
NALE section is also updated. These changes are for alignment with the
ISO C standard.

READDIR

Technical Corrigendum Number 1 item XSH/TC1/D6/50 is applied, replac-
ing the EXAMPLES section with a new example.

REALPATH

Technical Corrigendum Number 1 item XSH/TC1/D6/51 is applied, adding
new text to the DESCRIPTION for the case when resolved_name is a null
pointer, changing the EINVAL error case text, adding RATIONALE text,
and the FUTURE DIRECTIONS text.

SCHED_GET_PRIORITY_MAX

Technical Corrigendum Number 1 item XSH/TC1/D6/52 is applied, chang-
ing the PS margin code in the SYNOPSIS to PS|TPS.

SCHED_RR_GET_INTERVAL

Technical Corrigendum Number 1 item XSH/TC1/D6/53 is applied, chang-
ing the PS margin code in the SYNOPSIS to PS|TPS.

SEM_GETVALUE

Technical Corrigendum Number 1 item XSH/TC1/D6/54 is applied.

SETENV

Technical Corrigendum Number 1 item XSH/TC1/D6/55 is applied, adding
references to exec in the APPLICATION USAGE and SEE ALSO sections.

SETPGID

Technical Corrigendum Number 1 item XSH/TC1/D6/56 is applied, chang-
ing the wording in the DESCRIPTION from “the process group ID of the
indicated process shall be used” to “the process ID of the indicated process
shall be used.” This change reverts the wording to as in IEEE Std 1003.1-
1996; it appeared to be an unintentional change.

SIGACTION

Technical Corrigendum Number 1 item XSH/TC1/D6/57 is applied, chang-
ing descriptive text in the table describing the sigaction structure.

SIGALTSTACK

Technical Corrigendum Number 1 item XSH/TC1/D6/58 is applied, updat-
ing the first sentence to include “<Q>for the current thread</Q>” at the
end.

SIGINTERRUPT

Technical Corrigendum Number 1 item XSH/TC1/D6/59 is applied, cor-
recting the declaration in the sample implementation given in the DES-
CRIPTION section.

STRFTIME

Technical Corrigendum Number 1 item XSH/TC1/D6/60 is applied.

STRTOD

Technical Corrigendum Number 1 item XSH/TC1/D6/61 is applied, cor-
recting the second paragraph in the RETURN VALUE section. This change
makes it clear the sign of the return value.

SYSCONF

Technical Corrigendum Number 1 item XSH/TC1/D6/62 is applied, updat-
ing the DESCRIPTION to denote that the _PC* and _SC* symbols are now
required to be supported. A corresponding change has been made in the
Base Definitions volume. The deletion in the second paragraph removes
some duplicated text. The additions add some symbols drawn from the
standard that were accidentally omitted from this page.

Technical Corrigendum Number 1 item XSH/TC1/D6/63 is applied, mak-
ing it clear in the RETURN VALUE that the value returned for
sysconf(_SC_OPEN_MAX) may change if a call to setrlimit() adjusts the
RLIMIT_NOFILE soft limit.

TAN

Technical Corrigendum Number 1 item XSH/TC1/D6/64 is applied, cor-
recting the last paragraph in the RETURN VALUE section.

TGAMMA

Technical Corrigendum Number 1 item XSH/TC1/D6/65 is applied, cor-
recting the third paragraph in the RETURN VALUE section.

WCSTOD

Technical Corrigendum Number 1 item XSH/TC1/D6/66 is applied, cor-
recting the second paragraph in the RETURN VALUE section.

RATIONALE CHANGES RELATED TO THE SYSTEM
INTERFACES
B.2.2.2

Add to end of B.2.2.2

Technical Corrigendum Number 1 item XSH/TC1/D6/2 is applied, deleting
the entries POSIX_, _POSIX_, and posix_ from the column of allowed
namespace prefixes for use by an implementation in the first table. The
presence of these prefixes was contradicting later text that states “The pre-

�

ST

A
N

D
A

RD
S

RE
PO

RT
S

WHAT’S NEW FOR IEEE STD 1003.1-2001 �

54 Vol. 28, No. 4 ;login:

fixes posix_, POSIX_, and _POSIX are reserved for use by IEEE Std 1003.1-
2001 and other POSIX standards. Implementations may add symbols to
the headers shown in the following table, provided the identifiers . . . do
not use the reserved prefixes posix_, POSIX_, or _POSIX.”

Technical Corrigendum Number 1 item XSH/TC1/D6/3 is applied, correct-
ing the reserved macro prefix from “PRI[a-z],SCN[a-z]” to “PRI[Xa-
z],SCN[Xa-z]” in the second table. The change was needed since the C
Standard allows implementations to define macros of the form “PRI” or
“SCN” followed by any lowercase letter or “X” in <inttypes.h> (ISO/IEC
9899:1999 P400, Sub-clause 7.26.4.).

Technical Corrigendum Number 1 item XSH/TC1/D6/4 is applied, adding
a new section listing reserved names for the <stdint.h> header. This change
was for alignment with the C standard.

B.2.4.3

Add to the end of B2.4.3.

Technical Corrigendum Number 1 item XSH/TC1/D6/5 is applied,
reordering the RTS shaded text under the third and fourth paragraphs of
the SIG_DFL description. This corrects an earlier editorial error in this sec-
tion.

Technical Corrigendum Number 1 item XSH/TC1/D6/6 is applied, adding
the abort() function to the list of async-cancel-safe functions.

B.2.8.3

Add new paragraph 2 before “Memory Locking” in 2.8.3.

Technical Corrigendum Number 1 item XSH/TC1/D6/7 is applied, correct-
ing the shading and margin markers in the introduction to section 2.8.3.1.

B.2.9.5

Add to the end of B.2.9.5.

Technical Corrigendum Number 1 item XSH/TC1/D6/8 is applied, adding
the pselect() function to the list of functions with Cancellation points.

ISSUES RELATED TO SHELL AND UTILITIES
BREAK, COLON, CONTINUE, DOT, EVAL, EXEC, EXIT, EXPORT, READONLY,

RETURN, SET, SHIFT, TRAP, UNSET

Technical Corrigendum Number 1 item XCU/TC1/D6/5 is applied, so that
the manual page sections use terms as described in the Utility Description
Defaults. No change in behavior is intended.

EXPORT

Technical Corrigendum Number 1 item XCU/TC1/D6/6 is applied, adding
the following text to the end of the first paragraph of the DESCRIPTION:

“If the name of a variable is followed by =word, then the value of
that variable shall be set to word.”

The reason for this change was that the SYNOPSIS for export includes
export name[=word]. . . but the meaning of the optional “=word” is never
explained in the text.

READONLY

Technical Corrigendum Number 1 item XCU/TC1/D6/7 is applied, adding
the following text to the end of the first paragraph of the DESCRIPTION:

“If the name of a variable is followed by =word, then the value of
that variable shall be set to word.”

The reason for this change was that the SYNOPSIS for readonly includes
readonly name[=word]. . . but the meaning of the optional “=word” is
never explained in the text.

SET

Technical Corrigendum Number 1 item XCU/TC1/D6/8 is applied, chang-
ing the square brackets in the example in RATIONALE to be in bold which
is the typeface used for optional items.

TIMES

Technical Corrigendum Number 1 item XCU/TC1/D6/9 is applied,

changing text in the DESCRIPTION from:

“Write the accumulated user and system times for the shell and for
all of its child processes . . .”

to:

“The times utility shall write the accumulated user and system
times for the shell and for all of its child processes . . .”

AR

Technical Corrigendum Number 1 item XCU/TC1/D6/10 is applied, mak-
ing corrections to the SYNOPSIS. The change was needed since the -a, -b,
and -i options are mutually exclusive, and posname is required if any of
these options is specified.

Technical Corrigendum Number 1 item XCU/TC1/D6/11 is applied, cor-
recting the description of the two-byte trailer in RATIONALE that had
missed out a back quote. The correct trailer is a back quote followed by a
<newline>.

C99

Technical Corrigendum Number 1 item XCU/TC1/D6/12 is applied, cor-
recting the EXTENDED DESCRIPTION section of -l c and -l m. Previ-
ously the text did not take into account the presence of the c99 math
headers.

Technical Corrigendum Number 1 item XCU/TC1/D6/13 is applied,
changing the reference to the libxnet library to libxnet.a.

CD

Technical Corrigendum Number 1 item XCU/TC1/D6/14 is applied,
changing the SYNOPSIS to make it clear that the -L and -P options are
mutually exclusive.

CHGRP

Technical Corrigendum Number 1 item XCU/TC1/D6/15 is applied,
changing the SYNOPSIS to make it clear that the -h and -R options are
optional.

CHMOD

Technical Corrigendum Number 1 item XCU/TC1/D6/16 is applied,
changing XSI shaded text in the EXTENDED DESCRIPTION from:

“The perm symbol t shall specify the S_ISVTX bit and shall apply
to directories only. The effect when using it with any other file type
is unspecified. It can be used with the who symbols o, a, or with no
who symbol. It shall not be an error to specify a who symbol of u or
g in conjunction with the perm symbol t; it shall be ignored for u
and g.”

to:

“The perm symbol t shall specify the S_ISVTX bit. When used with
a file of type directory, it can be used with the who symbol a, or
with no who symbol. It shall not be an error to specify a who sym-
bol of u, g, or o in conjunction with the perm symbol t, but the
meaning of these combinations is unspecified. The effect when
using the perm symbol t with any file type other than directory is
unspecified.”

�

ST

A
N

D
A

RD
S

RE
PO

RT
S

This change is to permit historical behavior.

CHOWN

Technical Corrigendum Number 1 item XCU/TC1/D6/17 is applied, chang-
ing the SYNOPSIS to make it clear that the -h and -R options are optional.

CP

Technical Corrigendum Number 1 item XCU/TC1/D6/18 is applied, cor-
recting an error in the SEE ALSO section.

DATE

Technical Corrigendum Number 1 item XCU/TC1/D6/19 is applied, cor-
recting the CHANGE HISTORY section.

DIFF

Technical Corrigendum Number 1 item XCU/TC1/D6/20 is applied, chang-
ing the STDOUT section. This changes the specification of “diff -c” so it
agrees with existing practice when contexts contain zero lines or one line.

ECHO

Technical Corrigendum Number 1 item XCU/TC1/D6/21 is applied, so that
the echo utility can accommodate historical BSD behavior.

ED

Technical Corrigendum Number 1 item XCU/TC1/D6/22 is applied, adding
the text “Any line modified by the command list shall be unmarked.” to the
G command. This change corresponds to a similar change made to the g
command in the 2001 revision.

EX

Technical Corrigendum Number 1 item XCU/TC1/D6/23 is applied, cor-
recting a URL.

FALSE

Technical Corrigendum Number 1 item XCU/TC1/D6/24 is applied, chang-
ing the STDERR section from “None” to “Not Used” for alignment with the
Utility Description Defaults.

FILE

Technical Corrigendum Number 1 item XCU/TC1/D6/25 is applied, making
major changes to address ambiguities raised in defect reports.

Technical Corrigendum Number 1 item XCU/TC1/D6/26 is applied, making
it clear in the OPTIONS section that the -m, -d, and -M options do not
comply with Guideline 11 of the utility Syntax Guidelines.

GETCONF

Technical Corrigendum Number 1 item XCU/TC1/D6/27 is applied, cor-
recting the descriptions of path_var and system_var in the OPERANDS sec-
tion.

GREP

Technical Corrigendum Number 1 item XCU/TC1/D6/28 is applied, cor-
recting the examples using the grep -F option that did not match the nor-
mative description of the -F option.

ICONV

Technical Corrigendum Number 1 item XCU/TC1/D6/29 is applied, making
changes to address inconsistencies with the iconv() function in the System
Interfaces Volume.

LOCALE

Technical Corrigendum Number 1 item XCU/TC1/D6/30 is applied, cor-
recting an editorial error in the STDOUT section.

M4

Technical Corrigendum Number 1 item XCU/TC1/D6/31 is applied, replac-
ing the EXAMPLES section.

MAILX

Technical Corrigendum Number 1 item XCU/TC1/D6/32 is applied, apply-
ing a change to the EXTENDED DESCRIPTION, raised by IEEE PASC
Interpretation 1003.2-1992 #122, which was overlooked in the revision.

OD

Technical Corrigendum Number 1 item XCU/TC1/D6/33 is applied, cor-
recting the examples, which were using an undefined “-n” option that
should have been “-N.”

PATCH

Technical Corrigendum Number 1 item XCU/TC1/D6/34 is applied, clarify-
ing the way that the patch utility performs ifdef selection for the -D option.

PAX

Technical Corrigendum Number 1 item XCU/TC1/D6/35 is applied. This
change, which adds the process ID of the pax process into certain fields,
provides a method for the implementation to ensure that different instances
of pax extracting a file named “/a/b/foo” will not collide when processing
the extended header information associated with “foo.”

Technical Corrigendum Number 1 item XCU/TC1/D6/36 is applied, chang-
ing “-x B” to “-x pax” in the OPTIONS section.

STTY

Technical Corrigendum Number 1 item XCU/TC1/D6/37 is applied, apply-
ing IEEE PASC Interpretation 1003.2-1992 #133, fixing an error in the
description of “stty nl.”.

TEST

Technical Corrigendum Number 1 item XCU/TC1/D6/38 is applied, XSI
margin marking and shading a line in the OPERANDS section referring to
the use of parentheses as arguments to the test utility.

TRUE

Technical Corrigendum Number 1 item XCU/TC1/D6/39 is applied, replac-
ing the terms “None” and “Default” from the STDERR and EXIT STATUS
section with terms as defined in the Utility Description Defaults section.

UNIQ

Technical Corrigendum Number 1 item XCU/TC1/D6/40 is applied, adding
LC_COLLATE to the ENVIRONMENT VARIABLES section, and changing
“the application shall ensure that” in the OUTPUT FILES section.

VI

Technical Corrigendum Number 1 item XCU/TC1/D6/41 is applied, adding
“[count]” to the Synopsis for “[[.“

Technical Corrigendum Number 1 item XCU/TC1/D6/42 is applied, adding
“[count]” to the Synopsis for “]].”

RATIONALE CHANGES RELATED TO THE SHELL AND
UTILITIES
XRAT SECTION C.1.9 UTILITY LIMITS

Add to the end of C.1.9.

Technical Corrigendum Number 1 item XCU/TC1/D6/2 is applied, deleting
the entry for {POSIX2_VERSION} since it is not a Utility Limit Minimum
Value.

Technical Corrigendum Number 1 item XCU/TC1/D6/3 is applied, chang-
ing the text in Utility Limits from:

“utility (see getconf (on page 481)) and through the sysconf() func-
tion defined in the System Interfaces volume of IEEE Std 1003.1-
2001. The literal names shown in Table 1-3 (on page 17) apply only
to the getconf utility; the high-level language binding describes the

55August 2003 ;login: WHAT’S NEW FOR IEEE STD 1003.1-2001 �

56 Vol. 28, No. 4 ;login:

exact form of each name to be used by the interfaces in that bind-
ing.”

to:

“utility (see getconf (on page 481)).”

C.

Add to the end of C.2.6.3

Technical Corrigendum Number 1 item XCU/TC1/D6/4 is applied, chang-
ing the text from:

“If a command substitution occurs inside double-quotes, it shall not
be performed on the results of the substitution.”

to:

“If a command substitution occurs inside double-quotes, field split-
ting and pathname expansion shall not be performed on the results
of the substitution.”

The replacement text taken from POSIX.2-1992 is clearer about the items
that are not performed.

Austin Group Status Update
APRIL 15, 2003

Since the last status update, we are pleased to report Technical
Corrigendum 1 to the Austin Group Specifications has been
approved by all the sponsoring bodies – the IEEE-SA, The Open
Group, and ISO/IEC.

The Austin Group has recently published the 2003 edition of its
specifications incorporating Technical Corrigendum 1. The des-
ignation for this edition is IEEE Std 1003.1, 2003 Edition,
ISO/IEC 9945:2003 and form the core of the 2003 edition of the
Single UNIX Specification Version 3.

HTML copies of the specification can be freely downloaded or
read online at http://www.unix-systems.org/version3/. USENIX
members who would like a PDF copy should send an email
request to Andrew Josey.

Text of Technical Corrigendum 1 (the list of changes to the 2001
edition of the Austin Group specification) is freely available
from http://www.opengroup.org/corrigenda/.

LSB Certification News 1Q2003
APRIL 15, 2003

The Open Group has certified the following products to the LSB
Specifications during 1Q 2003:

Date Company Product

06-Jan-03 Red Hat, Inc, Red Hat Linux Advanced
Server 2.1 with updates

07-Jan-03 Sun Wah Linux Ltd Sun Wah Linux Desktop 3.0

07-Jan-03 Turbo Linux Inc Turbolinux Enterprise
Server 8 powered by
UnitedLinux

15-Jan-03 Conectiva Inc. Conectiva Linux Enterprise
Edition Powered by
UnitedLinux v1.0

24-Mar-03 SuSE Linux AG UnitedLinux 1.0

24-Mar-03 SuSE Linux AG SuSE Linux 8.2

28-Mar-03 SuSE Linux AG SuSE Linux Enterprise
Server 8 for IPF powered by
UnitedLinux

01-Apr-03 Red Hat, Inc. Red Hat Linux 9

As of April 15, 2003, there are nineteen LSB certified products.

The full register of certified products is available at http://www.
opengroup.org/lsb/cert/register.html.

For more information LSB Certification, please see http://www.
opengroup.org/lsb/cert/.

Standards Briefing: The Linux Standard Base
(LSB)
APRIL 15, 2003

In this article we introduce the Linux Standard Base, the specifi-
cation, and certification programs.

THE LSB SPECIFICATION
The Linux Standard Base (LSB) Specification is an application
binary interface standard for shrink-wrapped applications. The
LSB draws on the source standards of IEEE POSIX 1003.1-1990
and The Open Group Single UNIX Specification Version 2 for

a.josey@opengroup.org

by Andrew Josey

a.josey@opengroup.org

by Andrew Josey

a.josey@opengroup.org

by Andrew Josey

http://www.unix-systems.org/version3/
http://www.opengroup.org/corrigenda/
http://www
http://www

�

ST

A
N

D
A

RD
S

RE
PO

RT
S

many of its interfaces, although it does not formally defer to
them, preferring to document any differences where they exist. It
also extends the source standards in other areas (such as graph-
ics) and includes the necessary details such as the binary execu-
tion file formats to support a high-volume application platform.

Although in theory the LSB is not tied to the GNU/Linux oper-
ating system, in practice the binary definitions are tightly cou-
pled to Linux and the GNU C compiler.

The LSB is available as a family of specifications supporting a
number of processor architectures, including IA32, PPC32, and
IA64. There is a generic specification, common to all the proces-
sor architectures, known as the “generic LSB” (or gLSB), and for
each processor architecture an architecture-specific specification
(“archLSB”) describing the details that vary by processor archi-
tecture.

The specification is evolving quite rapidly. LSB 1.3, introduced
in January 2003, adds internationalization, PAM, packaging,
static C++ linking, bug fixes, plus IA64, PPC32, and soon
PPC64, S390, S390X, and maybe Hammer. LSB 2.0 is planned
for January 2004.

To support the specification, the LSB includes a number of
development tools, including test suites, and a set of reference
conforming applications. Binary versions of the test suites and
reference applications are used for formal LSB certification of
runtime environments. All the major Linux vendors today have
certified LSB systems.

LSB CERTIFICATION
The LSB certification program is a voluntary program of the
Free Standards Group, open to any product meeting the confor-
mance requirements. It is not restricted to Linux-based systems
or Linux-based applications, although in practice it does lean
toward requiring use of glibc.

It is a formal process built around a policy document and a
trademark license agreement. Suppliers of certified products,
warrant and represent that the product meets all the confor-
mance requirements applicable to the class of LSB Certification
being certified.

LSB certification currently covers the following specifications:*

� The Linux Standard Base Specification 1.3
� The Linux Standard Base Specification for IA32 1.3
� The Linux Standard Base Specification for PPC32 1.3
� The Linux Standard Base Specification for IA64 1.3
� The OpenI18N Specification (formally the Li18nux 2000

Globalization Specification Version 1.0 with Amendment 4)

*Note that LSB 1.2 certification was withdrawn on April 18
2003.

LSB 1.2, introduced in January 2002, was the first version of the
specification to have an equivalent LSB certification program.
LSB 1.2 certification, which commenced in July 2002, is limited
to the IA32 ABI. LSB 1.3 certification was introduced in January
2003 and adds support for PPC32 and IA64. At the time of writ-
ing, there are nineteen runtime environments from nine ven-
dors.

MORE INFORMATION
Detailed information on the LSB is available from http://www.
linuxbase.org.

Detailed information on the LSB Certification Program is avail-
able from the LSB Certification Authority at http://www.
opengroup.org/lsb/cert/.

The Guide to LSB Certification is available at http://www.
opengroup.org/lsb/cert/docs/LSB_Certification_Guide.html.

The LSB Certification Register can be viewed at http://www.
opengroup.org/lsb/cert/register.html.

57August 2003 ;login: THE LINUX STANDARD BASE �

http://www
http://www
http://www
http://www

58

news

Vol. 28, No. 4 ;login:

2003 USENIX Nominating
Committee
The biennial elections of USENIX's
Board of Directors will be held in the
Spring of 2004. The USENIX Board has
appointed Dan Geer to serve as chair-
man of the Nominating Committee. The
composition of this committee and
instructions on how to nominate indi-
viduals will be published in the October
issue of ;login:.

Summary of the USENIX
Board of Directors Meetings

The following is a summary of the
actions taken by the USENIX Board of
Directors from November 6, 2002
through June 30, 2003.

FINANCES

The Board voted to accept the budget
for 2003, which reflected the changes
made at the previous meeting as well as
revised projections for conference atten-
dance and membership dues.

REGISTRATION FEES

It was agreed that USENIX would offer a
discounted conference registration fee
for the unemployed. The discount
amount will be $195, available only dur-
ing the pre-registration period. A lim-
ited number of discounts would be
granted for each conference, on a first
come, first serve basis. Attendees should
contact conference@usenix.org regarding
this offer.

STANDARDS ACTIVITIES

The Board voted to allocate $2,500 to
renew USENIX's membership in The
Open Group, at a reduced rate that
allows us to retain a vote on standards
issues.

GRANTS

It was agreed to grant $3,000 to the Mid-
dleware 2003 conference to support stu-
dent travel.

It was agreed to fund $10,100 to support
the request from the Computing
Research Association's Committee on
the Status of Women in Computing to
support one student in the Distributed
Mentoring Project ($7,100) and one stu-
dent in the Collaborative Research Expe-
riences for Women and Minorities
program ($3,000).

CONFERENCES

Symposium on Networked Systems
Design & Implementation (NSDI '04).
It was agreed that USENIX would put
together an agreement to co-sponsor
NSDI with ACM Sigcomm and Sigops.

It was agreed to accept ACM Sigmobile's
proposal that USENIX again co-sponsor
MobiSys in 2004 with a different agree-
ment. ACM Sigmobile will finance and
organize MobisSys in 2004.

Internet Measurement Conference.
USENIX will co-sponsor this conference
once again in 2003 with ACM Sigcomm,
and provide $5000 in student stipend
funding, help with event marketing, and
post the Proceedings on the USENIX
Web site.

USENIX Security Symposium 2004.
Matt Blaze will serve as program chair,
with Vern Paxson and Avi Rubin coordi-
nating the Invited Talks program.

Future USENIX Annual Technical Con-
ferences. For 2004, it was decided to
embrace a new format for a 6 day con-
ference that would feature a 5 day single
track of general and freenix sessions; a 5
day track of sessions designed for SIGs
and focussed topics (i.e., Uselinux,
UseBSD, Beowulf/clusters, client com-
puting, security, sysadmin, etc.); tutori-
als on all 6 days; invited/plenary talks on
5 days; Gurus and BOFs as usual; and no
vendor exhibition. A per-day registra-
tion fee will also be offered.

USENIX MEMBER BENEFITS

As a member of the USENIX Association,
you receive the following benefits:

FREE SUBSCRIPTION TO ;login:, the Association’s

magazine, published six times a year, featur-

ing technical articles, system administration

articles, tips and techniques, practical

columns on such topics as security, Tcl, Perl,

Java, and operating systems, book reviews,

and summaries of sessions at USENIX con-

ferences.

ACCESS TO ;login: online from October 1997

to last month <www.usenix.org/

publications/login/login.html>.

ACCESS TO PAPERS from the USENIX Confer-

ences online starting with 1993

<www.usenix.org/publications/library/

index.html>.

THE RIGHT TO VOTE on matters affecting the

Association, its bylaws, election of its direc-

tors and officers.

DISCOUNTS on registration fees for all

USENIX conferences.

DISCOUNTS on the purchase of proceedings

and CD-ROMS from USENIX conferences.

SPECIAL DISCOUNTS on a variety of products,

books, software, and periodicals. See

<http://www.usenix.org/membership/

specialdisc.html> for details.

FOR MORE INFORMATION

REGARDING MEMBERSHIP OR

BENEFITS, PLEASE SEE

<http://www.usenix.org/

membership/membership.html>

OR CONTACT

<office@usenix.org>

Phone: 510 528 8649

by Ellie Young and
Tara Mulligan

ellie@usenix.org

tara@usenix.org

It was also agreed to invite Andrea and
Remzi Apraci-Dusseau to serve as pro-
gram co-chairs for the general sessions,
and Keith Packard and Bart Massey will
serve as co-chairs for the Freenix track.
The committees for the special interest
groups and topics will be pulled together
in the near future.

Beginning 2005, it was decided to move
the Annual Technical Conference into an
early Spring timeframe, e.g., March/early
April.

SAGE

The USENIX Board voted to implement
a proposal from the SAGE Executive
Committee to have a SAGE only mem-
bership category (which does not
require SAGE members to become full
members of USENIX with voting
rights), the details to be worked out by
the staff.

NOMINATING COMMITTEE

Dan Geer was appointed to seve as the
Chairman of the Nominating Commit-
tee for the USENIX Board of Directors
election in 2004.

BOARD MEETINGS

The next meeting of the USENIX Board
of Directors is scheduled for Tuesday,
October 28, 2003, in conjunction with
LISA 2003 conference in San Diego, CA.

USENIX Association Financial
Report for 2002
The following information is provided
as an annual report of the USENIX
Association’s finances and represents the
Association’s statement of revenue and
expenses for the year. Accompanying the
statements are several charts on specific

59August 2003 ;login:

Of these, 56% opted for SAGE member-
ship as well. Chart I shows the total
USENIX dues income ($742K) for 2002,
divided into membership types. Chart 2
shows how those dues were spent. Note
that all costs for producing conferences,
including staff, marketing, and exhibi-
tions are covered by revenue generated
by the conferences.

SAGE

Chart 3 shows SAGE revenue sources for
2002 (Dues accounts for $138K,
USENIX subsidy to cover losses is
$232K, and the share of LISA conference
revenue allocated to SAGE is $131K).
Chart 4 provides a breakout of SAGE
expenses which total $501K.

STUDENT PROGRAMS, INTERNATIONAL

CONFERENCES, AND GOOD WORKS.

Chart 5 describes how the money allo-
cated ($300K) was spent in 2002.

USENIX FINANCIAL REPORT �

aspects of the Association’s financial
position.

FINANCIAL STATEMENTS SUMMARY.

The downturn in the economy contin-
ues to be a big factor in decreased rev-
enues in 2001 and 2002. Conference
attendance at the USENIX Annual Tech-
nical Conference was down 32%, but
revenue from other conferences and
dues was stable. In 2002, conferences
contributed a net $282K, in large part
due to cost control. The Association sus-
pended most of its Good Works pro-
grams. SAGE, and SAGE Certification
incurred expenses but did not generate
sufficient revenue from dues or tests to
cover them. The net operating deficit for
all USENIX programs was $831K. The
Reserve Fund declined by $734K.

USENIX MEMBERSHIP DUES AND EXPENSES

USENIX averaged 7,500 members in
2002, which is a 10% drop from 2001.

�

U

SE
N

IX
 N

EW
S

by Ellie Young

Executive Director

ellie@usenix.org

Vol. 28, No. 4 ;login:60

61August 2003 ;login:

 USENIX ASSOCIATION
 STATEMENT OF FUNCTIONAL EXPENSES
 For the Years Ended December 31, 2002 and 2001

Conference
s and

Workshops

Programs
and

Membershi
p

Student
Program
s, Good
Works

and
Pro jec ts SAGE

Sage
Cer t i f i ca t io

n
Total

Program

Manage-
ment
and

general
Fund

Raising
Total

Support
2 0 0 2
Total

2 0 0 1
Total

Operating Expenses
 Conference & workshop-direct $ 1 , 8 4 0 , 0 2 2 $ $ $ $ $ 1 , 8 4 0 , 0 2 2 $ 1 0 , 4 0 8 $ 1 5 , 3 1 6 $ 2 5 , 7 2 4 $ 1 , 8 6 5 , 7 4 6 $ 2 , 6 6 6 , 1 3 6
 Personnel and related benefits:
 Salaries 7 7 8 , 8 2 3 1 0 7 , 3 8 4 8 , 3 5 6 1 5 3 , 6 6 8 1 , 0 4 8 , 2 3 1 1 1 8 , 5 0 7 1 1 8 , 5 0 7 1 , 1 6 6 , 7 3 8 1 , 1 1 0 , 5 5 0
 Payroll taxes 5 7 , 5 1 8 7 , 8 5 5 6 1 7 1 1 , 3 4 9 7 7 , 3 3 9 8 , 7 5 2 8 , 7 5 2 8 6 , 0 9 1 8 2 , 4 9 8
 Employee benefits 1 4 0 , 7 9 4 1 9 , 2 2 9 1 , 5 1 1 2 7 , 7 8 0 1 8 9 , 3 1 4 2 1 , 4 2 4 2 1 , 4 2 4 2 1 0 , 7 3 8 2 0 3 , 7 8 9
 Membership/proceedings 7 0 , 6 8 3 7 0 , 6 8 3 0 7 0 , 6 8 3 4 0 , 1 0 2
 Membership/login: 2 1 6 , 0 1 6 2 1 6 , 0 1 6 0 2 1 6 , 0 1 6 3 4 3 , 0 8 8
 Membership/e-learning: 5 3 , 0 1 5 5 3 , 0 1 5 5 3 , 0 1 5
 SAGE expenses 1 9 0 , 8 8 5 1 9 0 , 8 8 5 0 1 9 0 , 8 8 5 1 8 4 , 7 9 7
 SAGE Certification expenses 3 0 9 , 8 8 5 3 0 9 , 8 8 5 0 3 0 9 , 8 8 5 2 8 7 , 7 9 3
 Student programs, Good
Works, and projects 2 8 5 , 5 8 3 2 8 5 , 5 8 3 0 2 8 5 , 5 8 3 9 6 7 , 1 9 3
 General and administrative 2 6 6 , 2 0 4 7 9 , 0 4 6 4 , 2 1 4 5 8 , 7 4 5 6 , 3 5 1 4 1 4 , 5 6 0 2 0 8 , 5 8 7 2 3 , 6 9 1 2 3 2 , 2 7 8 6 4 6 , 8 3 8 8 0 3 , 9 3 5

 $ 3 , 0 8 3 , 3 6 1 $ 5 5 3 , 2 2 8 $ 3 0 0 , 2 8 1 $ 4 4 2 , 4 2 7 $ 3 1 6 , 2 3 6 $ 4 , 6 9 5 , 5 3 3 $ 3 6 7 , 6 7 8 $ 3 9 , 0 0 7 $ 4 0 6 , 6 8 5 $ 5 , 1 0 2 , 2 1 8 $ 6 , 6 8 9 , 8 8 2

 USENIX ASSOCIATION
STATEMENT OF FINANCIAL POSITION

December 31, 2002 and 2001

ASSETS 2002 2001

Current assets:
 Cash & cash equivalents $ 1,049,294 $ 476,185
 Accounts receivable 44,919 66,936
 Prepaid expenses 27,824 108,977
 Inventory 22,045 31,225

 Total current assets 1,144,082 683,323

Investments at fair market value -reserve fund 4,346,762 6,638,588

Property and equipment:
 Office furniture and equipment 433,538 422,576
 Less: accumulated depreciation (256,939) (183,204)

 Net property and equipment 176,599 239,372

 Total assets $ 5,667,443 $ 7,561,283

LIABILITIES AND NET ASSETS

Current liabilities:
 Accounts payable and accrued expenses $ 355,568 $ 633,503
 Deferred revenue 12,390 63,045

 Total liabilities 367,958 696,548

Net assets:
 Unrestricted net assets:
 Board designated 4,346,762 6,638,588
 Undesignated 952,723 226,147
 Total unrestricted net assets

 Temporarily restricted net assets

 Total net assets 5,299,485 6,864,735

 Total liabilitites and net assets $ 5,667,443 $ 7,561,283

USENIX FINANCIAL REPORT �

62

 USENIX ASSOCIATION
STATEMENTS OF ACTIVITIES

For the Years Ended December 31, 2002 and 2001

2002 2001
Operating revenues:
 Conference and workshop revenue $ 3,371,062 $ 3,506,275
 Membership dues 741,587 739,856
 SAGE dues & other revenue 137,182 151,820
 Product sales 20,129 20,676
 SAGE Certification 847 10,750

 Total operating revenues 4,270,807 4,429,377

Operating expenses:
 Program services:
 Conference and workshop revenue 3,083,362 4,063,800
 Programs and membership 553,228 629,833
 Student programs, Good Works, and projects 300,281 981,806
 SAGE 442,427 349,713
 SAGE Certification 316,236 287,793

 Total program services 4,695,534 6,312,945

 Suppport services:
 Management and general 367,678 349,870
 Fund raising 39,006 27,067
 Total support services 406,684 376,937

 Total operating expenses 5,102,218 6,689,882

Net operating (deficit) surplus (831,411) (2,260,505)

Net investment income and nonoperating activities
 Donations 45,560 532
 Interest and dividend income 156,327 240,445
 Net realized and unrealized losses on investments (865,941) (1,185,139)
 Investment fees and costs (69,785) (94,171)

 Net investment income and nonoperating activities (733,839) (1,038,333)

Change in net assets (1,565,250) (3,298,838)

Net assets, beginning of year 6,864,735 10,163,573

Net assets, end of year $ 5,299,485 $ 6,864,735

USENIX ASSOCIATION
STATEMENTS OF CASH FLOWS

For the Years Ended December 31, 2002 and 2001

2002 2001

Cash flows from operating activities:

Change in net assets $ (1,565,250) $ (3,298,838)

Adjustments to reconcile change in net assets
 to net cash (used in)/provided by operating activities:

 Depreciation 73,735 77,455
 Net investment income designated for long-term purposes (73,987) (94,289)
 Realized and unrealized losses on investments 865,941 1,185,139
(Increase) decrease in assets:
 Accounts receivable 22,017 298,046
 Prepaid expenses 81,153 (14,854)
 Inventory 9,180 (11,076)
Increase (decrease) in liabilities:
 Accounts payable and accrued expenses (277,935) (226,723)
 Deferred revenue (50,655) 23,695

 Net cash (used in) provided by operating activities (915,801) (2,061,445)

Cash flows from investing activities:
 Purchases of investments (3,765,885) (5,646,360)
 Proceeds from sale of investments 3,765,885 5,646,360
 Withdrawals from reserve fund 1,499,872 355,000
 Additions to reserve fund
 Purchases of property and equipment (10,962) (29,433)

 Net cash provided by (used in) investing activities 1,488,910 325,567

 Net (decrease) increase in cash and cash equivalents 573,109 (1,735,878)

Cash and cash equivalents, beginning of year 476,185 2,212,063

Cash and cash equivalents, end of year $ 1,049,294 $ 476,185

Vol. 28, No. 4 ;login:

63August 2003 ;login: MOBISYS 2003�

conference reports
DSPs, and dedicated chips for special-
ized environments. He noted that supply
voltage is relatively constant across all
three chip types. However, microproces-
sors have much higher switched capaci-
tances – in their quest to support high
clock rates, they introduce a lot of logic
to drive and multiplex the clock signal.

Brodersen then discussed the key rela-
tionship between chip area and opera-
tions per unit time. Microprocessors
have the highest ratio of chip area per
operation, whereas dedicated processors
have the lowest. Dedicated processors
are more energy-efficient because they
can extract application-specific paral-
lelism. At any given moment, the vast
majority of a dedicated chip’s area is
actively utilized. In contrast, flexible
designs must support many general-
purpose operations whose correspon-
ding chip areas are often irregularly
utilized. Brodersen drew several conclu-
sions from these results. First, he
observed that from an energy perspec-
tive, it is better to increase parallelism
than to increase the clock rate. He then
forcefully noted that, for any given prob-
lem, a dedicated hardware solution
always has better performance and
energy efficiency than a software solu-
tion running on a flexible chip. In fact,
the popular notion of a “hardware/soft-
ware” tradeoff is imaginary, because the
dedicated hardware solution is always
the best! Once again, he stressed that
flexible-chip designs are often motivated
by business concerns as opposed to effi-
ciency concerns. In general, dedicated
parallel processors are the best solution.

Brodersen then described his methodol-
ogy for rapid prototyping of parallel
SoCs. Instead of using a low-level design
language like VHDL, Brodersen uses the
Simulink and Stateflow programs pro-
vided by Mathworks. A chip design is
decomposed into timing dataflows and
finite-state machines. The design can
then be instantiated in an FPGA or ASIC

Mobisys 2003
The First International
Conference on Mobile
Systems, Applications, and
Services
SAN FRANCISCO, CALIFORNIA
MAY 5–8, 2003
Summarized by James Mickens

KEYNOTE ADDRESS

DESIGN OF WIRELESS SYSTEMS-ON-A-CHIP

Bob Brodersen, Berkeley Wireless

Research Center, University of

California, Berkeley

A “system-on-a-chip” (SoC) provides
integrated components for computation
and network communication in a single
piece of hardware. SoCs are particularly
well suited for small mobile devices
which must execute user tasks and
transfer data over the Internet. Bob
Brodersen argued that the key question
for any SoC design is, “What is the cost

of flexibility?” There is a fundamental
tension between simple designs that do
one thing well and larger, more complex
designs that provide many features.
More flexible designs are often attractive
for business reasons (e.g., backward
compatibility or the ability to sell one
core design for multiple operating envi-
ronments). However, Brodersen showed
that flexible chips are much less efficient
than specialized chips, often by several
orders of magnitude.

Brodersen examined three types of
chips: microprocessors, general-purpose

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
S

This issue’s reports focus on MobiSys

2003, HoTOS-IX, and the 2003 Euro-

pean Tcl/Tk User Meeting

OUR THANKS TO THE SUMMARIZERS:

FOR MOBISYS 2003

James Mickens

FOR HOTOS

Ranjita Bhagwan

David Oppenheimer

Amit Purohit

Matt Welsh

FOR TCL/TK

Clif Flynt

Bob Brodersen

64 Vol. 28, No. 4 ;login:

chip. The FPGA solution is particularly
attractive, for several reasons. First, it is
very easy to connect multiple FPGAs in
parallel. Second, even though the clock
rates of FPGAs are not exceptionally
fast, FPGAs take full advantage of tech-
nological advances in hardware density.
Thus, as time progresses, an individual
FPGA can contain more and more par-
allel units.

An audience member asked Brodersen,
“How much parallelism can we expect
from the real applications that users
want to run?” This was an insightful
question – if users typically run serial
applications, then explicitly parallel
chips would not be commonly opti-
mized. Brodersen quickly replied that
the current computational paradigm is
wrong: Instead of writing serial applica-
tions and then trying to run them on
parallel chips, we should write explicitly
parallel programs for explicitly parallel
processors. Brodersen said that the com-
puter community was committing a
“great injustice” upon the current gener-
ation of programmers by forcing them
to learn C. Instead, the community
should focus on generating natural
methods for describing concurrent phe-
nomenon. Brodersen admitted that his
current Mathworks prototyping system
is not optimal. However, it is much bet-
ter adapted to the creation of explicitly
parallel applications than many other
prototyping systems.

PANEL

HOW SHOULD WE EVALUATE SYSTEMS

CONTRIBUTIONS TO PERVASIVE/UBIQUITOUS

COMPUTING?

Keith Edwards, Palo Alto Research

Center; Armando Fox, Stanford

University (moderator); Anthony

LaMarca, Intel Research; Brian Noble,

University of Michigan; Yi-Min Wang,

Microsoft Research

Armando Fox opened the panel discus-
sion by observing that ubiquitous-com-
puting (ubicomp) research is a combi-
nation of two seemingly disparate fields:
HCI work and systems research. Some

ubicomp research focuses too heavily on
the HCI aspect, leading to interesting
proof-of-concept projects that cannot
handle real-life workloads. Other ubi-
comp research emphasizes the lower-
level systems aspects; unfortunately, this
often results in “solutions” that do not
truly address the needs of typical users.
How can the ubicomp community find
a satisfactory methodology for designing
and evaluating ubicomp systems?

Brian Noble argued that ubicomp
researchers must create metrics that
quantitatively describe users’ subjective
experiences. Noble said that current
metrics are often chosen for their math-
ematical tractability and are only indi-
rectly related to actual user preferences.
Keith Edwards echoed these sentiments.
He reminded the audience that ubiqui-
tous computing is inherently user-cen-
tric, so the ultimate evaluation metric
for any such system must be end-user
utility.

Yi-Min Wang and Anthony LaMarca
agreed that the subjective end-user expe-
rience is important. LaMarca’s three
evaluation criteria for ubicomp systems
were robustness, programmability, and
manageability. Yi-Min argued that
improved fault modeling is critical to
the acceptance of ubiquitous comput-
ing. For example, people will not buy a
house filled with pervasive computers
unless they believe that they can fix most
errors without professional help, and
that a total system failure would not
result in personal danger.

The audience members asked many
thought-provoking questions. One
attendee wondered why system design-
ers and HCI experts should communi-
cate at all – shouldn’t they both stick to
their respective areas of expertise? Noble
responded that each discipline must
have an understanding of the problems
in the other. Without synergistic interac-
tion between the systems and HCI com-
munities, it is impossible to create
ubicomp systems that excel in both
aspects.

Another audience member proposed
that ubiquitous computing is not about
“killer demos.” Instead, it is about a
“killer lifestyle.” The ubicomp commu-
nity has many vignettes that illustrate
simple ways in which pervasive comput-
ing is useful, but it has not effectively
demonstrated the full power of the ubi-
comp model. The panel found no easy
solutions to this challenge. LaMarca
noted that pervasive computing is a new
computational paradigm; it forces
researchers to revisit traditional notions
of what a computer can and cannot do.
As the field matures, researchers will dis-
cover new ubicomp applications that
can change popular perceptions of the
technology.

The audience loved an attendee sugges-
tion that conferences like MobiSys offer
tutorials on conducting user studies.
Many felt that a gentle introduction to
the user evaluation process would help
systems researchers better understand
the role of the end-user in a ubicomp
environment.

DEMO/POSTER SESSION

E-TEXTILES

Traditional sensor-node systems use
wireless communication protocols and
provide each node with an individual
power supply. An e-textile is a piece of
fabric that contains embedded proces-
sors, sensors, and actuators. Unlike a tra-
ditional sensor node, an e-textile node
communicates via wires that are
threaded along the surrounding fabric.
E-textile nodes also draw their energy
from embedded power lines. Thus,
unlike more common sensor networks,
an e-textile grid allows nodes to share
energy resources as easily as they share
information. An obvious application of
e-textiles is in the domain of wearable
computers. For example, one could cre-
ate an e-textile glove that sensed the
movements of the user’s fingers, provid-
ing a virtual keyboard or musical instru-
ment. One could also take advantage of
the ease with which e-textile sensors can

be deployed and later recovered. Build-
ing inspectors could test for asbestos by
rolling an e-textile carpet onto a floor or
crawlspace; once the sensors had fin-
ished their sampling, the inspectors
could simply roll up the carpet and
move to the next room.

SMARTVIEW: ENHANCED DOCUMENT VIEWER

FOR MOBILE DEVICES

Small mobile devices like PDAs have dif-
ficulty displaying Web pages that are
large and have complex layouts. The
PDA is often forced to break these pages
into screen-sized chunks. These chunks
do not have semantically meaningful
boundaries and are usually poorly for-
matted; the user must engage in exten-
sive scrolling to fully understand the
document. SmartView analyzes the
source of a Web page and breaks it into
properly formatted segments. It then
creates thumbnails for each segment,
allowing the user to preview a segment
before expanding it to its full size.
SmartView also provides annotations for
pages returned by Google searches. Each
segment of a returned page will contain
a certain number of the total keyword
hits. SmartView graphically depicts the
number of hits that each segment has in
its thumbnail. Users can then directly
jump to segments with the most hits.

MAGNETOS: AN OPERATING SYSTEM FOR

MOBILE AD HOC NETWORKS

MagnetOS is an operating system for ad
hoc networks. It provides a collection of
nodes with the abstraction of a single
Java Virtual Machine. MagnetOS also
automatically splits programs into
mobile partitions, and it dynamically
migrates partitions in an effort to mini-
mize energy consumption. MagnetOS
uses two object-placement strategies:
netCenter and netPull. In the netCenter
approach, a mobile code object moves
directly to the node that generates the
largest percentage of the packets that it
receives. In the netPull strategy, mobile
code is moved in the general direction
where most packets are generated. In
other words, given an object receiving

65August 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Spackets from multiple sources, the

object will move to the “center of grav-
ity” of the aggregate packet flow. Experi-
ments show that both techniques result
in large energy savings when compared
to static or random migration models.

MOBILE WEB SERVICES

IBM Research Technologies had several
interesting demos. One dealt with pro-
viding Web services via mobile devices.
Suppose that you own an IBM Linux
watch with embedded Bluetooth net-
working. Your watch can export multi-
ple services. For example, IBM demons-
trated a watch that exported a payment
protocol; if you go to a store that is Blue-
tooth-enabled, you can purchase your
items via your watch. Your watch could
export a time service that allows it to
synchronize its clock with other network
devices. Your watch could also exchange
electronic business cards with other
watches.

CONSTRAINTS: AN ABSTRACTION TO EXPRESS

SEMANTICS FOR RECONCILIATION

Mobile devices often have intermittent
network connectivity. This means that if
several devices want to modify a shared
database, there will be periods when a
node’s updates cannot be immediately
propagated to its peers or the central
repository. When devices regain connec-
tivity and submit their updates, the
database must reconcile all of the
updates to ensure that the final database
state is “sensible.” Individual applica-
tions often have specific reconciliation
semantics, but the database would prefer
to support multiple applications in a
generic fashion. When mobile devices in
the IceCube system emerge from discon-
nected operation, they do not transmit
their disconnected updates directly to
the database. Instead, they send these
transactions to an automatic inference
module. This module outputs generic
constraints for a device’s application-
specific updates. For example, one set of
operations may need to commit in
sequential order; in another update

group, perhaps all of the actions must
commit or none of them must commit.
The automatic inference module delivers
a log of actions and a constraint list to
the IceCube Generic Reconciler. If the
reconciler can generate a feasible recon-
ciliation schedule, it delivers the associ-
ated transactions to the central database,
which is oblivious to application-specific
reconciliation semantics.

LOCATION MANAGEMENT

SINGLE REFLECTION SPATIAL VOTING: A
NOVEL METHOD FOR DISCOVERING

REFLECTIVE SURFACES USING INDOOR

POSITIONING SYSTEMS

Robert Harle and Andy Hopper,

University of Cambridge; Andy Ward,

Ubiquitous Systems Limited

A key goal of many pervasive computing
systems is to generate a map of their sur-
roundings. In the Single Reflection Spa-
tial Voting system, people wear tags that
emit ultrasonic pulses. As users walk
through a room, the reflections from
their tags’ pulses are detected by sensors
in the ceiling. By observing the intersec-
tions of these reflections, the sensors can
determine the locations of walls and fur-
niture in the room.

THE LIGHTHOUSE LOCATION SYSTEM FOR

SMART DUST

Kay Römer, ETH Zurich

“Smart dust” networks consist of mil-
limeter-scale autonomous devices with
integrated computing, sensing, and
wireless communication capabilities. A
base station acts as a data sink for infor-
mation collected by the nodes. To
impose a geographic ordering over this
data, the nodes must have a sense of
their relative spatial orientations. How
can we provide this topological informa-
tion without consuming an excessive
amount of power? Nodes cannot use
active radio communication, because
the required antennas are too large and
require too much power. In the Light-
house approach, the nodes detect their
location in a passive fashion. The base
station emits a continually rotating light

MOBISYS 2003�

stream. During each rotation, a node
can measure the amount of time that it
is illuminated by the beam. If the node
knows the rotation rate of the light-
house, it can use simple trigonometric
formulas to determine its distance from
the base station. If we introduce a sec-
ond and third lighthouse, all with per-
pendicular beam sweeps, then a node
can determine its location in two and
three dimensions, respectively.

The primary advantage of the lighthouse
protocol is that a node does not expend
energy talking to other nodes or to the
base station. Furthermore, the code that
performs the trigonometric calculations
has small CPU and memory require-
ments.

A member of the audience observed that
the sensor nodes are very small and thus
can be jostled by the wind or other
vibrations. These movements could dis-
turb a node’s observation of the light-
house beam and thus upset its location
calculations. The speaker said that this
problem can be solved by equipping
nodes with accelerometers. The
accelerometers would measure any
unexpected movement, and the trigono-
metric calculations could be adjusted by
the necessary amount.

ANONYMOUS USAGE OF LOCATION-BASED

SERVICES THROUGH SPATIAL AND TEMPORAL

CLOAKING

Marco Gruteser and Dirk Grunwald,

University of Colorado, Boulder

Fifteen years ago, Tim McCarthy of
Motorola’s GPS business noticed that
many devices suddenly had embedded
clocks. McCarthy now predicts that
every device will soon have an embed-
ded location sensor. As these sensors
become ubiquitous, they will introduce
new threats to location privacy. For
example, if a malicious party has access
to accurate location information about
you, he can infer whether you have
recently visited a hospital or a political
organization. The key idea underlying
cloaking is k-anonymity. A subject is k-

66 Vol. 28, No. 4 ;login:

anonymous if its associated location
data is indistinguishable from that of k-
1 other subjects. In other words, given a
rectangular bounding area and a time
interval, this data must describe at least
k unique subjects. To achieve this
anonymity, mobile nodes indirectly
communicate with location services via
a trusted anonymity proxy. To provide
k-anonymity, this proxy alters the posi-
tion data in a location service request
before forwarding it to the actual ser-
vice. Communication between a node
and its proxy is authenticated and
encrypted to prevent eavesdropping.
There are two primary areas of future
work. Even though the proxy is trusted,
it introduces another principal that can
be subverted; a better system would
eliminate the need for a proxy that is
separate from the node itself. More
research is also needed to discover
appropriate values for k in different
application environments.

SUPPORTING APPLICATIONS OVER

MOBILE NETWORKS

RESERVATIONS FOR CONFLICT AVOIDANCE IN

A MOBILE DATABASE SYSTEM

Nuno Preguiça, J. Legatheaux Martins,

Miguel Cunha, Henrique Domingos,

Universidade Nova de Lisboa

Mobile devices often have intermittent
network connectivity. If multiple clients
can autonomously manipulate a shared
central database, there must be a
method for reconciling updates that
occur when the devices are discon-
nected. To guarantee that client updates
can always be successfully reconciled, the
Mobisnap database gives clients reserva-
tions before they disconnect. For exam-
ple, a reservation might allow a client to
use a record value for a given amount of
time, even though that value may be
outdated when the client reconnects. A
client can determine whether its transac-
tions will commit on the central server
by examining its personal reservation
set. This introspection only requires
local state. Thus, even disconnected
clients can be confident that their trans-

actions will commit if they have the
appropriate reservations.

PROTECTING APPLICATIONS WITH TRANSIENT

AUTHENTICATION

Mark D. Corner and Brian D. Noble,

University of Michigan

Current authentication systems typically
retain long-term authority to act on
their users’ behalf after login. Unfortu-
nately, if your laptop is stolen after you
login, the authentication system will not
prevent a thief from rummaging
through your private information. There
is a fundamental tension between
requiring frequent authentication, which
is secure but irritating, and permitting
infrequent authentication, which is
more usable but less safe. In the tran-
sient authentication system, a laptop’s
hard disk data is always encrypted. The
user wears a token that has wireless net-
working capabilities. The token auto-
matically and securely releases the keys
that enable the laptop to decrypt its disk
data. When the user leaves (as indicated
by the token moving out of communica-
tion range), the laptop encrypts its
memory. When the user returns, the
token transparently authenticates the
user and provides the necessary keys for
the laptop to decrypt its memory and
resume execution. Corner and Noble
also provide an API that allows applica-
tions to selectively protect sensitive in-
memory information.

IFLOW: MIDDLEWARE-ASSISTED

RENDEZVOUS-BASED INFORMATION ACCESS

FOR MOBILE AD HOC APPLICATIONS

Zongpeng Li, Baochun Li, and Xin

Zhou, University of Toronto; Dongyan

Xu, Purdue University

iFlow is a middleware framework for
disseminating information in mobile ad
hoc applications. iFlow leverages node
mobility to support “information ren-
dezvous”: data suppliers spread popular
content on third-party nodes as they
travel, and data consumers collect these
information deposits as they move
around the network. Suppliers use Tor-

nado codes and network coding to effi-
ciently break content into smaller units
that are easily distributed and recon-
structed. Using these techniques, iFlow
uses less communication bandwidth
than systems that deliver data directly
from supplier to consumer.

SYSTEMS SUPPORT FOR MOBILITY

FULL TCP/IP FOR 8-BIT ARCHITECTURES

Adam Dunkels, Swedish Institute of

Computer Science

Conventional wisdom states that the
TCP/IP protocol suite is too complex to
fully implement in a constrained
resource environment. Dunkels pre-
sented compact implementations of the
TCP/IP stack for 8-bit architectures.
These stacks satisfy the necessary prop-
erties from RFC 1122 that enable a host
to act as an endpoint for generic TCP
traffic. 8-bit applications interact with
the stacks through an event-driven API.

Several audience members challenged
the need for an 8-bit TCP/IP stack. One
person suggested that there are no 8-bit
applications that need complete TCP/IP
support and that more complex chips
have enough resources to support the
unmodified stack. Another person pro-
posed that the full protocol stack should
be run on a proxy machine. This solu-
tion would provide embedded devices
with the reliability of TCP while keeping
embedded code size small.

SYSTEM SERVICES FOR AD HOC ROUTING:
ARCHITECTURE, IMPLEMENTATION, AND

EXPERIENCES

Vikas Kawadia, University of Illinois,

Urbana-Champaign; Yongguang Zhang,

HRL Laboratories, LLC; Binita Gupta,

Qualcomm Inc.

The authors argued that current operat-
ing system architectures are inappropri-
ate for supporting ad hoc routing. Most
OSes separate the notions of packet for-
warding and packet routing. However, in
ad hoc protocols, a data packet can also
have a routing function (e.g., route dis-
covery). The authors defined a generic

67August 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
SAPI to add ad hoc routing support to an

OS’s existing networking framework.
They implemented this API for the
Linux 2.4 kernel using a user-level
library and a small loadable kernel mod-
ule. The authors used their new API to
implement AODV and part of DSR.
Referring to the difficulties they encoun-
tered in correctly implementing these
protocols, the authors argued that sepa-
rating routing and forwarding mecha-
nisms in ad hoc protocols is “profoundly
important” for ensuring protocol effi-
ciency, extensibility, and ease of imple-
mentation. This proposition was
vigorously criticized by Dave Johnson,
who said that ad hoc protocols combine
forwarding and routing for valid rea-
sons. Johnson dismissed the notion that
implementation difficulty always justi-
fies changes to valid design decisions; he
cited the example of TCP, which is com-
plex but effective.

PREDICTIVE RESOURCE MANAGEMENT FOR

WEARABLE COMPUTING

Dushyanth Narayanan, Carnegie

Mellon University; Mahadev

Satyanarayanan, Carnegie Mellon Uni-

versity and Intel Research Pittsburgh

Applications for wearable computers
(e.g., speech recognition or translation
software) always desire more resources
than are available in such a constrained
environment. To ensure low response
times for these resource-intensive appli-
cations, a system can support multi-
fidelity computations. A multi-fidelity
computation is one which accepts a
computation request and a description
of available resources, and generates the
highest fidelity result that it can achieve
with those resources. The authors
describe a concrete system which, given
the current resource supplies, can auto-
matically predict the latencies associated
with generating outputs of varying
fidelity. The system executes the highest
quality operations that still have tolera-
ble latencies; it observes the actual corre-
lations between output fidelity and
resource usage to dynamically calibrate

its predictions. Experiments show that
this approach can reduce mean latency
by 60% and latency variability by 30%.

SENSOR NETWORKS

DESIGN AND IMPLEMENTATION OF A

FRAMEWORK FOR EFFICIENT AND

PROGRAMMABLE SENSOR NETWORKS

Athanassios Boulis, Chih-Chieh Han,

and Mani B. Srivastava, University of

California, Los Angeles

SensorWare is a framework for creating
distributed applications in wireless ad
hoc sensor networks. All programs are
represented as event-driven state
machines. After a user injects a program
into the network, the program
autonomously migrates and/or produces
multiple copies of itself in response to
changing environmental conditions.
Users are not burdened with the chore
of assigning tasks to nodes. The Sensor-
Ware runtime environment provides
abstractions for radios, sensors, batter-
ies, etc., so writing portable code is easy.
SensorWare also provides support for
threading and message queues.

AN ENTITY MAINTENANCE AND CONNECTION

SERVICE FOR SENSOR NETWORKS

Brian Blum, Prashant Nagaraddi,

Anthony Wood, Tarek Abdelzaher, Sang

Son, and Jack Stankovic, University of

Virginia

The primary goal of sensor networks is
to monitor environmental events. Blum
et al. described an API for associating
addresses with these events, making it
easy for applications to communicate
with nodes in the vicinity of the event.
The API also allows the network to asso-
ciate state with each event; this state
migrates with the event as it moves
through the network. One audience
member questioned whether this model
pushed too much work onto the light-
weight sensor nodes. Blum noted that
the amount of data sent to the base sta-
tion is reduced, since information about
each event is only conveyed to the base
station by a single “leader node.” How-
ever, he admitted that the complexity of

MOBISYS 2003�

pattern recognition for different event
types is not explicitly addressed by his
system.

ENERGY MANAGEMENT

OPERATING SYSTEM MODIFICATIONS FOR

TASK-BASED SPEED AND VOLTAGE

SCHEDULING

Jacob R. Lorch, Microsoft Research;

Alan Jay Smith, University of California,

Berkeley

RightSpeed is a dynamic voltage sched-
uler for Windows 2000. Given a set of
task deadlines, RightSpeed minimizes
the voltage (and thus the processor
speed) needed to meet these deadlines.
Applications can explicitly provide
deadlines, or RightSpeed can infer them
by observing user-interface events and
thread activity. A voltage/speed setting is
“worthwhile” if using it saves more
power than an emulated version that
uses a combination of faster and slower
settings. RightSpeed needs at least three
worthwhile settings to improve per-
formance. Interestingly, the authors dis-
covered that several popular
voltage-scaling processors do not have
enough worthwhile settings for Right-
Speed to save energy! However, simula-
tions show that future processors with
more worthwhile settings will reap large
energy savings.

ENERGY-AWARE LOSSLESS DATA

COMPRESSION

Awarded Best Paper

Kenneth Barr and Krste Asanović, MIT

An add instruction consumes less than a
nanojoule of energy, but sending a single
bit over a wireless network can consume
1000 nanojoules. Barr and Asanović
explored the energy savings that can be
achieved via data compression and
decompression over wireless links. They
found that receiving and decoding com-
pressed data is usually more efficient
than receiving uncompressed data. The
authors also observed that compression
programs have poor cache behavior.
Handling a cache miss is very expensive,

68 Vol. 28, No. 4 ;login:

so compressing data before transmission
can lead to more energy consumption
than regular uncompressed transmis-
sion! The authors demonstrated how
careful selection of data structures can
improve cache behavior and provide the
desired energy savings. They described

how idle power consumption affects the
choice of compression algorithms.
Finally, they showed how to optimize the
energy savings for communication
involving devices with different hard-
ware profiles.

ENERGY-ADAPTIVE DISPLAY SYSTEM DESIGNS

FOR FUTURE MOBILE ENVIRONMENTS

Subu Iyer, Robert Mayo, and

Parthasarathy Ranganathan, Hewlett

Packard Labs; Lu Luo, Carnegie Mellon

University

Iyer et al. noted that displays consume
over half of the power in mobile devices.
They also presented a new user study
showing that people using desktop and
laptop computers typically focus on only
60% of the total display area. In their
new “dark windows” system, the user’s
focused window retains its normal
brightness and color, but the remaining
screen areas are dimmed or displayed in
a different energy-saving hue. By com-
bining dark windows with new OLED
screen technology, displays can consume
30% less power. An audience member
questioned the authors’ experimental
methodology. He noted that he used
100% of his small laptop screen but a
much lower percentage of his big desk-
top display. Therefore, it may be inap-

propriate to derive behavioral general-
izations from a user set having heteroge-
neous display sizes, and thus potentially
divergent usage patterns.

MOVING PARTS OF APPLICATIONS

TACTICS-BASED REMOTE EXECUTION FOR

MOBILE COMPUTING

Rajesh Krishna Balan, SoYoung Park,

and Tadashi Okoshi, Carnegie Mellon

University; Mahadev Satyanarayanan,

Carnegie Mellon University and Intel

Research Pittsburgh

How can users run resource-intensive
applications such as speech recognition
software on a resource-constrained
mobile platform? In the basic remote
execution approach, mobile clients
offload work to nearby servers. These
servers use their more powerful compu-
tational resources to calculate the
required results, which are then shipped
back to the mobile client. Balan et al.
introduce the new idea of tactics. In
their Chroma system, developers split
programs into functional units called
modules. Each application also exports a
tactics list which enumerates the useful
module-level partitions. These tactics
constrain the search space for module
distribution, reducing the time needed
to determine the best allocation. Given
current resource availability and expec-
ted resource demands, the best tactic is
the one that provides the smallest laten-
cy and the best fidelity.

An audience member raised the insight-
ful question of whether Chroma is
applicable to applications people cur-
rently use. Chroma may work well for
speech recognition and language trans-
lation, but would it improve the per-
formance of popular email clients, Web
browsers, or text editors?

COLLABORATION AND MULTIMEDIA

AUTHORING IN MOBILE DEVICES

Eyal De Lara, University of Toronto;

Rajnish Kumar and Dan S. Wallach,

Rice University; Willy Zwaenepoel,

École Polytechnique Fédérale de

Lausanne

Program Chair Robert T. Morris with
Award winners Barr and Asanović

To support multimedia collaboration
between weakly connected mobile
devices, the authors introduce two new
concepts. Adaptation-aware editing dis-
tinguishes between user updates and
fidelity modifications introduced by the
adaptive system; users can edit low-
fidelity data and later merge their
changes with the shared high-fidelity
version. Progressive update propagation
reduces the upload time of updates by
shipping partial or reduced-fidelity ver-
sions of these updates. The authors also
decompose top-level documents into
multiple component documents, e.g.,
sound, video, text. By reducing commu-
nication overhead and sharing granular-
ity, mobile users can issue more frequent
updates with fewer conflicts.

UNDERSTANDING AND BUILDING

BETTER MOBILE NETWORKS

CHARACTERIZING MOBILITY AND NETWORK

USAGE IN A CORPORATE WIRELESS LOCAL-
AREA NETWORK

Magdalena Balazinska, MIT; Paul

Castro, IBM T.J. Watson Research

Center

The authors provided detailed traces of
a corporate WLAN environment spread
over three buildings. They characterized
user behavior along two primary dimen-
sions: persistence (session duration) and
prevalence (patterns of access point
usage). The period of mobility for most
users was typically more than one day,
and 50%–80% of all users were occa-
sionally or somewhat mobile. Most peo-
ple spent a majority of their time at a
single “home” access point. However, a
user’s average bandwidth usage was the
same at arbitrary access points, and
users had more short sessions than long
sessions across all access points. The
authors also observed that the aggregate
bandwidth usage of an access point is
somewhat correlated with its number of
users, but it is strongly correlated with
the identity of these users. An audience
member commented that corporate
infrastructures usually have fast-wired
networks that people use for the major-

69August 2003 ;login: HOTOS-IX �

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Sity of their work. He argued that the

authors’ traces do not truly represent
“mobile” users. The session chair sug-
gested that the study examine “portable”
users as opposed to “mobile” users.

HotOS-IX
MAY 18–21, 2003
LIHUE, HAWAII
[This is a somewhat abbreviated set of
summaries of the events at this conference.
A complete set of summaries is available
at http://www.usenix.org/events/
hotos03/. Ed.]

INVITED TALK

Summarized by David Oppenheimer

OPERATING SYSTEMS: SHOULDN’T THEY BE

BETTER?

Andrew Hume, AT&T Labs–Research

Andrew Hume gave the HotOS keynote
talk, explaining that his perspective
comes from having designed, imple-
mented, and delivered large-data appli-
cations for more than 10 years. The
problems he discussed in the talk were
that operating systems have gone “from
a help to a hindrance,” that even users’
lowered expectations for operating sys-
tems have not been met, and that as a
result, applications have to be designed
around OS quirks. Hume pointed out
that this situation hasn’t always been the
case, citing WORM-based backup sys-
tems in research versions of UNIX and a
cluster-based billing system that AT&T
built using Plan 9 as examples of systems
that were highly reliable, even under
load.

The first problematic system Hume
described was Gecko, a large-scale
(250GB/day) billing system imple-
mented in 1996 on Solaris 2.6. AT&T
required 1GB/sec. of file-system
throughput and predictable use of
memory. Among the problems encoun-
tered were: Solaris crashed every few
days for the first six months that the sys-
tem was in production; Solaris limited
file throughput to about 600MB/sec.;
reading large files sequentially crashed
the VM; and a “VM roller coaster” devel-
oped when a large chunk of memory
was allocated (causing a repetitive page-
out, page-in cycle of all the system’s
physical memory, rather than just pag-

70 Vol. 28, No. 4 ;login:

ing out the amount of new memory
needed).

The second problematic system Hume
described was a replacement for Gecko
that required six times the capacity of
the original Gecko. This system was
implemented on a cluster running
Linux. The architecture was a “Swiss
canton” model of loosely affiliated
independent nodes with a single locus of
control, data replication among nodes,
and a single error path so that software
could only halt by crashing (there was
no explicit shutdown operation). Hume
described eight problems the Gecko
implementers experienced with Linux
(versions 4.18 through 4.20), including
Linux’s forcing all I/O through a file-sys-
tem buffer cache with highly unpre-
dictable performance scaling (30MB/sec.
to write to one file system at a time,
2MB/sec. to write to two at a time), gen-
eral I/O flakiness (1–5% of the time cor-
rupting data read into gzip), TCP/IP
networking that was slow and that
behaved poorly under overload, lack of a
good file system, nodes that didn’t sur-
vive two reboots, and slow operation of
some I/O utilities such as df. In general,
Hume said he has concluded that “Linux
is good if you want to run Apache or
compile the kernel. Every other applica-
tion is suspect.”

Hume proposed the following definition
of OS reliability: “[The OS] does what
you ask, or it fails within a modest
bounded time.” He noted that FreeBSD
has comparable functionality to Linux,
better performance, and higher reliabil-
ity, and he speculated that this might
stem from BSD’s (and other “clean, lean,
effective systems”) having been built
using “a small set of principles exten-
sively used, and a sense of taste of what
is good practice, clearly articulated by a
small team of mature, experienced peo-
ple.” Hume took Linux to task for not
demonstrating these characteristics, in
particular for being too bloated in terms
of features, and for having been devel-
oped by too large a team. Further, he

singled out the Carrier Grade Linux
effort for special condemnation for
“addressing zero of the [types of] prob-
lems” he has had.

SESSION: THE EMPEROR’S CLOTHES

Summarized by Matt Welsh

HIGH AVAILABILITY, SCALABLE STORAGE,
DYNAMIC PEER NETWORKS: PICK TWO

Charles Blake and Rodrigo Rodrigues,

MIT Laboratory for Computer Science

Charles Blake spoke on the overheads of
“maintenance bandwidth” – network
bandwidth consumed to maintain a
given level of replication or redundancy
– in a peer-to-peer storage system. The
basic argument is that maintenance
bandwidth across the WAN, not the
aggregate local disk space, is the funda-
mental limit to scalability in these sys-
tems. Given the dynamics of nodes
joining and leaving the system, Charles
presented a conservative estimate of the
maintenance bandwidth that scales with
the WAN bandwidth and average life-
time of nodes in the system. Under a
typical scenario (100 million cable
modems with a certain bandwidth avail-
able for replication, one week average
lifetime, and 100GB storage per node),
only 500MB of space per node is usable,
only 0.5% of the total.

To try to address these problems,
Charles looked at alternatives such as
admission control (only admitting “reli-
able” nodes) or incentivizing nodes to
have long lifetimes. It turns out that a
small core of reliable nodes (such as a
few hundred universities with a single
reliable machine dedicated to hosting
data) yields as much maintenance band-
width reduction as millions of home
users with flaky connections. The talk
concluded with a number of open issues
in organizing WAN-based storage sys-
tems, such as whether it is appropriate to
assume millions of flaky users and
whether the requirement of aggregate
data availability should be reconsidered.

http://www.usenix.org/events/

ONE HOP LOOKUPS FOR PEER-TO-PEER

OVERLAYS

Anjali Gupta, Barbara Liskov, Rodrigo

Rodrigues, MIT Laboratory for

Computer Science

Anjali Gupta presented a talk on the use
of one-hop lookups in peer-to-peer sys-
tems, avoiding the high latency associ-
ated with the typical log (N) lookup
paths required by most systems. The
challenge is keeping up with member-
ship change information on all hosts.
For example, the UW Gnutella study in
2002 showed an average node session
time of 2.9 hours, implying 20 member-
ship changes per second in a system with
100,000 hosts. Anjali presented a hierar-
chical scheme, in which the address
space (forming a ring) is subdivided into
slices, each with a slice leader that is the
successor to the midpoint in the slice.
Slices are further subdivided into units.

The basic approach is for nodes to
exchange frequent keep-alive messages
with their predecessor and successor
nodes. A change to a node’s successor is
an event that is propagated by piggy-
backing a recent event log onto keep-
alive messages. A node change event is
relayed to the slice leader, which periodi-
cally (every 30 seconds) notifies other
slices of the updates. Internally to a slice,
slice leaders periodically (every 5 sec-
onds) notify unit leaders of node change
information. Given some reasonable
assumptions on the size of the system,
all nodes can be updated within 45 sec-
onds of a node leaving or joining the
system, which permits a 99% “hit rate”
for an address lookup. In this scheme, it
is important to choose good slice leaders
that are well-provisioned. Anjali con-
cluded with a summary of ongoing
implementation and experimentation
work, noting that systems larger than a
million nodes will require two-hop
lookups.

71August 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
SAN ANALYSIS OF COMPARE-BY-HASH

Val Henson, Sun Microsystems

Val Henson presented one of the most
controversial papers of the conference,
admonishing those systems that rely
upon comparison of data by comparing
cryptographic hashes of the data. Many
systems (such as rsync, Venti, Pastiche,
LBFS, and OpenCM) use this technique,
but it is not yet widely accepted by OS
researchers, due to little characterization
of the technique and many unanswered
questions. The risk of collision using
(say) a 160-bit SHA-1 hash is just 2-160,
which is far lower than a hardware fail-
ure or probability of an undetected TCP
error. So why the controversy?

First, these techniques assume that data
is random, but real data is not random
and has a fair amount of commonalities
(think about ELF headers and English
text). Second, cryptographic hashes were
designed for authentication and care
about “meaningful” collisions, such as
two contracts with the same text but dif-
ferent dollar amounts that happen to
collide in the hash space. Third, hash
algorithms are short-lived, and obsoles-
cence is inevitable – systems need an
upgrade strategy. Finally, collisions are
deterministic – two blocks that collide
always collide – rather than a transient
error such as a hardware fault. Hash col-
lision is therefore a silent error in those
systems that rely on compare-by-hash
techniques. Val claims that we should be
striving for correctness in systems soft-
ware, not introducing “known bugs.” It
is OK to rely on compare-by-hash when
the address space is not shared by
untrusted parties, and when the user
knows and expects the possibility of
incorrect behavior — citing rsync as an
example. Note that “double hashing” is
not an acceptable solution, as this results
in just another hash function, albeit one
with a lower collision probability.

Some alternatives to compare-by-hash
were discussed, such as content-based
addressing that checks for collisions,
using compression, maintaining state to

only send or store identical blocks once
(as in LBFS), sending diffs instead of an
entire block, or using universal IDs for
common blocks.

WHY EVENTS ARE A BAD IDEA (FOR HIGH-
CONCURRENCY SERVERS)

Rob von Behren, Jeremy Condit, Eric

Brewer, University of California,

Berkeley

Rob von Behren raised the argument of
thread-based versus event-driven con-
currency in high-concurrency servers,
claiming that thread-based approaches
are far better, due to their ease of pro-
gramming. To counter the arguments
that threaded systems have inherently
higher overhead than events, Rob pre-
sented early results from a lightweight
user-level thread system that performed
as well as an event-driven system on a
Web server benchmark. Furthermore,
threads have better programming and
debugging tools, leading to increased
productivity. To address the problem of
high overhead for per-thread stacks, Rob
proposed the use of compiler support to
automatically compress stacks, for
example, by moving “dead” elements off
the stack across a blocking operation.
Using cooperative scheduling avoids the
overhead of generic thread synchroniza-
tion, but there are some issues to address
here such as fairness, the use of multi-
processors, and how to handle sponta-
neous blocking events such as page
faults.

Rob pointed out that events have the
advantage of permitting very complex
control flow structures, but very few
programmers use these structures and
threads can capture the vast majority of
scenarios. Another problem with thread
schedulers is that they are “generic” and
have little knowledge of application
structure. To permit greater cache local-
ity, Rob proposed “2D” batch schedul-
ing, in which the compiler annotates the
application code to indicate to the
scheduler system where the various
stages of the thread’s execution are
located.

HOTOS-IX �

Rob presented some measurements of a
simple Web server benchmark based on
his user-level threads package, capable of
supporting over 100,000 threads, imple-
mented in about 5000 lines of C code.
The server outperforms a Java-based
event-driven Web server, probably due
to the large number of context switches
in the event-driven system. Rob con-
cluded that it may be possible to achieve
higher performance using threads than
events, in part because events require
dynamic dispatch through function
pointers that makes it difficult to per-
form inlining and branch prediction.

PANEL DISCUSSION

Charles Blake kicked it off by asking why
Val Henson’s birthday paradox probabil-
ity was so hard to compute. She respon-
ded that essentially it comes down to the
infinitesimal numbers involved.

Eric Brewer pointed out that systems
should use CRC, not MD5; since CRC is
no good for preventing malicious colli-
sions, there is no illusion that it is. One
should also use a random salt with the
checksum, which should help with the
non-randomness of real data. Val
responded that if you have to recompute
the checksum across the actual data,
then you are losing the benefits of this
technique.

George Candea raised the point that
although a P2P client that prevents a
user from disconnecting appears less
desirable at first, it would lead to higher
availability for the service as a whole.
This makes the service more valuable,
and hence provides greater incentive to
use it (i.e., download the client).

Ethan Miller asked whether people are
really comfortable with the concept of
probabilistic storage. Val agreed that the
notion of dynamic, unreliable storage
systems makes her uncomfortable.

Ranjita Bhagwan pointed out that
Charles’s calculations don’t push P2P
out of the picture, asking whether there
may be a cost benefit to a peer-to-peer

72 Vol. 28, No. 4 ;login:

approach versus a centralized approach.
Charles said that fundamentally his
argument was economic, concerning the
bandwidth versus storage requirements
for these systems. Andrew Hume said
that the best nodes are professionally
managed and that high-bandwidth con-
nections and support are expensive, so
the economics of the two approaches are
more similar than they are different.

Mohan Rajagopalan said that compiler
optimizations actually perform very well
for event-based systems, and that imple-
mentation is really what matters. Event-
based systems permit a decoupling
between caller and callee, so it is easier
to write an event-based “adaptive” pro-
gram than a threadbased one. Isn’t this a
fundamental benefit? Rob responded
that events do make it easier to perform
composition and interpositioning, but
that this can also be done in the thread
model. Eric mentioned that Click is very
configurable and runs as a single large
thread.

Peter Druschel was skeptical that we can
do P2P storage based on home-con-
nected desktops, but that the alternative
is not centralized systems. For example,
one can reap the benefits of unused
desktop systems within a large organiza-
tion. Charles did not disagree with that.

This was followed by an exchange
between Peter and Rodrigo Rodrigues
about using so-called “scalable lookup”
vs. some other organization for P2P file
storage. Basically, Rodrigo pointed out
that in a scenario where the individual
nodes are very available/reliable and the
network isn’t giant, there is no need for
scalable lookup and other considera-
tions should take priority. Peter
responded that having a large number of
nodes and security implied the need for
small lookup-state optimizations.

SESSION: POPPING & PUSHING

THE STACK

Summarized by Ranjita Bhagwan

TCP OFFLOAD IS A DUMB IDEA WHOSE

TIME HAS COME

Jeffrey C. Mogul, Hewlett Packard

Laboratories

TCP offload in the traditional sense vio-
lates performance requirements, has
practical deployment issues, and targets
the wrong applications. TCP Offload
Engines (TOEs) impose complex inter-
faces and cause suboptimal buffer
management. Moreover, lots of small
connections overwhelm savings because
of connection management. Event man-
agement is a problem. Lots of virtual
resources need to be managed. Also, one
of the main motivations for TOE has
been that TCP implementation in the
OS is bad.

However, it is no longer a dumb idea,
because now we are offloading higher-
level protocols onto hardware. The justi-
fication for offloading TCP is simply
that you can’t offload the higher-level
protocols without also offloading TCP.
The sweet spot for TCP offload is when
the application uses very high band-
width and has relatively low end-to-end
latency, long connection durations, and
relatively few connections (e.g., storage
server access and graphics). Also, several
economic trends favor TCP offload.
One would like to replace special-pur-
pose hardware with cheap commodity
parts, such as 1- or 10-gig Ethernet. This
helps because with these in place, opera-
tors have only one kind of fabric to pro-
vision, connect, and manage. Still, many
challenges remain. Data copy costs still
dominate, and busses are too slow. Zero
copy and single copy seem too hard to
adopt in commercial OSes. However,
with the advent of RDMA, vendors want
to ship RNICs in volume, allowing one
kind of chip for all applications. It
would mean cheaper hardware. There
are also several upper-level protocols
available, such as NFSv4 and DAFS. Still,
many problems of TCP offload remain:

There are security concerns, and so far
the benefits have been elusive. The new
networking model may require changes
to traditional OS APIs. Systems people
need to give this due consideration.

TCP MEETS MOBILE CODE

Parveen Patel, Jay Lepreau, University

of Utah; David Wetherall, Andrew

Whitaker, University of Washington

The authors address the problem of
deployment of transport protocols by
proposing an extensible transport layer,
called XTCP. The main argument is that
transport protocols, such as TCP, need a
self-upgrade mechanism, and untrusted
mobile code can help build such a
mechanism. Several modifications to
TCP, as well as alternative transport pro-
tocols, have been proposed. However, as
with any new protocol, deployment is an
issue. Currently, it takes many years
before a new protocol or an extension
can be used by applications: A new pro-
tocol or extension has to be approved by
standards committees, implemented by
OS vendors, and finally enabled-by-
default at both ends of communication.

In the proposed solution, untrusted
peers can upgrade each other with new
transport protocols using mobile code.
A typical usage scenario is that of a Web
server. A Web server can download a
high-performance version of TCP, after
which it tells every client to download
the same version from it. Then the client
and the server can speak the upgraded
version of TCP. This solution avoids all
the steps of the deployment process that
need approval and support from third
parties, such as standards committees
and OS vendors.

There are several challenges to building
such an extensible layer, notably host
and network safety. The presenter con-
trasted XTCP with “active networking”
and argued that the domain of transport
protocols is restricted enough that host
and network safety challenges can be
met without degrading performance.

73August 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
SHost safety is assured by providing

memory protection and resource con-
trol. Memory protection is achieved by
using Cyclone, a typesafe C-like lan-
guage. The stylized memory-usage pat-
tern of TCP extensions – no shared state
between extensions and predictable
ownership of data buffers – makes
resource control possible using tradi-
tional runtime methods. XTCP uses the
well-understood notion of TCP-friendli-
ness as a measure of network safety. All
extensions written using the XTCP
framework are forced to conform to
TCP-friendliness using the ECN nonce
mechanism. In contrast, active network-
ing had no such well-defined notion of
network safety, and host safety in the
face of arbitrary code was costly.

XTCP has been implemented in
FreeBSD 4.7. Support for user-level
transports is being developed currently.

EXPLOITING THE SYNERGY BETWEEN PEER-
TO-PEER AND MOBILE AD HOC NETWORKS

Y. Charlie Hu, Saumitra M. Das,

Himabindu Pucha, Purdue University

There appear to be a number of similari-
ties in the problems addressed by
research in peer-to-peer and mobile ad
hoc networking. One such area is that of
routing. The speaker showed the simi-
larity between the problems solved by
Pastry and how it can be used in ad hoc
networking, too. He described a new
protocol, DPSR, which stores routing
state in a manner similar to Pastry. This
reduces routing state per node from
O(N) to O(log N). DPSR uses node ID
assignment, node state, routing, node
join procedures, and node failure or out
of reach in much the same manner as
Pastry; inherits all DSR optimizations
on source routes; and contains a number
of additional optimizations related to
Pastry’s routing structures and opera-
tions.

Simulations of DPSR for a 50-node sys-
tem show that the routing overhead of
DPSR scales better than that of DSR. In
short, DPSR outperforms DSR when the

number of connections per source is
greater than 1; performance is otherwise
equivalent.

PANEL DISCUSSION

Bogdan Popescu asked Parveen Patel if
you could use a signing mechanism to
detect unresponsive connections. Par-
veen said that the nice thing about
XTCP is that it works well without it.
Bogdan said that then you could have
DoS attacks.

Rob von Behren said that it would be
very easy to do DoS on XTCP, such as
mallocing large amounts of memory,
using a lot of CPU time, etc. Parveen
said that each malloc call is accounted
for. Rob responded that there is the
problem of DDoS. With a considerable
number of nodes using a little too much
memory, one could perform a DDoS
attack. Parveen said that this is possible
and the only way to avoid it is strict
admission control.

Jeff Mogul said that you have to make
sure that XTCP itself is not subvertible.
Because if it is, then it is a very rich envi-
ronment for spreading worms.

Peter Steenkiste said that in the early
’90s, after six months of effort, he had
decided that TCP offloading is no good.
In general, enthusiasm for TCP offload
seems lukewarm. He asked Jeff if it
would take off. Jeff responded that he
does believe that it will take off, mainly
for commercial reasons. Having only
one fabric to manage for data centers
seems good. Peter said that there appears
to be a contradiction: Earlier on, we
wanted to move things to the software
level, and now attempts are being made
to move them to the hardware. Jeff said
that switches are clearly a larger invest-
ment than NICs. So commoditizing the
NICs would be good.

Geoff Voelker asked Charlie Hu about
how much the benefits of his approach
depended on the amount of shared
source routes. Did he have a sense of the
minimum degree of shared source

HOTOS-IX �

routes needed for DPSR to work? Char-
lie answered that so far, the sharing was
small, but even in this scenario, DPSR
does no worse than DSR. So it seems like
a total gain over DSR.

SESSION: DISTRIBUTED SYSTEMS

Summarized by Amit Purohit

SCHEDULING AND SIMULATION: HOW TO

UPGRADE DISTRIBUTED SYSTEMS

Sameer Ajmani, Barbara Liskov, MIT

Laboratory for Computer Science;

Liuba Shrira, Brandeis University

Sameer Ajmani presented a solution to
upgrade distributed software automati-
cally with minimal service disruption.
He described a technique that uses a
combination of centralized and distrib-
uted components. The infrastructure
consists of three main components:
scheduling functions tell the node when
to upgrade; simulation objects enable
communication among nodes running
different versions; and transform func-
tions change a node’s persistent state
from one version to a higher one.

DEVELOPMENT TOOLS FOR DISTRIBUTED

APPLICATIONS

Mukesh Agrawal, Srinivasan Seshan,

Carnegie Mellon University

Mukesh Agrawal explained the motiva-
tion for his current research. He claimed
that the lack of distributed applications
is because of implementation difficul-
ties. He identified routing table upgrades
for distributed applications as one of the
harder problems. He mentioned the ns-2
simulator as a tool that helps to compare
design choices. And DHT is developing
building blocks to help implement dis-
tributed systems. Then he pointed out
some inherent flaws in the current
approaches. Research mainly concen-
trates on the initial stages of the life-
cycle of the applications, while his work
mainly addresses the issues with later
life-cycle stages.

74 Vol. 28, No. 4 ;login:

VIRTUAL APPLIANCES IN THE COLLECTIVE: A
ROAD TO HASSLE-FREE COMPUTING

Constantine Sapuntzakis and Monica S.

Lam, Stanford University

Constantine Sapuntzakis envisioned a
computing utility that runs not only
Internet services but highly interactive
applications commonly run on desktop
computers. On desktops, patches arrive
frequently and there is much multiple-
application sharing of such things as
OSes and libraries; hence, application
upgrades can disrupt other applications.
Constantine argued that it is possible to
borrow an idea from “network con-
nected computer appliances” to improve
the manageability and usability of com-
puters. In the architecture of their
framework, groups of virtual appliances
are maintained by makers without user
involvement. Cheaper hardware made
virtualization an attractive option.

POST: A SECURE, RESILIENT, COOPERATIVE

MESSAGING SYSTEM

Alan Mislove, Ansley Post, Charles Reis,

Paul Willmann, Peter Druschel, and

Dan S. Wallach, Rice University; Xavier

Bonnaire, Pierre Sens, Jean-Michel

Busca, and Luciana Arantes-Bezerra,

Université Paris VI

A P2P solution was presented that inter-
operates seamlessly with a wide range of
collaborative services by providing one
serverless platform. It provides three
basic services to applications: secure sin-
gle-copy message storage; event notifica-
tion; and single-writer logs that allow
applications to maintain metadata. The
claim was made that these features are
sufficient to support a variety of collab-
orative applications.

PANEL DISCUSSION

Mike Swift asked Constantine Sapuntza-
kis about the cost of complex virtual
appliances. He also noted that device
drivers talk to hardware, hence couldn’t
be virtualized, and can crash if they are
buggy. Constantine said future device
drivers could be written in user-land
and the problem could be solved. But if

the application crashes, not much can be
done.

Eric Brewer stated the view that the hard
part is sharing information: Having sep-
arate virtual appliances for everything
only works if they don’t share any infor-
mation, which means that the user must
replicate all “shared” information by
hand (as we do now with real appli-
ances, e.g., setting the clock). The path
of safe sharing leads you to shared seg-
ments as in Multics, including layers
(rings) and call gates for protected calls
into shared resources. The author
replied that Multics has some problems
and that they are planning to address
them as well.

OUTRAGEOUS OPINIONS SESSION

Summarized by David Oppenheimer
and Matt Welsh

In classic HotOS tradition, the Outra-
geous Opinions session consisted of a
stream of short presentations, some seri-
ous, some mundane, some hilarious.

Val Henson argued against the use of
checksums at all levels in a storage sys-
tem versus end-to-end checksums at the
application. Andrew Hume countered
that it’s good to have accountability at
each level when something goes wrong
in the system.

Matt Welsh presented “a brief history of
computing systems research,” in which
he urged computer scientists to think
about how their research can help to
address social problems. He pointed out
that computer scientists have always
worked on improving life for computer
scientists, focusing on improving their
own day-to-day tasks. He suggested that
computer scientists should think more
about social problems rather than “How
can I download porn and pirate music
more efficiently?” In particular, he cited
education and health care, particularly
outside of the United States and Europe,
as social problems that computer scien-
tists could help tackle – for example,
by empowering local government and

remote communities. Specific technolo-
gies he cited were peer-to-peer wireless
networks for emergency and disaster
response systems; censorship-proof elec-
tronic publishing of dissenting political
opinions; sensor networks for environ-
mental monitoring, precision agricul-
ture, and inexpensive medical diag-
nostics; highly reliable power environ-
ments; and maintenance-free PCs.

Mendel Rosenblum talked about the
similarities between micro-kernels and
virtual machine monitors (VMMs) for
running multiple untrusted environ-
ments on top of an operating system.
Both provide isolation, resource man-
agement, and a small operating environ-
ment with simple interfaces, leading to
high assurance. The key difference is
what runs on top of each – for a VMM
you don’t need to port applications to
run on it, whereas for a micro-kernel
you do. He pointed out that despite this
advantage for VMMs, academics and
industry researchers are often interested
in micro-kernels because, by not lever-
aging existing software, micro-kernels
provide academics an opportunity to
write lots of papers and industry an
opportunity to define APIs, leading to
an industry control point.

Mike Chen presented “two easy tech-
niques to improve MTTR”: redirect
users’ attention to what’s still available
when something becomes unavailable
(e.g., “Please read this new privacy pol-
icy”), and blame it on the user (e.g.,
“Did you forget your password? Please
try again.”). He pointed out that by
tricking the user, perceived availability
can easily be increased.

Timothy Roscoe railed against the con-
struction of scalable systems, claiming
that systems should only scale as far as
needed and no further. For example,
email does not need to scale globally;
who needs to send an email to every-
body? After all, whitelisting your email
to reduce spam doesn’t scale, but it
works. Timothy used Google as an

75August 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Sexample of a system where extra scala-

bility only concentrates power. He cited
libraries as a non-scalable alternative to
Google.

Dan Wallach talked about all of the
recent work on virtualizing resources
and getting multiple virtual machines to
share resources, such as shared libraries
and the OS kernel. He proposed an
alternative to these approaches, a radical
concept called a “process.”

Eric Brewer issued a call for IT research
for developing regions. He made five
claims: (1) there is a need for a direct
attack by developing new devices rather
than giving developing regions hand-
me-down machines, which are a bad fit
on cost, power, user knowledge, admin-
istration, and user literacy; (2) there is a
need for infrastructure to support thou-
sands of projects which are currently not
sharing any infrastructure; (3) building
IT for developing regions is economi-
cally viable, in that there is a market of
4 billion people, but IT must create
income for its users (e.g., by offering
a franchise model akin to that used
to provide cell phone service to rural
Bangladesh) because users do not have
disposable income; (4) the time is right
with the availability of five-dollar 802.11
chipsets, systems on a chip, low-power
designs, and solar panels; and (5) this
work can have a big impact by reducing
poverty and disease and improving the
environment, by providing developing
regions with a source of income that
they can in turn use to improve their
standard of living, stability, and security.
Lots of research directions here, includ-
ing very low-power and low-cost wire-
less communications, new speech-based
user interfaces, network proxies, and
sensors.

George Candea discussed why he
believes that wide-area decentralized
systems such as peer-to-peer networks
are “a good idea whose time has passed.”
He argued that such systems are hard to
build, test, debug, deploy, and manage,

and that they have little economic incen-
tive beyond “lack-of-accountability”
applications. He suggested that the prin-
ciples learned from building wide-area
distributed systems – strong compo
nentization, using open protocols, loose
coupling, reducing correlated faults
through diversity, and writing compo-
nents while keeping emergent behaviors
in mind – should be used to build highly
dependable “distributed” systems within
the data center. He summarized by say-
ing, “Don’t distribute centralizable apps
into the wide-area network, take the
good ideas from distributed systems and
apply them in the system-area network.”

Geoff Voelker presented a novel idea
based on the notion of value prediction
from hardware architecture: “result pre-
diction.” Rather than running the pro-
gram, we can simply guess the results,
leading to excellent speedup potential!

Emmett Witchel asked whether there is a
use for anti-optimization. One use he
suggested was to allow users to specify in
advance the amount of resources a com-
putation takes, possibly eliminating
covert channels. This would be accom-
plished by intentionally adding delay
loops to code to use all available CPU
and by spreading allocated memory all
over the address space.

Ethan Miller proposed SCUBA: Scalable
Computing for Underwater Biota
Assessment, in which 802.11 networks
would be deployed on coral reefs.

Sameer Ajmani suggested that systems
researchers consider work in computa-
tional biology: “We help biologists, then
they help thousands of people through
pharmaceuticals, genetics, etc. – it’s eas-
ier than sending computers to Africa.”
As specific examples of computational
biology problems that can directly apply
well-known computer science algo-
rithms, he cited string alignment
(dynamic programming) and database
searches for genes (hashtable with
2-tuples and 3-tuples). Andrew Hume
added that the National Institutes of

HOTOS-IX �

Health also has more money than the
National Science Foundation.

Armando Fox called for a bet whether a
peer-to-peer application would exist
before the next HotOS, that would make
more sense (economically and techni-
cally) to deploy as a peer-to-peer system
than as a centralized service. Seven peo-
ple in the audience said yes, 17 said no.
Armando offered to bet someone
(Armando taking the “no” side) for a
case of alcohol valued less than the con-
ference registration fee in 2005, but
there were no takers.

SESSION: WHEN THINGS GO WRONG

Summarized by Amit Purohit

CRASH-ONLY SOFTWARE

George Candea and Armando Fox,

Stanford University

George Candea explained how to build
Internet services that can be safely and
cheaply recovered by crash-rebooting
minimal subsets of components. He
stated that most downtime-causing bugs
are transient and intermittent and that it
is not feasible to guarantee that an appli-
cation can never crash. For recovery-safe
applications, recovery can be too long.
Crash-only software achieves crash-
safety and fast-recovery by putting all
the important non-volatile state outside
the application components into crash-
only state stores. For systems of crash-
only components to be crash-only, the
components must be decoupled from
each other, from the resources they use,
and from the requests they process. He
conceded that steady-state performance
of crash-only systems may suffer, but
argued that (1) the overall goal is to
maximize the number of requests suc-
cessfully served, not to serve them fast
and then be unavailable for a long time,
and (2) that techniques will evolve that
will improve performance of crash-only
systems, the way compilers improved the
performance of programs written in
high-level languages.

76 Vol. 28, No. 4 ;login:

THE PHOENIX RECOVERY SYSTEM:
REBUILDING FROM THE ASHES OF AN

INTERNET CATASTROPHE

Flavio Junqueira, Ranjita Bhagwan,

Keith Marzullo, Stefan Savage, and

Geoffrey M. Voelker, University of

California, San Diego

This presentation explained the design
of an operative, distributed remote
backup system called the Phoenix. Oper-
ating systems and user applications have
vulnerabilities. A large number of hosts
may share vulnerabilities and this can
result in major outbreaks. Phoenix uses
a strategy with attributes and cores. By
replicating data on a set of hosts with
different values for each attribute, it is
possible to reduce the probability of
error to near zero. In the Phoenix system
there is no single point of failure; copy-
ing with a large number of requests is
achieved by exponential backoff.

USING RUNTIME PATHS FOR MACROANALYSIS

Mike Chen, Eric Brewer, University of

California, Berkeley; Emre Kiciman,

Armando Fox, Stanford University;

Anthony Accardi, Tellme Networks

Mike Chen emphasized the benefits of
microanalysis, namely latency profiling,
failure handling, and detection diagno-
sis. He introduced the concept of “run-
time path analysis, where paths are
traced through software components
and then aggregated to understand
global system behavior via statistical
inference.” Runtime paths are also used
for failure handling and to “diagnose
problems all in an application-generic
fashion.” The group explained that their
work could be extended to P2P message
paths, event-driven systems, forks, and
joins.

MAGPIE: ONLINE MODELING AND PERFOR-
MANCE-AWARE SYSTEMS

Paul Barham, Rebecca Isaacs, Richard

Mortier, and Dushyanth Narayanan,

Microsoft Research Ltd, Cambridge, UK

Magpie is “a modelling service that col-
lates traces from multiple machines . . .,
extracts request-specific audit trails, and

constructs probabilistic models of
request behaviour.” The presenter men-
tioned that workload description and
hardware modeling could be used to
predict performance. It is possible to
augment the system by getting feedback
from past models.

USING COMPUTERS TO DIAGNOSE COM-
PUTER PROBLEMS

Joshua A. Redstone, Michael M. Swift,

Brian N. Bershad, University of

Washington

Redstone described “building a global
scale automated problem diagnosis sys-
tem that captures the . . . workflow of
system diagnosis and repair.” A com-
puter generates search terms and locates
problem reports. It stores problem
reports in a canonical global database.
When a problem occurs the computer
detects symptoms and searches the
problem database. Joshua argued that
expending more effort in building the
database could be a key for cheaper
diagnosis. He mentioned that the main
challenge lies in creating a database
structure in which it is possible to meet
user expectations.

PANEL DISCUSSION

Jeff Mogul was concerned about
whether the system effected time to
recovery. The author said there aren’t
critical time recovery requirements, as it
is more important to get the data back.
He pointed out that it is also possible to
make it faster by adding redundancy.
But it is a trade-off between storage and
time. Somebody from MIT also had a
question regarding the deployment of
the Phoenix system. The author said it
seems reasonable if there are enough
hosts running diversified OSes. Ranjitha
from UCSD asked Joshua Redstone what
would be the motivation for people to
fill the database. Joshua said an organi-
zation uses external support and, hence,
people would find it easier to resolve
problems at the cost of the effort. Mike
Jones proposed an alternative scheme
that asks users for requests and then

posts any solutions. Joshua was not sure
how to maintain the database. Mike
said, you can save the entire request and
response and then infer offline. Jay Le-
preau asked George Candea about
the impact of crash-only software on
throughput. George said it’s likely to be
lower, because of the inherently distrib-
uted approach (loose coupling, explicit
communication, etc.) to building the
system, but with time performance
will improve, as in the transition from
assembly languages to high-level lan-
guages. High-level languages enabled a
qualitative jump in the types of software
able to be written, even if the process
was slower than writing in assembly. He
also argued that “goodput” (throughput
of successfully handled requests) is more
important than absolute throughput.

SESSION: PERFORMANCE

OPTIMIZATION

Summarized by Ranjita Bhagwan

USING PERFORMANCE REFLECTION IN SYS-
TEMS SOFTWARE

Robert Fowler and Alan Cox, Rice

University; Sameh Elnikety and Willy

Zwaenepoel, EPFL

The main idea of this work is to use
application-independent measures such
as hardware instrumentation mecha-
nisms and general system statistics to
adapt system behavior. Performance
indicators such as TLB misses and cache
misses can be used to measure overhead,
while bytes sent to a network card and
flop rate can be used to measure pro-
ductivity. Productivity and overhead are
used to determine if the system needs to
be tuned. Sameh Elnikety showed results
on how server throttling of mySQL
using the TPC-W workload succeeded
in keeping the throughput at the maxi-
mum level while load increased,
whereas, without using reflection, the
throughput dropped at higher loads.

77August 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
SCASSYOPIA: COMPILER ASSISTED SYSTEM

OPTIMIZATION

Mohan Rajagopalan and Saumya K.

Debray, University of Arizona; Matti A.

Hiltunen and Richard D. Schlichting,

AT&T Labs–Research

The main idea of Cassyopia is to com-
bine program analysis and OS design to
do performance optimizations. While
the compiler has a local perspective of
optimizations, the OS has a more gen-
eral view. Cassyopia merges the two and
tries to bring about a symbiosis between
the OS and the compiler. An example of
this is system call optimization, which
profiles system call sequences and clus-
ters them together using compiler tech-
niques. The clustered system calls are
called multi-calls. With OS support for
multi-calls, performance can be
improved and, according to preliminary
results, significant savings obtained.

COSY: DEVELOP IN USER-LAND, RUN IN

KERNEL-MODE

Amit Purohit, Charles P. Wright, Joseph

Spadavecchia, and Erez Zadok, Stony

Brook University

User applications are only allowed
restricted access, which causes a lot of
crossings of the user-kernel boundary.
To prevent this, Amit Purohit proposed
a compound system call (Cosy) in which
one can execute a user-level code seg-
ment in the kernel. The authors have a
modified version of gcc that uses Cosy.
Kernel safety is ensured by limiting ker-
nel execution time; x86 segmentation
and sandboxing techniques can also be
used. The performance benefits of Cosy
have been evaluated, and 20–80% per-
formance improvements are reported.

PANEL DISCUSSION

Mike Swift said that using all the com-
piler techniques from Cassyopia for ker-
nel execution might be one way to
proceed. Mohan Rajagopalan clarified
that they do not plan to move any user-
level code into the kernel, since he
believed that interpretation in the kernel
had high overhead. They primarily

wanted to reduce the boundary-crossing
cost, and, hence, the ideologies are not
the same. Amit Purohit said that inter-
pretation in the kernel is a bottleneck,
and so they use a small interpreter.
Checking pointers would cost a lot, and
so they are using TLBs. This has some
overhead, but it’s a one-time check.
Mohan brought up the point that the
aim of Cassyopia is to apply optimiza-
tions that are quite obvious but have not
yet been done.

Ethan Miller said that the TLB overhead
in Cosy could be unavoidably high. Amit
said that is true, but the savings they are
getting are a lot more than the TLB
overhead.

Margo Seltzer hit the nail on the head,
by saying that what matters finally is the
kernel-user API. All this work on exten-
sible OSes and moving code across the
boundary is probably done because the
kernel-user API needs to be revisited. So
let’s fix the API. Applause.

Andrew Hume said that for the applica-
tions he has looked at, apart from zero-
copy and I/O, there is not much to be
gained by putting code into the kernel.
Apart from the stated scenarios, the
chances of using a multi-call are small.
Sometimes, reassurance outweighs per-
formance benefits. Mohan said that they
are also looking at smaller devices, such
as cell phones. All devices are resource
constrained. In these cases, there is also
the issue of energy savings apart from
performance. Eric Brewer asked why, for
small devices, such as in sensor net-
works, you would even want a kernel
boundary. Mohan answered that cell
phones and iPAQs can now have JVMs
running on them. They are not targeting
reprogrammable devices.

Matt Welsh asked why one would care so
much about performance on an iPAQ.

Timothy Roscoe said that since there are
different kinds of devices, there should
be different OSes for them, and then the
question would be where to put the ker-

HOTOS-IX �

nel boundary, if any, on them. Whether
there is a generic answer to that question
is still unclear.

SESSION: STORAGE 1

Summarized by David Oppenheimer

WHY CAN’T I FIND MY FILES? NEW

METHODS FOR AUTOMATING ATTRIBUTE

ASSIGNMENT

Craig A.N. Soules and Gregory R.

Ganger, Carnegie Mellon University

Craig Soules described new approaches
to automating attribute assignment to
files, thereby enabling search and organ-
ization tools that leverage attribute-
based names. He advocates context
analysis to augment existing schemes
based on user input or content analysis.
Context analysis uses information about
system state when the user creates and
accesses files, using that state to assign
attributes to the files. This is useful
because context may be related to the
content of the file and may be what a
user remembers when searching for a
file. Google has proven the usefulness
of context analysis; it chooses attributes
for a linked site by using the text associ-
ated with the link, and it analyzes user
actions after a search to determine the
user’s original intent in the search. How-
ever, the kind of information Google’s
context analysis relies on cannot be
applied directly to file systems. In partic-
ular, information such as links between
pages does not exist in traditional file
systems, and individual file systems do
not have enough users or enough “hot
documents” to make Google-like con-
text statistics useful.

Soules described access-based context
analysis, which exploits information
about system state when a user accesses
a file, and interfile context analysis,
which propagates attributes among
related files. The former relies on appli-
cation assistance or existing user input
(e.g., file names), while the latter relies
on observing temporal user access pat-
terns and content similarities and differ-
ences between potentially related files

78 Vol. 28, No. 4 ;login:

and versions of the same file. Based on a
trace analysis of usage of a single gradu-
ate student’s home directory tree over a
one-month period, Soules concluded
that a combination of the techniques he
proposes could be useful for automati-
cally assigning attributes. For example, a
Web browser can relate search terms to
the document the user ultimately down-
loads as a result of the search; files cre-
ated and accessed in a single text editor
session can be considered related; and
attributes about documents used as
input to a distiller such as LaTeX or an
image manipulator program can be dis-
tilled for attachment as attributes of the
output file. Soules also found that exam-
ining temporal relationships between
file accesses in the trace successfully
grouped many related files.

Soules stated that as future work he is
investigating larger user studies, mecha-
nisms for storing attribute mappings,
appropriate user interfaces, and how to
identify and take advantage of user con-
text switches, e.g., users moving from
one program to another.

SECURE DATA REPLICATION OVER UNTRUSTED

HOSTS

B.C. Popescu, B. Crispo, and A.S.

Tanenbaum, Vrije Universiteit,

Amsterdam, The Netherlands

B.C. Popescu described a system archi-
tecture that allows arbitrary queries on
data content that is securely replicated
on untrusted hosts. This system repre-
sents an improvement over systems
based on state signing, which can sup-
port only semi-static data and pre-
defined queries, and systems based on
state machine replication, which require
operations to be replicated across multi-
ple machines. In the authors’ system,
every data item is associated with a pub-
lic-private key pair; the private key is
known only to the content owner, and
the public key is known by every client
that uses the data. There are four types
of servers: master servers that hold
copies of content and are run by the
content owner; slave servers that hold

copies of data content but are not con-
trolled by a content owner and thus are
not completely trusted; clients, which
perform read/write operations on con-
tent; and an auditor server, described
later. The master servers handle client
write requests and lazily propagate
updates to slave servers. Master servers
also elect one of themselves to serve as
an auditor, which performs background
checking of computations performed by
slaves, taking corrective action when a
slave is found to be acting maliciously.
Slave servers handle client read requests;
they may use stale data to handle
requests, but clients are guaranteed that
once a time parameter maxLatency has
passed since a write was committed at a
master, no other client will accept a read
that is not dependent on the write. All
content in the system is versioned; the
content version of a piece of data is ini-
tialized to zero when it is created and is
incremented each time the data item is
updated.

The key challenge in building this sys-
tem is to enable clients to feel safe hav-
ing their queries handled by untrusted
slave hosts. This is accomplished proba-
bilistically, by allowing clients to send
the same request to a (trusted) master
and (untrusted) slave when they wish,
and to compare the results. When a slave
returns the result of a read, it attaches a
signed “pledge” packet containing a copy
of the request, the content version time-
stamped by the master, and the secure
hash of the result computed by the slave.
If the slave returns an incorrect answer,
the “pledge” packet can be used as proof
of the slave’s malfeasance. This proba-
bilistic checking mechanism is aug-
mented by an auditing mechanism in
which after a client accepts a result from
a slave, it forwards the slave’s “pledge”
packet to a special auditor server. The
auditor server is a trusted server that
does not have a slave set and serves just
to check the validity of “pledge” packets
by re-executing the requests and verify-
ing that the secure hash of the result

matches the secure hash in the packet.
The auditor is expected to lag behind
when executing write requests, executing
writes only after having audited all the
read requests for the content version
preceding the write.

PALIMPSEST: SOFT-CAPACITY STORAGE FOR

PLANETARY-SCALE SERVICES

Timothy Roscoe, Intel Research at

Berkeley; Steven Hand, University of

Cambridge Computer Laboratory

Timothy Roscoe described Palimpsest, a
“soft-capacity storage service for plane-
tary-scale applications.” Palimpsest is
designed to serve as a storage service for
ephemeral data from planetary-scale
applications running on a shared host-
ing platform like PlanetLab, XenoSer-
vers, or Denali. Examples of the type of
data to be stored are static code and data
for services, application logs of various
sorts, and ephemeral system state such
as checkpoints. Despite the temporary
nature of the data, it must be highly
available during its desired lifetime, thus
making single-node local disk storage
unsuitable. Traditional file systems such
as NFS and CIFS provide facilities
unnecessary for planetary-scale applica-
tions, and don’t meet service provider
requirements such as space manage-
ment, billing, and security mechanisms
that allow users to store their data on a
shared infrastructure without having to
trust the infrastructure provider.
Palimpsest aims to provide high data
availability for limited periods of time,
data protection and resistance to denial-
of-service attacks, flexible cost/reliabil-
ity/performance trade-offs, charging
mechanisms that make sense for service
providers, capacity planning, and sim-
plicity of operation and billing. To
achieve these goals it uses soft capacity,
congestion-based pricing, and automatic
space reclamation.

To write a file, a Palimpsest client era-
sure codes the file, encrypts each result-
ing fragment, and sends each encrypted
fragment to a fixed-length FIFO queue
at the distributed hashtable node corre-

79August 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Ssponding to the hash of the concatena-

tion of the file name and the fragment
identifier. To retrieve a file, a client
generates a sufficient number of frag-
ment IDs, requests them from the block
stores, waits until a sufficient number of
the requested fragments are returned,
decrypts and verifies them, and recreates
the original file. Because the queues are
fixed-length, all files stored in Palimpsest
are guaranteed to eventually disappear.
To keep a file alive, the client periodi-
cally refreshes it, and to “delete” the file,
the client simply abandons it. The key to
predictable file lifetimes is the “time
constant” (T) associated with each block
store; T measures how long it takes a
fragment to reach the end of the queue
and disappear. Clients piggyback
requests for information about T on
read and write requests, and block stores
provide a recent estimate of T by piggy-
backing on responses. Palimpsest
providers charge per (fixed-length) write
transaction. Clients can use information
about each block store’s T value and fee
per write transaction to flexibly trade off
data longevity, availability, retrieval
latency, and robustness. Clients pay
providers using anonymous cash trans-
actions. Denial-of-service attacks are
discouraged by charging for writes.
Providers can perform traffic engineer-
ing by advertising values of T that devi-
ate from the true value. Congestion
pricing is used to encourage users to
attain an efficient write rate.

PANEL DISCUSSION

Andrew Hume asked Timothy Roscoe
whether a simpler scheme than
Palimpsest could be used to store
ephemeral files just like regular files and
cycle them using a generational scheme,
eventually deleting the files that gradu-
ate from the oldest generation. Roscoe
responded that Palimpsest provides an
easy charging and pricing mechanism,
while standard network file systems like
NFS do not. Val Henson asked Popescu
what he thought of the “High Availabil-
ity, Scalable Storage, Dynamic Peer Net-

works: Pick Two” talk, in light of the fact
that his system is targeted toward storing
data on untrusted hosts. Popescu
responded that they’re more interested
in environments in which hosts are less
transient than in standard peer-to-peer
networks. Jeff Chase observed that
Palimpsest clients have no control over
the placement of their data, and he
asked Roscoe whether he thought that
was significant. Roscoe responded that
selecting specific nodes on which to
store data could be provided by an
orthogonal mechanism. Benjamin Ling
asked whether widespread adoption of
Palimpsest would be hindered by the
lack of hard guarantees about data
longevity. Roscoe responded that legal
contracts akin to service level agree-
ments could be layered on top of Pal-
impsest to ease users’ concerns about the
inherent risk of data loss. Furthermore,
this is really a futures market: Third par-
ties can charge premiums for providing
guarantees and taking on the risk of data
loss themselves.

SESSION: TRUSTING HARDWARE

Summarized by Matt Welsh

This session turned out to be the most
controversial of the conference, as two of
the three talks discussed the use of
secure hardware and systems such as
Microsoft’s Palladium architecture.

CERTIFYING PROGRAM EXECUTION WITH

SECURE PROCESSORS

Benjie Chen and Robert Morris, MIT

Laboratory for Computer Science

Benjie Chen is interested in the potential
uses for trusted computing hardware
other than digital rights management
(DRM). Since all PCs may include this
hardware in the future, he is interested
in exploring the hardware and software
design for such systems. His running
example was secure remote login, such
as from a public terminal at an Internet
cafe, where the client machine can attest
to the server that it is running unadul-
terated software (OS, SSH client, etc.).
Of course, this does not preclude low-

HOTOS-IX �

tech attacks such as a keyboard dongle
that captures keystrokes, but that is out-
side of the immediate problem domain.

Benjie presented an overview of the
Microsoft Palladium (or Next Genera-
tion Secure Computing Base) architec-
ture, which uses a secure “Nexus” kernel
and a secure chip that maintains the fin-
gerprints of the BIOS, bootloader, and
Nexus kernel. A remote login applica-
tion would send an attestation certifi-
cate, generated by Nexus and the secure
chip, to the server. The issues here are
how to keep the Nexus kernel small and
how to verify the OS services (such as
memory paging or the network stack).
Some ways to improve Palladium’s secu-
rity and verifiability were discussed,
such as using a small micro-kernel that
allows attestation of all OS modules
above it, as well as a flexible security
boundary (where some, not all, of the
OS modules are verified). There is a con-
nection with the XOM secure processor
work, which prevents physical attacks on
DRAM by storing data in encrypted
form in memory and only decrypting it
into a physically secure cache. Borrow-
ing some of these ideas, one could run
the micro-kernel within the secure
processor that authenticates all data
transfers to DRAM; the application,
hardware drivers, network stack, etc.,
could all be encrypted in DRAM.

HARDWARE WORKS, SOFTWARE DOESN’T:
ENFORCING MODULARITY WITH MONDRIAAN

MEMORY PROTECTION

Emmett Witchel and Krste Asanović,

MIT Laboratory for Computer Science

Emmett Witchel proposed the use of
efficient, word-level memory protection
to replace the use of page- or segment-
based protection mechanisms. This is
motivated by the use of fine-grained
modules in software, with narrow inter-
faces in terms both of APIs and of mem-
ory sharing. He argued that safe lan-
guages are not the answer, in part be-
cause it is difficult to verify the compiler
and runtime system. Rather, allowing
hardware protection to operate at the

80 Vol. 28, No. 4 ;login:

word level is much simpler and permits
a wide range of sharing scenarios. For
example, when loading a new device
driver into the kernel, the MMP hard-
ware would be configured to permit the
module to access its own code and data,
as well as to make calls to other modules
and share very fine-grained memory
(e.g., part of a larger data structure in
the kernel). Some of the challenges
involve cross-domain calls through call
gates; dealing with the stack (as no sin-
gle protection domain “owns” the stack);
and automatically determining module
boundaries through information already
present in code, such as symbol
import/export information in kernel
modules. Other potential uses include
elimination of memory copies on system
calls, specialized kernel entry points, and
optimistic compiler optimizations (e.g.,
write-protect an object and run cleanup
code if a write fault occurs).

FLEXIBLE OS SUPPORT AND APPLICATIONS

FOR TRUSTED COMPUTING

Tal Garfinkel, Mendel Rosenblum, Dan

Boneh, Stanford University

Tal Garfinkel’s talk returned to the ques-
tion of using secure hardware for appli-
cations other than DRM, and shared
much of the motivation and back-
ground of Benjie’s talk. The core prob-
lem with open platforms (as opposed to
closed platforms such as ATMs and cell
phones) is that applications can be
deployed across a wide range of existing
hardware but it is difficult to manage
trust. Tal proposed the use of virtual
machine monitors as a potential solu-
tion to providing a trusted OS environ-
ment. For example, the VMM can run
either an “open box” VM (such as a stan-
dard OS) or a “closed box” VM (a
trusted system).

One closed box VM might be a virtual
Playstation game console, which pre-
vents cheating in a multiplayer game
through attestation. Another potential
application could be a distributed fire-
wall, where one could push a cus-

tomized firewall into the VMM to pro-
tect the network from the host, by pre-
venting port scanning or IP spoofing,
for example, or enforcing connection
rate limits. Tal also discussed applica-
tions to reputation systems and third-
party computing (à la SETI@Home). He
concluded the talk with a review of cur-
rent efforts in this area, including TCPA,
Palladium, and LaGrande.

PANEL DISCUSSION

The political issues surrounding trusted
computing platforms raised a number of
interesting – and heated – questions
from the audience. Dan Wallach started
off by describing the recent XBOX hack,
where that system was supposedly
trusted hardware. Tal and Andrew Hume
countered that there are no guarantees
of correctness, just trade-offs in terms of
risk assessment. Mendel suggested that
cheating at Quake was not a big concern
for industry, so this was not of para-
mount concern in the XBOX hack.

Timothy Roscoe was disturbed that the
three speakers seemed to be too much in
agreement, and raised the question of
big protection domains (i.e., VMs) ver-
sus tiny protection domains (i.e., Mon-
drian memory protection). They didn’t
take the bait, though, and Tal said that
these approaches were not mutually
exclusive.

Jay Lepreau raised the concern that
nobody has yet demonstrated an entire
(real) operating system based on the
micro-kernel model. He again argued
that MPP does not solve the whole
domain protection issue, since control
flow protection is just as important as
memory protection. Emmett admitted
that there is some complexity involved,
but by making memory protection
domains both finer grained and more
explicit, programmers have to think
about them more carefully and will doc-
ument them in the code. Jay argued that
chopping up a monolithic system in a
“half-assed way” makes it more com-
plex, but Emmett argued that most sys-

tems software is already making use of
well-defined modules, simply without
strong protection between them.

Val Henson returned to the trusted com-
puting discussion and argued that these
platforms were more useful for restrict-
ing rights (as with DRM) than for giving
us more rights. Benjie argued that the
bleak view is that this hardware is going
to get pushed out regardless, so we
should be considering how to use it for
something other than DRM. Tal con-
curred and said that this work was also
about intellectual honesty.

Jay argued that Tal and Benjie were
really just giving cover to the real com-
mercial driver for this technology, which
is DRM. Mike Swift wanted to know
where the line between research and
the corporate world should be drawn,
and whether our community should
support this work at all. Tal mentioned
again that their work is just bringing
more information to the table, but Mike
drew an analogy with nuclear weapons
research, claiming that expanding
knowledge is not the only side effect of
this work.

Dirk Grunwald wondered whether call-
ing this “trusted computing” was like the
rebranding of “out-of-order execution”
to “dynamic execution” – trusted com-
puting cannot deal with hardware
attacks, so consumers may be misled
into believing it’s more safe. Tal pointed
out that this is no different from calling
a protocol “secure.”

Jeff Mogul made the points that technol-
ogy tends to reinforce existing power
structures, and that the issue with
trusted computing is not about security
but rather, whether the technology rein-
forces existing power relationships or
diffuses them. He summarized, “Are
you advocating a system that helps the
powerful or that helps the weak?” Eric
Brewer claimed that he didn’t want
“trusted” software on his PC, since that
only enforces a particular kind of trust
relationship between two parties. He

81August 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Swould rather have control over his trust

relationships, but trusted computing
platforms remove that control. Tal
admitted that there is a real concern
about using Palladium as an industry
control point. Timothy wrapped up the
session by pointing out that this discus-
sion had been rather “sterile” and had
not touched on any of the issues of poli-
tics, lawmaking, or market forces sur-
rounding the DRM and trusted-
technology debate.

SESSION: PERVASIVE COMPUTING

Summarized by Ranjita Bhagwan

SENSING USER INTENTION AND CONTEXT FOR

ENERGY MANAGEMENT

Angela B. Dalton and Carla S. Ellis,

Duke University

Angela Dalton spoke about the use of
low-power sensors to monitor user
behavior and to reduce system energy
consumption. She described a case study
called FaceOff, which uses a camera to
perform image capture. Following face
detection, the information is fed into a
control loop that does the system-level
energy management, by turning off the
display. The authors have built a proto-
type of this, which uses image capture
and skin detection. The authors have
determined that FaceOff can provide
significant energy savings. The authors
also describe various ways of increasing
the system’s responsiveness and describe
several optimizations with that objec-
tive.

ACCESS CONTROL TO INFORMATION IN PER-
VASIVE COMPUTING ENVIRONMENTS

Urs Hengartner and Peter Steenkiste,

Carnegie Mellon University

Locating people in a pervasive comput-
ing environment can be done at many
levels and granularities. But there should
be an access control mechanism for such
information. Access control mechanisms
for conventional information, however,
cannot be used as is for such environ-
ments. Urs Hengartner described a peo-
ple locator service that uses digital

certificates for defined location policies.
The authors use three design policies:
identify information early, design poli-
cies at the information level, and exploit
information relationships. Their approach
is to use a step-by-step model, where
validation of a client node is done at
every server node. They also use a policy
description language and an informa-
tion description language in their people
locator service.

PRIVACY-AWARE LOCATION SENSOR

NETWORKS

Marco Gruteser, Graham Schelle, Ashish

Jain, Rick Han, and Dirk Grunwald,

University of Colorado at Boulder

Marco Gruteser gave a brief description
of a system that uses sensor networks to
gather information while maintaining
some degree of anonymity. Describing
the problem, Marco said that sensor net-
works could be used to identify precise
location of certain entities, and this
could be undesirable. With an anony-
mous data collection scheme, you do
not need to negotiate a privacy policy,
and the risk of accidental data disclo-
sures is reduced, since databases do not
store this information anymore. The
author described the notion of k-
anonymity in database systems, and said
that it could be applied to location
information.

PANEL DISCUSSION

Urs Hengartner asked Angela Dalton
whether she had thought about turning
off only parts of the screen if there were
multiple windows open but only one
active? Angela said that there is related
work that deals with energy adaptive
displays. Presently this cannot be done.
But you could use some form of gaze
tracking to do this. Andrew Hume asked
whether the partial screen turn-off
works at the hardware level. Angela
responded that currently there is no
hardware that does that. New kinds of
displays are assumed. But you would still
need to control it through the system.

HOTOS-IX �

Andrew Hume commented that this
could be used for covert operations: for
example, a laptop screen shutting down
would indicate that there is no one close
to it. Wouldn’t the security aspect be
that you could detect location to some
extent? Angela said that larger networks
could do this, and yes, there are lots of
security implications.

Val Henson asked what the trend of
built-in sensors is. Angela replied that
most devices can now have built-in cam-
eras. In general, these sensors are low-
power, cheap and increasingly pervasive,
especially the cameras.

Andrew Hume asked what kind of cam-
era resolution is needed to make this
work well. Angela said that the detection
method currently is skin color based,
and you could do this even with a low-
resolution black-and-white camera.

Geoff Voelker asked Urs if he had
thought of foreign users coming into an
administrative domain. Urs responded
that since they use SPKI/SDSI digital
certificates, they do not require a PKI
and have the benefit that they could give
access to anyone.

Val Henson asked Marco how you decide
what the shape of the location is. Marco
said that the current assumption is that
the sensors are pre-configured in a room
which has a certain room ID, the same
applying to a building, and so on.

Jay Lepreau asked Angela whether she
had data on how people use laptops so
she could evaluate how well her scheme
would work with these user behavior
patterns. Angela said that more and
more people are using laptops as their
primary system. Moreover, energy
awareness is important generically.
However, this question is valid for cell
phones, PDAs, etc., which could have
widely varying usage patterns. Jay said
that the power management on his lap-
top is frustrating, because it is stupid. It
would be good to have a diagnostic tool,
with the user being able to guide the sys-

82 Vol. 28, No. 4 ;login:

tem to some extent. Has Angela consid-
ered providing the user with a diagnos-
tic tool? Angela said that you can
imagine a user interface, that could be
used to measure the annoyance factor of
the power management. Yes, there can
be problems when things kick in at the
wrong time.

SESSION: STORAGE 2

Summarized by David Oppenheimer

FAB: ENTERPRISE STORAGE SYSTEMS ON A

SHOESTRING

Svend Frølund, Arif Merchant, Yasushi

Saito, Susan Spence, and Alistair Veitch,

Hewlett Packard Laboratories

Alistair Veitch of HP Labs presented
“FAB: Federated Array of Bricks.” He
described a project that is aimed at mak-
ing a set of low-cost storage bricks
behave, in terms of reliability and per-
formance, like an enterprise disk array,
but at lower cost and with greater scala-
bility. The FAB array is built from bricks,
each of which consists of a CPU, mem-
ory, NVRAM, a RAID-5 array of 12
disks, and network cards. Clients con-
nect to the array using a standard proto-
col such as iSCSI, Fibre Channel, or
SCSI, and the storage bricks communi-
cate amongst themselves using a special
FAB protocol running on Gigabit Ether-
net. The goals of the array are zero data
loss, continuous availability, competitive
performance, scalable performance and
capacity, management as a single entity,
online upgrade and replacement of all
components, and higher-level features
such as efficient snapshots and cloning.
The principal research challenges are
failure tolerance without losing data or
delaying clients, asynchronous coordina-
tion that does not rely on timely
responses from disks or the operating
system, and the ability to maximize per-
formance and availability in the face of
heterogeneous hardware. The techniques
FAB incorporates to achieve these goals
are a quorum-based replication scheme,
dynamic load balancing, and online
reconfiguration.

After outlining FAB’s goals and the high-
level techniques used to achieve those
goals, Veitch described the quorum-
based replication scheme used to achieve
reliability. It uses at least three replicas
for each piece of data, and reads and
writes a majority of replicas. It survives
arbitrary sequences of failures, achieves
fast recovery, and can be lazy about fail-
ure detection and recovery as opposed
to needing to do explicit fail-over. The
array configuration that the designers
envision achieves a mean time to data
loss of about a million years, which
Veitch described as “at the bottom end
of what’s acceptable.”

THE CASE FOR A SESSION STATE STORAGE

LAYER

Benjamin C. Ling and Armando Fox,

Stanford University

Benjamin Ling presented “SSM, a recov-
ery-friendly, self-managing session state
store.” SSM is a storage system special-
ized for storing session state typically
associated with user interactions with
e-commerce systems. The system assumes a
single user making serial access to semi-
persistent data. Ling explained that
existing solutions such as file systems,
databases, and in-memory replication
exhibit poor failure behavior, recovery
performance, or both, and that they are
difficult to administer and tune. SSM is
designed to be recovery friendly, mean-
ing it can recover instantly without data
loss, and self-managing in terms of han-
dling overload and performance hetero-
geneity of components.

SSM is based on a redundant, in-mem-
ory hashtable distributed across nodes
called bricks and on stateless client
stubs, linked in with application servers,
that communicate with the bricks.
Bricks consist of RAM, CPU, and a net-
work interface (no disk). SSM uses a
redundancy scheme similar to quorums.
A stub writes to some N random nodes
(four in Ling’s example) and waits for
the first M of the writes to complete
(two in Ling’s example); this scheme is

used to avoid performance coupling.
The remaining writes are ignored. Reads
are issued to a single brick. SSM is
“recovery friendly” in that no data is lost
as long as no more than M-1 disks in a
write quorum fail. Moreover, state is
available for reading and writing during
a brick failure. SSM is “crash-only,” using
no special-case recovery code; when a
brick is added to the system or returns
to service after a failure, it is simply
started up without any need to run a
recovery procedure. SSM is “self-manag-
ing” in that it dynamically discovers the
performance capabilities of each brick,
as follows. Each stub maintains a count
of the maximum allowable inflight
requests to each brick, using additive
increase to grow this window upon each
successful request and multiplicative
decrease to shrink the window when a
brick operation times out. If an insuffi-
cient number of bricks are available for
writing, either due to failures or due to a
full window, the stub refuses the request
issued by the client of the stub, thereby
propagating back-pressure from bricks
to clients.

TOWARDS A SEMANTIC-AWARE FILE STORE

Zhichen Xu, Magnus Karlsson, and

Christos Karamanolis, Hewlett Packard

Laboratories; Chunqiang Tang, Univer-

sity of Rochester

Zhichen Xu explained that storage sys-
tems are in some ways an extension of
human memory, but that computer-
based storage systems have been “dumb”
because, unlike humans, they do not
associate meanings (semantics) with the
data that is stored. For example, when
humans search, they consider abstract
properties and relationships among
objects, and when they “store” data, they
may group objects into categories or
record only the differences between
objects. Moreover, humans discover the
meanings of objects incrementally.
These observations motivate the incor-
poration of versions, deltas, and
dependencies among objects stored in
the semantic-aware file store.

83August 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
SThe semantic-aware file store seeks to

create a framework that captures and
uses semantic information for fast
searching and retrieval of data; stores
data efficiently by using data compres-
sion based on semantic relationships of
data; provides high performance
through semantic data hoarding, data
placement, replication, and caching; and
enables highly available data sharing by
balancing consistency and availability
according to the data semantics. The
semantic-aware file store uses a generic
data model based on RDF to capture
semistructured semantic metadata. The
challenges Xu described are identifying
the common semantic relations of inter-
est, finding ways to capture semantic
information, finding ways to handle
dynamic evolution of semantics, and
defining the tools and APIs that users
and applications require.

PANEL DISCUSSION

Margo Seltzer asked Alistair Veitch
whether in 10 years HotOS will have a
paper explaining why FABs are just as
expensive as today’s storage arrays.
Veitch answered, “I hope not, but who
knows.”

Andrew Hume asked Veitch whether the
FAB design makes it difficult to predict
performance as compared to a disk con-
nected to a single machine, especially in
the face of failures, due to the large number
of potential interactions among bricks
in the FAB. Veitch responded that the
performance can in fact be modeled as a
function of factors such as the overhead
of doing a disk I/O, the number of
nodes, the desired mean time to data
loss, and so on. He added that even
today no storage system gives you hard-
and-fast performance guarantees, and
that the more difficult question is how
to model overall system reliability and
the optimal trade-offs among design
parameters.

Rob von Behren asked Veitch whether he
had considered using non-RAID disks
instead of RAID arrays inside each brick.

Veitch responded that by using RAID,
the mean time to data loss is controlled
by the failure rate of each brick rather
than the failure rate of individual disks,
thereby increasing reliability. He added
that it’s very difficult to come by good
numbers on actual failure rates of sys-
tem components, so estimating overall
reliability is difficult.

2003 European Tcl/Tk User
Meeting
NÜRNBERG, GERMANY
MAY 30 AND 31, 2003
Summarized by Clif Flynt

THE STATE OF TCL

Andreas Kupries, ActiveState

Kupries described the status of the cur-
rent Tcl release as well as ActiveState’s
current offerings. He reported that the
use of Tcl (based on downloads) is still
growing, with several major manufac-
turers joining the Tcl ranks.

The 8.4 series is now officially closed to
new features, though still open for
maintenance. (New features are being
added to the 8.5 release.) The 8.4 release
included support for the Virtual File
System, which allows a zip or tar file to
be used as a file system, and supports
mounting an HTTP or FTP site, several
new high-level widgets (including paned
windows, labeled frames, and a spin-
box), support for 64-bit integers and file
systems (even on 32-bit systems), and
many performance improvements. The
Tcl core has been Unicode compliant
and thread safe since the 8.1 release. Per-
formance was improved with the 8.4
release.

The Tcl maintainers are continuing to
improve the Tcl core, and several TIPS
are scheduled for inclusion in 8.5. The
new dict data structure has been added
already, and more options for the expr
command and more high-level widgets
are planned.

ActiveState has continued to support Tcl
with the introduction of a Tcl Cook-
book series of code snippets, with the
Tcl Dev Kit software development tools,
and by continuing to extend the Tcl sup-
port in the Komodo IDE, including
incorporating a new GUI builder.

NPS PORTAL MANAGER AND NPS CONTENT

MANAGER

Thomas Witt, Infopark

84 Vol. 28, No. 4 ;login:

Witt described Infopark’s content man-
agement system, NPS, and why and how
they decided to use Tcl as the applica-
tion scripting language.

The NPS package is written in Objective
C. They extend the application’s func-
tionality by embedding the Tcl inter-
preter because:

� Tcl is open source, using the BSD
license, and so is free for commer-
cial use.

� The same Tcl code runs on all plat-
forms.

� Tcl is a normal glue language, with
no surprises for the casual pro-
grammer.

� It’s easy to learn. This is particularly
important when teaching Tcl to
nonprogrammers.

Witt described the basics of integrating
new commands into the Tcl interpreter
and demonstrated how the new com-
mands are accessed from a Tcl script.

One extremely useful feature of Tcl is
the trace command, which allows NPS
to support dynamic callbacks based on
changes to a document. This is equiva-
lent to using a database trigger.

CREATIVE USE OF THE TEXT WIDGET

Arjen Markus

Arjen Markus described techniques for
using the text widget for more than dis-
playing text, highlighting the versatility
of the text widget by using it to generate
the PowerPoint-like slides for his presen-
tation.

The text widget is one of the more
sophisticated and powerful widgets in
Tk. Not only can a script insert text into
the widget, using a variety of fonts, fore-
ground and background colors, and
event bindings connected to the text, a
script can also insert images and other
Tk widgets.

Markus pointed out that the ability to
put other widgets onto the text widget
provides another technique for geome-
try management which is particularly

well adapted to fill-out-a-form style
applications. This makes it easy to auto-
matically create a “Poor Man’s GUI”
from a description of the data in a form.

He also demonstrated an application of
Knuth’s “Literate Programming” para-
digm by mixing text and code in the text
widget. His example uses the text wid-
get’s bind command to trigger actions
based on the text being inserted into the
widget.

ORASTATE (ORACLE STRUCTURE TOOL

AND TABLE EDITOR)

Martin Fickert

ORASTATE is an application that gener-
ates a graphical representation of Oracle
tables from a database or user interac-
tion. Martin Fickert described how this
package allows the user to perform data-
base queries or edit tables, fields, and
relations via a simple GUI.

This application is designed to allow
users to interact with an Oracle database
without needing to learn SQL and data-
base commands.

This application represents a table as a
drop-down list in which the top element
is the name of the table and lower ele-
ments are the names of fields. During
default display, the list is rolled up, and
only the table name is displayed. Upon
receiving an <Enter> (cursor over)
event, the label “unrolls,” displaying the
table fields, which can be queried and
modified via pop-up dialog windows.
Relations between fields are displayed
with lines, and can be added by the user
drawing lines in the display.

Database queries can be created and
evaluated via a set of pop-up windows
that allow the user to select fields, opera-
tions between fields, and values for the
operations.

UIE: CREATING A GENERIC INTERFACE

BETWEEN TCL/TK AND OTHER LANGUAGES

Veronica Loell

Veronica Loell described the User Inter-
face Engine (UIE), which uses Tcl as an

engine rather than as glue. This frame-
work supports multiple software agents,
cooperating to provide a natural lan-
guage interface with other applications.

The UIE framework has several cooper-
ating processes, including a data man-
ager, translators, and applications which
operate by passing messages to each
other via the translators.

The translation engines allow different
applications to communicate cleanly by
converting application-specific com-
mands into a generic intermediate lan-
guage and back.

TCL USED FOR TESTING IN THE MOBILE

WORLD

Hans Banken

SIGOS GmbH uses a Tcl application to
test mobile networks. Hans Banken
described how the application is con-
structed and how it works.

The requirement was to simulate user
behavior using real mobile equipment.
The application needed to be able to
exercise all the functions a user could
request, utilize all available hardware,
and be easily configurable.

Banken described the SITE system, a
database-backed test engine capable of
running 180 distributed test systems.
This system uses Tcl for the GUI, glue,
and database interactions. The tests are
described in a Tcl-style configuration
file that allows the Test Definition Lan-
guage to be easily converted to Tcl
scripts for execution.

Banken noted that with no previous Tcl
experience the team was able to con-
struct a large, robust, and successful
commercial application in only two
weeks.

DBWIDGET: A RAPID APPLICATION DEVELOP-
MENT SYSTEM FOR THE TCL COMMUNITY

Franco Violi

Franco Violi described the dbWidget
package developed to easily port legacy
COBOL applications to modern envi-

85August 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Sronments. The name dbWidget is a mis-

nomer, given that the package is more
than an interface to databases, and more
than a widget. This package allows a
developer to define an application with a
template file that is used to generate the
GUI and database interactions. The
applications inherit base functionality
from the dbWidget package, including
audio cues, online help, and support for
printing.

The dbWidget package interfaces with
Open Office to provide platform-
independent printing, and uses a C data-
base extension to interface to the
Berkeley db, Faircom’s Ctree, or other
database engines.

This package was developed to upgrade
their clients’ applications. It’s been in use
for several years and is robust and effec-
tive.

XOTCLIDE

Artur Trzewik

Artur Trzewik described XOTclIDE, an
integrated development environment
for XOTcl (Extended Objective Tcl).
This IDE has a strong small-talk orienta-
tion and includes support for building
components and version control.

Trzewik introduced XOTcl to the audi-
ence and noted that XOTcl uses a
method-chaining style of inheritance
and provides more support for intro-
spection than [incr Tcl]. XOTcl also
supports assertions, Mixins/Filters, and
classes that contain metadata.

The XOTclIDE application allows the
user to build an application in an inter-
active manner, constructing classes and
methods bit by bit and testing them in a
bottom up manner until the final top-
level class (the application) is com-
pleted.

The XOTclIDE debugger is based on the
atkdebugger, which allows the user to set
breakpoints and step into/over proce-
dures and modify the original source,

making the edit/test/debug sequence
more integrated.

The Version Control is based on a rela-
tional database (MySQL, Postgres,
SQLite, ODBC) that works in the back-
ground, rather than requiring explicit
check-in/check-out sequences. This par-
adigm supports a team-programming
style, allowing a user to check at any
time, via a code browser, to find out
what modules are in sync with the
repository.

I18N: TCL FOR THE WORLD

Richard Suchenwirth

Richard Suchenwirth described Tcl’s
support for internationalization and
localization of applications. He
explained the evolution of Unicode,
from the early Baudot code, through
ASCII, EBCDIC, JIS, and UTF-8, and,
finally, to the modern four-byte Unicode
that can represent all known glyphs.

Suchenwirth demonstrated Tcl/Tk’s
facility with non-European fonts with a
display from his iPAQ that showed simi-
lar phrases in several languages, includ-
ing Chinese, Japanese, Korean, Greek,
and Russian.

Since version 8.1, Tcl/Tk has used UTF-
8, with support for up to three bytes per
character, for internal character repre-
sentation. Thus, a character may be a
single or multiple bytes in the internal
representation, but to a Tcl script each
character is a single entity. He described
using the msgcat package to support
code localization and also how the text
widget will automatically load fonts as
required to display various glyphs.

He finished by discussing techniques for
entering non-ASCII data from a stan-
dard keyboard. Combinations of shift
and a letter can be mapped to other
glyphs, or one could type the name of
the character until the application rec-
ognizes the pattern and provides a menu
of possible glyphs. Another option is to
use a variant on greeklish, a style in
which two character combinations are

EUROPEAN TCL/TK USER MEETING �

used to represent non-ASCII characters.
For example, a’ would be used to repre-
sent the accented a character.

GENERATION R

Pascal Scheffers

Pascal Scheffers reported on the uses of
Tcl by the Generation R project at the
Erasmus University Medical Center in
Rotterdam. Five university departments
and over 20 external organizations are
working together to track the lives of
10,000 children from pre-birth to young
adulthood. This task involves many
questionnaires and a great deal of infor-
mation in many different databases
maintained by the different groups
working on the project.

The project is using AOLServer and the
OpenACS package for much of the
logistics and data management services.
AOLServer is an HTTP server that uses
Tcl as the scripting language for server-
side processing. OpenACS is a package
of tools for creating database-backed
Web sites using AOLServer.

AOLServer provides a platform for
building easy-to-use interfaces between
the non-computer scientists using the
data and the different database engines
and data formats.

One continuing problem that the group
faces is the need to generate customized
form letters. After trying LaTex, Page-
Maker, and MS-Word, they decided the
optimal solution was to save the basic
form letter as a PostScript file and then
massage the text with a Tcl script. This
solution provides the fastest mail-merge
and print options.

Tcl’s string and list manipulation fea-
tures are also used to parse a set of
Health Level 7 data. The ISO Level 7
data format is a sequence of character-
separated, nested lists with different sep-
aration characters for each level of
nesting. The Tcl split command makes
parsing this data easy. The commercial
parsing packages cost about $6500.

86 Vol. 28, No. 4 ;login:

Developing a Tcl solution from scratch
took two days.

Scheffers finished his talk by noting that
while Tcl has easy support for many dif-
ferent database engines, the binary
library support is not always easy to
acquire. The assumption is that anyone
who needs to use a database engine has
the required libraries and C compiler for
the platform they are using. In a multi-
disciplinary project like this, that’s often
not the case.

EMBEDDING THE TCL INTERPRETER FOR

PORTABLE APPLICATIONS

Clif Flynt

The ease with which Tcl can be extended
using other libraries and C code is well
known and documented. Clif Flynt pre-
sented a tutorial talk describing how to
embed the Tcl interpreter within a C
application.

He described the Tcl library API that
supports this, and demonstrated a short
C/Tcl application that uses a C language
main() function for the primary entry
point and calculation function, and Tcl
scripts for the GUI and data representa-
tion.

Flynt noted that this provides a “best of
all worlds” development environment.
The mission-critical, stable, platform-
independent code is maintained in C,
while the customer-experience, most-
likely-to-be-changed, platform-depend-
ent code is written in Tcl, where it can
easily be modified to fit customer
requirements. Because the user interface
code is written in Tcl, it takes advantage
of Tcl’s multi-platform support, and
what would otherwise be platform
dependent becomes platform indepen
dent as well.

This ability to embed the interpreter
makes the Tcl/Tk libraries a good alter-
native to using the Xt, Athena, or MS
libraries for project development.

	motd
	ltrs
	moskowitz
	Megiddo
	darmohray
	lumb
	farrow
	haskins
	geer
	hoskins
	mccluskey
	flynt
	turoff
	swartz
	salus
	standards
	usenixnews
	mobysis03
	HotOS-IX
	tcl_Tkuser

