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Abstract: Today’s distributed network control planes are

highly sophisticated, with multiple interacting protocols op-

erating at layers 2 and 3. The complexity makes network

configurations highly complex and bug-prone. State-of-the-

art tools that check if control plane bugs can lead to violations

of key properties are either too slow, or do not model com-

mon network features. We develop a new, general multilayer

graph control plane model that enables using fast, property-

customized verification algorithms. Our tool, Tiramisu can

verify if policies hold under failures for various real-world

and synthetic configurations in < 0.08s in small networks

and < 2.2s in large networks. Tiramisu is 2-600X faster than

state-of-the-art without losing generality.

1 Introduction
Many networks employ complex topologies and distributed

control planes to realize sophisticated network objectives. At

the topology level, networks employ techniques to virtual-

ize multiple links into logically isolated broadcast domains

(e.g., VLANs) [8]. Control planes employ a variety of rout-

ing protocols (e.g., OSPF, eBGP, iBGP) which are configured

to exchange routing information with each other in intricate

ways [9, 21]. Techniques to virtualize the control plane (e.g.,

virtual routing and forwarding (VRF)) are also common [8].

Bugs can easily creep into such networks through errors

in the detailed configurations that the protocols need [9, 21].

In many cases, bugs are triggered when a failure causes the

control plane to reconverge to new paths. Such bugs can lead

to a variety of catastrophic outcomes: the network may suf-

fer from reachability blackholes [5]; services with restricted

access may be rendered wide open [4]; and, expensive paths

may be selected over inexpensive highly-preferred ones [4].

A variety of tools attempt to verify if networks could vi-

olate important policies. In particular, control plane analyz-

ers [6,12–14,23,29] proactively verify if the network satisfies

policies against various environments, e.g., potential failures

or external advertisements. State-of-the-art examples include:

graph-algorithm based tools, such as ARC [14] which models

all paths that may manifest in a network as a series of weighted

digraphs; satisfiability modulo theory (SMT) based tools, such

as Minesweeper [6] which models control planes by encoding

routing information exchange, route selection, and failures

using logical constraints/variables; and, explicit-state model

checking (ESMC) based tools, such as Plankton [23]1 which

models routing protocols in a custom language, such that an

explicit state model checker can explore the many possible

data plane states resulting from the control plane’s execution.

Unfortunately, these modern control plane tools still fall

1Plankton was developed contemporaneously with our system

short because they make a hard trade-off between perfor-

mance and generality (§2). ARC abstracts many low level

control plane details which allows it to leverage polynomial

time graph algorithms for verification, offering the best perfor-

mance of all tools. But the abstraction ignores many network

design constructs, including commonly-used BGP attributes,

and iBGP. While these are accounted for by the other classes

of tools [6, 23] that model control plane behavior at a much

lower level, the tools’ detailed encoding renders verification

performance extremely poor, especially when exploring fail-

ures (§8). Finally, all existing tools ignore VLANs, and VRFs.

This paper seeks a fast general control plane verification

tool that also accounts for layer 2.5 protocols, like VLANs.

We note that today’s trade-off between performance and

generality is somewhat artificial, and arises from an unnatural

coupling between the control plane encoding and the verifi-

cation algorithm used. For example, in existing graph-based

tools, graph algorithms are used to verify the weighted di-

graph control plane model. In SMT-based tools, the detailed

constraint-based control plane encoding requires a general

constraint solver to be used to verify any policy. ESMC-based

tools’ encoding forces a search over the many possible data

plane states, mirroring software verification techniques that

exhaustively explore the execution paths of a general program.

The key insight in our framework, Tiramisu, is to decouple

encoding from verification algorithms. Tiramisu leverages a

new, rich encoding for the network that models various control

plane features and network design constructs. The encoding

allows Tiramisu to use different custom verification algo-

rithms for different categories of policies that substantially

improve performance over the state-of-the-art.

Tiramisu’s network model uses graphs as the basis, similar

to ARC. However, the graph model is multi-layered and uses

multi-attribute edge weights, thereby capturing dependencies

among protocols (e.g., iBGP depending on OSPF-provided

paths) and among virtual and physical links, and accounting

for filters, tags, and protocol costs/preferences.

For custom verification, Tiramisu notes that most policies

studied in the literature can be grouped into three categories

(Table 1): (i) policies that require the actual path that mani-

fests in the network under a given failure; (ii) policies that

care about certain quantitative properties of paths that may

manifest (e.g., maximum path length); and, finally, (iii) poli-

cies that merely care about whether a path exists. Tiramisu

leverages the underlying model’s graph structure to develop

performant verification algorithms for each category.

To verify category (i) policies, Tiramisu efficiently solves

the stable paths problem [15] using the Tiramisu Path Vector

Protocol (TPVP). TPVP simulates control plane computa-
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tions across multiple devices and interdependent protocols by

operating on the Tiramisu network model. TPVP’s domain-

specific path computation is faster than the general search

strategies used in SMT solvers, making Tiramisu orders of

magnitude faster in verifying category (i) policies. TPVP also

outperforms ESMC-based tools, because TPVP’s use of rout-

ing algebra [16, 25] atop the Tiramisu rich graph allows it

to compute paths in one shot, whereas ESMC-based tools

emulate protocols, and explore their state, one at a time in

order to account for inter-protocol dependencies.

For category (ii), Tiramisu’s insight is to use integer linear

program (ILP) formulations that only model the variables that

are relevant to the policy being verified. Tiramisu significantly

outperforms SMT- and ESMC-based tools, whose computa-

tion of specific paths requires them to (needlessly) explore a

much larger variable search space.

For category (iii), Tiramisu uses a novel graph traversal

algorithm to check path existence. The algorithm invokes

canonical depth-first search on multiple Tiramisu subgraphs,

to account for tags (e.g., BGP communities) whose use on a

path controls the path’s existence. For such policies, Tiramisu

matches ARC’s performance for simple control planes; but

Tiramisu is much more general.

Finally, for many of the policies in categories (i) and (ii),

Tiramisu leverages the underlying model’s graph structure to

develop a graph algorithm-based accelerator for further verifi-

cation speed-up. We show how to use a variant of a dynamic

programming-based algorithm for the k shortest paths prob-

lem [31] to curtail needlessly exploring paths that manifest

under many not-so-relevant failure scenarios.

We implemented Tiramisu in Java [2] and evaluated it with

many real and synthetic configurations, spanning campus, ISP,

and data center networks. We find that Tiramisu significantly

outperforms the state-of-the-art, and is more general—some

of the networks have layer-2/3 features that Minesweeper and

Plankton don’t model. Using category-specific algorithms

on complex networks, Tiramisu verified category i, ii, and

iii policies in 60, 80 and 3ms, respectively. Compared to

Minesweeper, Tiramisu is 80X, 50X, and 600X faster for cat-

egory i, ii, and iii policies, respectively. On iBGP networks,

Tiramisu outperforms Plankton by up to 300X under failures.

Tiramisu’s TYEN acceleration improves performance by 1.3-

3.8X. Tiramisu scales well, providing verification results in

∼100ms per traffic class for networks with ∼160 routers.

2 Motivation

In this section, we provide an overview of state-of-the-art

control plane verifiers. We then identify their key drawbacks

that motivate Tiramisu’s design.

2.1 Existing control plane verifiers

State-of-the-art control plane verifiers are based on three dif-

ferent techniques: graph algorithms [14], symbolic model

checking [6,12,29], and explicit-state model checking [13,23].

We review the most advanced verifier in each category.

Graph algorithms: ARC [14] models a network’s control

plane using a set of directed graphs. Each graph encodes the

network’s forwarding behavior for a specific traffic class–i.e.,

packets with specific source and destination subnets. In the

graphs, vertices represent routing processes (i.e. instances of

routing protocols running on specific devices); directed edges

represent possible network hops enabled by the exchange

of advertisements between processes; edge weights encode

OSPF costs or AS path lengths. ARC verifies a policy by

checking a simple graph property: e.g, src and dst are always

blocked if they are in separate components. By leveraging

graph algorithms, ARC offers orders-of-magnitude better per-

formance [14] than simulation-based verifiers [13]. However,

ARC’s simple graph model does not cover: widely used layer-

3 protocols (e.g., iBGP), any layer-2 primitives (e.g., VLANs),

and many protocol attributes (e.g., BGP community).

Symbolic model checking: Minesweeper [6] verifies a net-

work’s policy compliance by formulating and solving a satis-

fiability modulo theory (SMT) problem. The SMT constraints

encode the behavior of the network’s control and data planes

(M) as well as the negation of a target policy (¬P). If the

SMT constraints (M∧¬P) are unsatisfiable, then the policy

is satisfied. To provide extensive network design coverage,

Minesweeper uses many variables, which results in a large

search space. Minesweeper verifies all policies on this large

general SMT model. To verify for k failures, Minesweeper’s

SMT solver may, in the worst case, enumerate all possible

combinations of k-link failures.

Explicit-state model checking: Plankton [23] models dif-

ferent control plane protocols (e.g., OSPF, BGP) using the

Path Vector Protocol (PVP) [15] in a modeling language

(Promela). It tracks dependencies among protocols defined in

a network’s control plane based on packet equivalence classes

(PECs). It then uses an explicit state model checker, SPIN,

to search on the overall state space of this model and find a

state that violates a policy. To speedup verification, Plankton

runs multiple independent SPIN instances in parallel. Plank-

ton uses other optimizations including device equivalence to

reduce the failure scenarios to explore. Despite these opti-

mizations, Plankton still enumerates the state space of many

failure scenarios, and checks them sequentially (§8).

2.2 Challenges

We now identify three high-level challenges that affect exist-

ing verifiers’ performance and/or correctness.

Cross-layer dependencies. Consider the network in Fig-

ure 1a. Router B is an eBGP peer of router E, and router

C is an iBGP peer of routers B and D. B and D are connected

to switch S1 on VLAN 1. All routers except E belong to the

same OSPF domain; the cost of link C–D is 5 and others is 1.

In this network, C learns a route to E through its iBGP

neighbor B; the route’s next hop is the IP address of B’s

loopback interface. In order for C to route traffic through B,
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(a) With protocol dependencies

(b) With BGP attributes

Figure 1: Example networks

C must compute a route to B using OSPF. The computed

path depends on the network’s failure state. In the absence of

failures, OSPF prefers path C→ B (cost 1). When the link

B–C fails, OSPF prefers a different path: C→ D→ B (cost

6). Unfortunately, traffic for E is dropped at D, because D

never learns a route to E; E is not in the same OSPF domain,

and routes learned (by C) via iBGP are not forwarded. If B

and D were iBGP peers, or B redistributed its eBGP-learned

routes to OSPF , then this blackhole would be avoided.

ARC’s simplistic graph abstraction cannot model iBGP and

thus cannot model iBGP-OSPF dependencies. Hence, ARC

cannot be used to verify policies in this network. Minesweeper

can model iBGP, but its encoding is inefficient. To model

iBGP, Minesweeper creates n additional copies of the network

where n represents number of routers running iBGP. Each

copy models forwarding towards the next-hop address asso-

ciated with each iBGP router. This increases Minesweeper’s

SMT model size by nX, which significantly degrades its per-

formance. In Plankton, the iBGP-OSPF dependency is en-

coded as a dependency between PECs, which prevents Plank-

ton from fully parallelizing its SPIN instances. Hence, Plank-

ton loses the performance benefits of parallelism.

Cross-layer dependencies also impact other network sce-

narios. Assume the B−S1 link in Figure 1a was assigned to

VLAN 2. Now B and D are connected to the same switch S1

on different VLANs; internally, S1 runs two virtual switches,

one for each VLAN. Hence, traffic between B and D cannot

flow through switch S1. By default, ARC, Minesweeper, and

Plankton, assume layer-2 connectivity. Thus, according to

these verifiers, B and D are reachable and traffic can flow

between them, which is incorrect.

The overall theme is that protocols “depend” on each

other—e.g., iBGP depends on OSPF, BGP and OSPF de-

pend on VLANs, etc.—and these dependencies must be fully,

correctly and efficiently modeled.

Protocol attributes. Consider the network in Figure 1b. All

routers (A–D) run eBGP. B adds community “c1” to the ad-

vertisements it sends to C, and D blocks all advertisements

from C with community “c1”. Additionally, D prefers routes

learned from B over A by assigning local preference (lp) val-

ues 80 and 50, respectively.

The path that D uses to reach A depends on communities

and local preference. There are three physical paths from D

to A: (i) D→ A, (ii) D→ B→ A, and, (iii) D→ C→ B→
A. However, since router B adds community “c1” to routes

advertised to C, and D blocks advertisements from C with

this community, path iii is unusable. Furthermore, path ii is

preferred over the shorter path i due to local preference.

Since ARC uses Dijkstra’s algorithm to compute paths, it

can only model additive path metrics like OSPF cost and AS-

path length; it cannot model non-additive properties such as

local preference, communities, etc. Hence, ARC incorrectly

concludes that path iii is valid and (shortest) path i is pre-

ferred. Although Minesweeper and Plankton can model these

attributes, they suffer from other drawbacks mentioned earlier.

Failures. Assume there are no communities in the network

in Figure 1b, and routers A and D are configured to run OSPF

in addition to eBGP. This network can tolerate a single link

failure without losing connectivity.

According to ARC, traffic from D to A can flow through

four paths: Dbgp → Cbgp → Bbgp → Abgp, Dbgp → Bbgp →
Abgp, Dbgp→ Abgp, and Dosp f → Aosp f . To evaluate the net-

work’s failure resilience, ARC calculates the min-cut of this

graph, which is 3, and concludes that it can withstand two

arbitrary, simultaneous link failures. This is incorrect because

edges Dosp f → Aosp f and Dbgp → Abgp are both unusable

when the physical link D–A fails.

As mentioned in §2.1, Minesweeper and Plankton enumer-

ate multiple failure scenarios and this makes them very slow

to verify for failures. For example, in this 5-link network, to

verify reachability with 1 failure, Minesweeper (and Plankton

without optimization) may explore 5 failure scenarios before

establishing reachability.

An overall issue is that irrespective of the policy,

Minesweeper and Plankton need to compute the actual path

taken in the network. ARC, on the other hand, represents poli-

cies as graph properties, e.g. mincut, connectivity, etc. It then

uses fast polynomial time algorithms to compute these prop-

erties. However, ARC’s simplistic graph abstraction cannot

model all network features. Our goal is to create a tool that

combines the network coverage of Minesweeper and Plankton,

with the performance benefits of ARC.

3 Overview
Motivated by the inefficiencies and coverage limitations of

existing network verifiers (§2), we introduce a new network

verification tool called Tiramisu.Tiramisu is rooted in a rich

graph-based network model that captures forwarding and fail-

ure dependencies across multiple routing and switching layers

(e.g., BGP, OSPF, and VLANs). Since routing protocols are

generally designed to operate on graphs and their constituent

paths, graphs offer a natural way to express the route propaga-

tion, filtering, and selection behaviors encoded in device con-

figurations and control logic. Moreover, graphs admit efficient

analyses that allow Tiramisu to quickly reason about impor-

tant network policies—including reachability, path lengths,

and path preferences—in the context of multi-link failures. In

this section, we highlight how Tiramisu’s graph-based model

and verification algorithms address the challenges discussed

in §2. Detailed descriptions, algorithms, and proofs of cor-
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Category Policy Meaning Comments

i: compute path PREF Path Preference Can use TYEN

with TPVP MC Multipath Consistency

ii: compute actual KFAIL Reachability < K failures Can use TYEN

numeric graph BOUND All paths have length < K

property with ILP EB All paths have equal length

iii: identify BLOCK Always Blocked

connectivity wth WAYPT Always Waypointing

TDFS CW Always Chain of Waypoints

BH No Blackhole

Table 1: Policies Verified

rectness, are presented in later sections.

3.1 Graph-based network model

To accurately and efficiently model cross-layer dependencies,

Tiramisu constructs two inter-related types of graphs: routing

adjacencies graphs (RAGs) and traffic propagation graphs

(TPGs). The former allows Tiramisu to determine which rout-

ing processes may learn routes to specific destinations. The

latter models more detail, especially, all the prerequisites for

such learning to occur—e.g., OSPF must compute a route to

an iBGP neighbor in order for the neighbor to receive BGP

updates. Our verification algorithms run on the TPGs.

Routing adjacencies graph. A RAG (e.g, Figure 2a) encodes

routing adjacencies. Two routing processes are adjacent if

they are configured as neighbors (e.g., BGP) or configured to

operate on interfaces in the same layer-2 broadcast domain

(e.g., OSPF). A RAG contains a vertex for each routing pro-

cess, and a pair of directed edges for each routing adjacency.

Tiramisu runs a domain-specific “tainting” algorithm on the

RAG to determine which routing processes may learn routes

for a given prefix p.

Traffic propagation graph. In addition to routing adjacen-

cies, propagation of traffic requires: (i) a route to the desti-

nation, (ii) layer-2 and, in the case of BGP, layer-3 routes to

adjacent processes, and (iii) physical connectivity. A TPG

(e.g., Figure 2b) encodes these dependencies. Vertices are cre-

ated for each VLAN on each device and each routing process.

Directed edges model the aforementioned dependencies as

follows: (i) a VLAN vertex is connected to an OSPF/BGP ver-

tex associated with the same router if, according to the RAG,

the process may learn a route to a given subnet; (ii) an OSPF

vertex is connected to the vertices for the VLANs on which it

operates, and a BGP vertex is connected to an OSPF and/or

VLAN vertex associated with the same router; (iii) a VLAN

vertex is connected to a vertex for the same VLAN on another

device if the devices are physical connected. Additionally,

multi-attribute edge labels are assigned to edges to encode

filters and “costs” associated with a route. With this structure,

Tiramisu is able to correctly model a much wider range of

networks than state-of-the-art graph-based models [14]. All

verification procedures operate on the TPG.

3.2 Verification algorithms

Tiramisu’s verification process is rooted in the observation

that network policies explored in practice and in academic

research (Table 1) fall into three categories: (i) policies con-

cerned with the actual path taken under specific failures—

e.g., path preference (PREF); (ii) policies concerned with

quantitative path metrics—e.g., how many paths are present

(KFAIL) and bounds on path length (BOUND); and (iii) poli-

cies concerned with the existence of a path—e.g., blocking

(BLOCK) and waypointing (WAYPT). Verifying policies in the

first category requires high fidelity modeling of the control

plane’s output—namely, enumeration/computation of precise

forwarding paths—whereas verifying policies in the last cat-

egory requires low fidelity modeling of the control plane’s

output—namely, evidence of a single plausible path. For opti-

mal efficiency, Tiramisu’s core insight is to introduce category-

specific verification algorithms that operate with the minimal

level of fidelity required for accurate verification.

TPVP. To verify category i policies, Tiramisu efficiently

solves the stable paths problem [15] using the Tiramisu Path

Vector Protocol (TPVP). TPVP extends Griffin’s “simple path

vector protocol” (SPVP) [15]. In TPVP, each TPG node con-

sumes the multi-dimensional attributes of outgoing edges,

and uses simple arithmetic operations (based on a routing

algebra [26]) to select among multiple available paths. In

simple networks (that use a single routing protocol) TPVP

devolves to a distance vector protocol, which computes paths

under failures in polynomial time. For such networks, TPVP

is comparable to ESMC tools [23], but is faster than general

SMT-based tools [6]. For general networks with dependent

control plane protocols, TPVP is faster than SMT-based tools,

because it uses a domain-specific approach to computing

paths, compared to an SMT-based general search strategy.

TPVP also beats ESMC tools by emulating the control plane

in one shot as opposed to emulating the constituent protocols

and exploring their state space one at a time to account for

inter-protocol dependencies.

ILP. For category ii policies, Tiramisu leverages general in-

teger linear program (ILP) encodings that compute network

flows through the TPG, rather than precise paths. The ILPs

only consider protocol attributes that impact whether paths

can materialize (e.g., BGP communities), and they avoid path

computation. Thus, Tiramisu is much faster than state-of-the-

art approaches that always consider all attributes (e.g., BGP

local preferences) and enumerate actual paths [6, 23] (§8).

TDFS. Finally, Tiramisu depth-first search (TDFS) is a novel

polynomial-time graph traversal algorithm to check for the ex-

istence of paths and verify category iii policies. TDFS makes

a constant number of calls to the canonical DFS algorithm.

Each call is to a subgraph of the TPG that models the interac-

tion between tag-based (e.g., BGP-community-based) route

filters along a path that control if a path can materialize.

Tiramisu further improves over state-of-the-art verifiers

for some category i and ii policies by avoiding unnecessary

path computation. Specifically, we note that some category

i and ii properties require knowing when certain paths are

taken (i.e., after how many link failures, or after how many

more-preferred paths have failed). For such properties, ex-
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(a) RAG

(b) TPG

Figure 2: Graphs for network in Figure 1a

haustively exploring all failures by running TPVP for each

scenario, while sufficient, is overkill. To avoid enumerating

not-so-useful failure scenarios, Tiramisu leverages the graph

structure of the network model to run a variant of Yen’s dy-

namic programming based algorithm for k-shortest paths [31],

to directly compute a preference order of paths that manifest

under arbitrary failures. Our variant, TYEN, invokes TPVP

in a limited fashion from within Yen’s execution, minimiz-

ing path exploration. For PREF over k paths, we simply use

TYEN to compute the top-k paths over the TPG. Likewise, we

use TYEN to accelerate KFAIL, a category ii policy. Note that

TYEN can only be applied to networks whose path metrics

are monotonic [16].

4 Tiramisu Graph Abstraction

In this section, we describe in detail the two types of graphs

used in Tiramisu: routing adjacencies graphs (RAGs) and

traffic propagation graphs (TPGs). TPGs are partially based

on RAGs, and both are based on a network’s configurations

and physical topology.

4.1 Routing adjacencies graphs

RAGs encode routing adjacencies to allow Tiramisu to deter-

mine which routing processes may learn routes to specific IP

subnets. Tiramisu constructs a RAG for each of a network’s

subnets. For example, Figures 2a, and 3a show the RAGs for

subnet Z for the networks in Figure 1.

Vertices. A RAG has a vertex for each routing process. For

example, Bbgp and Bospf in Figure 2a represent the BGP and

OSPF processes on router B in Figure 1a. A RAG also has a

vertex for each device with static routes for the RAG’s subnet.

Edges. A RAG contains an edge for each routing adjacency.

Two BGP processes are adjacent if they are explicitly config-

ured as neighbors. Two OSPF process are adjacent if they are

configured to operate on router interfaces in the same Layer

2 (L2) broadcast domain (which can be determined from the

topology and VLAN configurations). These adjacencies are

represented using pairs of directed edges—e.g., Ebgp⇆ Bbgp

and Bospf ⇆Cospf —since routes can flow between these pro-

cesses in either direction. However, if two processes are iBGP

neighbors then a special pair of directional edges are used—

e.g., Bbgp
L99
99K

Cbgp—because iBGP processes do not forward

routes learned from other iBGP processes. A routing adja-

cency is also formed when one process (the redistributor)

(a) RAG

(b) TPG

Figure 3: Graphs for network in Figure 1b

distributes routes from another process on the same device

(the redistributee). This is encoded with a unidirectional edge

from redistributee to redistributor. Vertices representing static

routes may be redistributees, but will not have any other edges.

Taints. To determine which routing processes may learn

routes to specific destinations, Tiramisu runs a “tainting” al-

gorithm on the RAG. All nodes that originate a route for the

subnet associated with the RAG (including vertices corre-

sponding to static routes) are tainted. Then taints propagate

freely across edges to other vertices, with one exception: when

taints traverse an iBGP edge they cannot immediately traverse

another iBGP edge. For example, in Figure 2a, Ebgp is tainted,

because it originates a route for Z. Then taints propagate from

Ebgp to Bbgp to Cbgp, but not to Dbgp. No OSPF vertices are

tainted, because no OSPF processes originate a route for Z

and no processes are configured to redistribute routes.

The tainting algorithm assumes all configured adjacencies

are active and no routes are filtered. However, for an adjacency

to be active in the real network, certain conditions must be

satisfied: e.g., Bosp f must compute a route to C’s loopback

interface and vice versa in order for Bbgp to exchange routes

with Cbgp. These dependencies are encoded in TPGs.

4.2 Traffic propagation graph

A process P on router R can advertise a route for subnet S

to an adjacent routing process P′ on router R′ if all of the

following dependencies are satisfied: (i) P learns a route for

S from an adjacent process, or P is configured to originate a

route for S; (ii) neither P or P′ filters the advertisement; (iii)

another process/switch on R learns a route to R′, or R is con-

nected to the same subnet/layer-2 domain as R′; and (iv) R is

physically connected to R′ through a sequence of one or more

links. TPGs encode these dependencies. Tiramisu constructs

a TPG for every pair of a network’s IP subnets. Figures 2b

and 3b show the TPGs that model how traffic from subnet Y

is propagated to subnet Z for the networks in Figure 1.

Vertices. A TPG’s vertices represent the routing information

bases (RIBs) present on each router and the (logical) traffic

ingress/egress points on each router/switch. Each routing pro-

cess maintains its own RIB, so the TPG contains a vertex for

each process: e.g., Bbgp and Bospf in Figure 2b correspond to

the BGP and OSPF processes on router B in Figure 1a.

Traffic propagates between routers and switches over

VLANs. Consequently, the TPG contains a pair of in-

gress/egress vertices for each of a device’s VLANs: e.g.,

S1v1:in and S1v1:out in Figure 2b correspond to the VLAN on

switch S1 in Figure 1a. Tiramisu creates implicit VLANs

for pairs of directly connected interfaces: e.g., Bvlan:BE:in,
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Bvlan:BE:out, Evlan:BE:in, and Evlan:BE:out in Figure 2b corre-

spond to the directly connected interfaces on routers B and E

in Figure 1a.

The TPG also includes vertices for the source and desti-

nation (target) of the traffic being propagated: e.g., Y and Z ,

respectively, in Figure 2b.

Edges. A TPG’s edges reflect the virtual and physical “hops”

the traffic may take. Edges model dependencies as follows:
• Layers 1 & 2: For each VLAN V on device D, the egress

vertex for V on D is connected to the ingress vertex for V

on device D′ if an interface on D participating in V has

a direct physical link to an interface on D′ participating

in V : e.g., Bvlan1:out→ S1vlan1:in in Figure 2b corresponds

to the physical link between B and S1 in Figure 1a. Also,

the ingress vertex for V on D is connected to the egress

vertex for V on D to model L2 flooding: e.g., S1vlan1:in→
S1vlan1:out.

• OSPF’s dependence on L2: The vertex for OSPF pro-

cess P on router R is connected to the egress vertex for

VLAN V on R if P is configured to operate on V : e.g.,

Dospf → Dvlan:CD:out and Dospf → Dvlan:1:out in Figure 2b

model OSPF operating on router D’s VLANs in Figure 1a.

• BGP’s dependence on connected and OSPF routes: For

each peer N of the BGP process P on router R, an edge is

created from the vertex for P to the egress vertex for VLAN

V on R if N’s IP address falls within the subnet assigned

to V : e.g., Ebgp:B → Evlan:BE:out in Figure 2b models the

BGP process on router E communicating with the adjacent

process on directly connected router B in Figure 1a. If

no such V exists, then the vertex for P is connected to

the vertex for OSPF process P′ on R: e.g., Bbgp → Bospf

models the BGP process on B communicating with the

adjacent process on router C (which operates on a loopback

interface) via an OSPF-computed path.

• Routes to the destination: Every VLAN ingress vertex on

router R is connected to the vertex for process P on R if the

vertex for P in the RAG is tainted: e.g., Bvlan:BC:in→Bbgp

in Figure 2b is created due to the taint on Bbgp in Figure 2a,

which models that fact that the BGP process on B may

learn a route to subnet Z from the adjacent process on E.

If the destination subnet T is connected to R and at least

one routing process on R originates T , then every VLAN

ingress vertex on R is connected to the vertex for T : e.g.,

Evlan:BE:in→ Z in Figure 2b.

If the source subnet S is connected to R and the vertex for

process P on R is tainted in the RAG, then the vertex for S

is connected to the vertex for P: e.g., Y →Cbgp in Figure 2b.

Filters. As mentioned in §4.1, a RAG may overestimate

which processes learn a route to a subnet due to route and

packet filters not being encoded in the RAG. A TPG models

filters using two approaches: edge pruning and edge attributes.

Tiramisu uses edge pruning to model prefix- or neighbor-

based filters. A BGP process P may filter routes imported

from a neighbor P′ (or P′ may filter routes exported to P)

based on the advertised prefix or neighbor from (to) whom the

route is forwarded. Tiramisu models such a filter by removing

from the vertex associated with P, the outgoing edge that

corresponds to P′. For example, if router B in Figure 1a had an

import filter, or router E had an export filter, that block routes

for Z, then edge Bbgp→ Bvlan:BE:out would be removed from

Figure 2a. Note that import and export filters are both modeled

by removing an outgoing edge from the vertex associated with

the importing process. OSPF is limited to filtering incoming

routes based on the advertised prefix. Tiramisu models such

route filters by removing all outgoing edges from the vertex

associated with the OSPF process where the filter is deployed.

Lastly, packets sent (received) on VLAN V can be filtered

based on source/destination prefix. Tiramisu models such

packet filters by removing the outgoing (incoming) edge that

represents the physical link connecting V to its neighbor.

Tiramisu uses edge attributes to model tag- (e.g., BGP

community- or ASN-) based filters. If a BGP process P fil-

ters routes imported from a neighor P′ (or P′ filters routes

exported to P) based on tags, then Tiramisu adds a “blocked

tags” attribute to the outgoing edge from the vertex associ-

ated with P that corresponds to P′. For example, the edge

Dbgp→ Dvlan:CD:out in Figure 3b is annotated with bt = {c1}
to encode the import filter router D applies to routes from C

in Figure 1b. Edges can also include “added tags” and “re-

moved tags” attributes: e.g., Cbgp→Cvlan:BC:out is annotated

with at = {c1} to encode the export filter router B applies

to routes advertised to C. Notice that tag actions defined in

import and export filters are both added to an outgoing edge

from the vertex associated with the importing process.

Costs/preferences. Each routing protocol uses a different set

of metrics to express link and path costs/preferences. For

example, OSPF uses link costs, and BGP uses AS-path length,

local preference (lp), etc. Similarly, administrative distance

(AD) allows routers to choose routes from different protocols.

Hence a single edge weight cannot model the route selection

decisions of all protocols. Tiramisu annotates the outgoing

edges of OSPF, BGP, and VLAN ingress vertices with a vector

of metrics. Depending on the edge, certain metrics will be

null: e.g., OSPF cost is null for edges from BGP vertices.

5 Category (i) Policies
We now describe how Tiramisu verifies policies that require

knowing the actual path taken in the network under a given

failure (§3.2). One such policy is path preference (PREF).

For example, Ppre f = p1≫ p2≫ p3, states when path p1

fails, p2 (if available) should be taken; and when p1 and

p2 both fail, p3 (if available) should be taken. A path can

become unavailable if a link or device along the path fails. We

model such failures by removing edges (between egress and

ingress VLAN vertices) or vertices from the TPG. To verify

PREF, we need to know what alternate paths materialize, and

whether a materialized path is indeed the path meant to be
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taken according to preference order. Similar requirements

arise for verifying multipath consistency (MC).

In this section, we introduce an algorithm, TPVP, to com-

pute the actual path taken in the network. TPVP can be used

to exhaustively explore failures to verify category (i) policies,

but it is slow. We show how to accelerate verification using a

dynamic-programming based graph algorithm.

5.1 Tiramisu Path Vector Protocol

Griffin et al. observed that BGP attempts to solve the stable

paths problem and proposed the Simple Path Vector Protocol

(SPVP) for solving this problem in a distributed manner [15].

Subsequently, Sobrinho proposed routing algebras for mod-

eling the route computation and selection algorithms of any

routing protocol in the context of a path vector protocol [25].

Griffin and Sobrinho then extended these algebras to model

routing across administrative boundaries—e.g., routing within

(using OSPF) and across (using BGP) ASes [16]. However,

they did not consider the dependencies between protocols

within the same administrative region—e.g., iBGP’s depen-

dence on an OSPF. Recently, Plankton addressed these de-

pendencies by solving multiple stable paths problems, and

proposed the Restricted Path Vector Protocol (RPVP) for solv-

ing these problems in a centralized manner [23].

Below, we explain how the Tiramisu Path Vector Proto-

col (TPVP) leverages routing algebras and extends SPVP to

compute paths using our graph abstraction. Since SPVP was

designed for Layer 3 protocols, TPVP works atop a simpli-

fied TPG called the Layer 3 TPG (L3TPG). Tiramisu uses

path contraction to replace L2 paths with an L3 edge con-

necting L3 nodes, to model the fact that advertisements can

flow between routing processes as long as there is at least one

L2 path that connects them. Recall that the incoming edges

of VLAN egress vertices and the outgoing edges of VLAN

ingress vertices include (non-overlapping) edge labels (§4.2);

these are combined and applied to the L3 edge(s) that replace

the L2 path(s) containing these L2 edges.

Routing algebras. Routing algebras [16, 25] model routing

protocols’ path cost computations and path selection algo-

rithms. An algebra is a tuple (Σ,�,L,⊕,O) where:

• Σ is a set of signatures representing the multiple metrics

(e.g., AS-path length, local pref, ...) associated with a path.

• � is the pre f erence relation over signatures. It models

route selection, ranking paths by comparing multiple met-

rics of multiple path signatures in a predefined order (e.g.,

first compare local pref, then AS-path length, ...)

• L is set of labels representing multi-attribute edge-weight.

• ⊕ is a function L×Σ→ Σ, capturing how labels and sig-

natures combine to form a new signature; i.e., ⊕ models

path cost computations. ⊕ has multiple operators, each

computing on certain metrics.2

• O is the signature attached to paths at origination.

2For example, ADD operator adds OSPF link costs and AS-path lengths.

LP operator sets local pref, TAGS operator prohibits paths with a tag, etc.

In Tiramisu, path signatures contain metrics from all possi-

ble protocols (e.g., OSPF cost, AS-path length, AD, ...), but�
and ⊕ are defined on a per-protocol basis and only operate on

the metrics associated with that protocol. For example, ⊕BGP

sets local pref and adds AS-path lengths from a label (λ ∈ L),

but copies the OSPF cost and AD directly from the input

signature (σ ∈ Σ) to the output signature (σ′ ∈ Σ). Similarly,

�BGP compares local pref, AS-path lengths, and OSPF link

costs3 but does not compare AD.

TPVP. TPVP (Algorithm 1) is derived from SPVP [15]. For

each vertex in the L3TPG, TPVP computes and selects a

most-preferred path to dst based on the (signatures of) paths

selected by adjacent vertices. However, TPVP extends SPV P

in two fundamental ways: (i) it uses a shared memory model

instead of message passing, akin to RPV P [23]; and (ii) it

models multiple protocols in tandem by computing path sig-

natures and selecting paths using routing algebra operations

corresponding to different protocols: e.g., ⊕BGP and �BGP

are applied at vertices corresponding to BGP processes.

For each peer v of each vertex u (v is a peer of u if u→ v ∈
L3TPG) TPVP uses variables pu(v) and σu(v) to track the

most preferred path to reach dst through v and the path’s sig-

nature, respectively. Likewise, variables pu and σu represent

the most preferred path and its signature to reach dst from u.

In the initial state, TPVP sets the path and sign values of all

nodes except dst to null (line 2). pdst is set to ε and σdst is set

to O, since it “originates” the advertisement (line 3). Similar

to SPV P, there are three steps in each iteration. First, for each

node u, TPVP computes all its pu(∗) and σu(∗) values based

on the path signatures of its neighbors and outgoing edge

labels λu→∗ (lines 7–10). It calculates the best path based on

the preference relation (line 11). If the current pu changes

from previous iteration, then the network has not converged

and the process repeats (lines 12–13).

Theorem 1. If the network control plane converges, TPVP

always finds the exact path taken in the network under any

given failure scenario.

We prove Theorem 1 is in Appendix C.1. The proof shows

that TPVP and the TPG correctly model the permitted paths

and ranking function to solve the stable paths problem.

Plankton [23] leverages basic SPVP to model the network.

But because basic SPVP cannot directly model iBGP, to ver-

ify networks that use iBGP, Plankton runs multiple SPVP

instances. As mentioned in §2.1, BGP routing depends on

the outcome of OSPF routing. Hence, Plankton runs SPVP

multiple times: first for multiple OSPF instances, and then

for dependent BGP instances. In contrast, because Tiramisu’s

TPVP is built using routing algebra atop a network model with

rich edge attributes, we can bring different dependent routing

protocols into one common fold of route computation. Thus,

we can analyze iBGP networks, and, generally, dependent

protocols, “in one shot” by running a single TPVP instance.

3OSPF cost is used as a tie-breaker in BGP path selection [10].
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Algorithm 1 Tiramisu Path Vector Protocol

1: procedure T PV P(L3T PG)
2: ∀i ∈ {V −dst} : pi =∅,σi = φ

3: pdst = [dst],σdst = O ⊲ dst originates the route

4: converged = f alse

5: while ¬converged do

6: converged = true

7: for each u ∈ L3T PG do

8: for each v ∈ peers(u) do

9: pu(v) = edgeu→v ◦ pv ⊲ add edge to path

10: σu(v) = λu→v ⊕type(u) σv

11: compute pu and σu using � over σu(∗)
12: if pu has changed then

13: converged = f alse

In Appendix D, we show that TPVP can verify other poli-

cies, like “Multipath Consistency (MC)”, that requires materi-

alization of certain paths.

5.2 Tiramisu Yen’s algorithm

To verify PREF, Tiramisu runs TPVP multiple times to com-

pute paths for different failure scenarios. For example, while

verifying Ppre f , Tiramisu runs TPVP for all possible failures

(edge removals) that render paths p1 and p2 unavailable.

Then, it checks if TPVP always computes p3 (if available).

While correct, this is tedious and slow overall.

We can accelerate the verification of this policy by leverag-

ing the graph structure of the L3TPG and developing a graph

algorithm that avoids unnecessary path explorations/compu-

tations. Specifically, we observed that there are similarities

between analyzing PREF and finding the k shortest paths in

a graph [31]. This is because, in the k shortest paths prob-

lem, the kth shortest path is taken only when k−1 paths have

failed. To avoid enumerating all possible failures of all k−1

shorter paths, Yen [31] introduced an efficient algorithm for

this problem that uses dynamic programming to avoid failure

enumeration. Yen uses the intuition that the kth shortest path

will be a small perturbation of the previous k− 1 shortest

paths. Instead of searching over the set of all paths, which is

exponential, Yen constructs a polynomial candidate set from

the previous k−1 paths, in which the kth path will be present.

To accelerate PREF, our TYEN algorithm makes two simple

modifications to Yen. Yen uses Dijkstra to compute the short-

est path. We replace Dijkstra with TPVP. Next, we add a con-

dition to check that during the ith iteration, the ith computed

path follows the preference order specified in PREF. The de-

tailed description of Yen and TYEN are in Appendix A. Note

that Yenand hence TYEN, assumes the path-cost composition

function is strictly monotonic. Hence, TYEN acceleration can

be leveraged only on monotonic networks.

6 Category (ii) Policies

We now describe how Tiramisu verifies policies pertaining to

quantitative path metrics, e.g., KFAIL and BOUND. For such

policies, Tiramisu uses property-specific ILPs. These ILPs run

fast because they abstract the underlying TPG and only model

protocol attributes that impact whether paths can materialize

(e.g., communities).

6.1 Tiramisu Min-cut

KFAIL states that src can reach dst as long as there are < K

link failures. ARC [14] verifies this policy by computing the

min-cut of a graph; if min-cut is ≥ K, then KFAIL is satisfied.

However, standard min-cut algorithms do not consider how

route tags (e.g., BGP communities) impact the existence

of paths. For example, in Figure 3b, any path that includes

Dbgp:c→ Dvlan:CD:out followed by Cbgp:b→Cvlan:BC:out is pro-

hibited due to the addition and filtering of tags on routers

B and D, respectively. In this manner, tags prohibit paths

with certain combinations of edges in the TPG, making the

TPG a “correlated network”. It is well known that finding the

min-cut of a correlated network is NP-Hard [30]. Note that

traffic flows in the direction opposite to route advertisements.

Hence, the prohibited paths have tag-blocking edges followed

by tag-adding edges.

We propose an ILP which accounts for route tags, but ig-

nores irrelevant edge attributes (e.g., edge costs), to compute

the min-cut of a TPG For brevity, we explain the constraints

at a high-level, leaving precise definitions to Appendix B.1.

Equation numbers below refer to equations in Appendix B.1.

The objective of the ILP is to minimize the number of

physical link failures (Fi) to disconnect src from dst.

Objective: minimize ∑
i∈pEdges

Fi (1)

Traffic constraints. We first define constraints on reachabil-

ity. The base constraint states that src originates the traffic

(Eqn 2). To disconnect the graph, the next constraint states

that the traffic must not reach dst (Eqn 3). For other nodes, the

constraint is that traffic can reach a node if it gets propagated

on any of its incoming edges (Eqn 4).

Now we define constraints on traffic propagation. Traffic

can propagate through an edge e if: it reaches the start node

of that edge; the traffic does not carry a tag that is blocked on

that edge; and, if the edge represents an inter-device edge, the

underlying physical link has not failed. This is represented as

shown in Eqn 5.

Tags. We now add constraints to model route tags. The base

constraints state that each edge that blocks on a tag forwards

that tag, and each edge that removes that tag does not forward

it further (Eqn 6 and Eqn 7). For other edges, we add the

constraint that edge e forwards a tag t iff the start node of

edge e receives traffic with that tag (Eqn 8). Finally, we add

the constraint that an edge e carries a blocked tag iff that

blocked tag can be added by edge e (Eqn 9).

We prove the correctness of this ILP in Appendix C.2 based

on the correctness of Tiramisu’s modeling of permitted paths.

Using TYEN for KFAIL with ACLs. This ILP is not accurate

when packet filters (ACLs) are in use. ACLs do not influence

advertisements. Hence, routers can advertise routes for traffic
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that get blocked by ACLs. Recall that during graph creation,

Tiramisu removes edges that are blocked by ACLs §4.2. This

leads to an incorrect min-cut computation as shown below:

Assume src and dst are connected by three paths P1, P2

and P3 in decreasing order of path-preference. Also assume

these paths are edge disjoint and path P2 has a data plane

ACL on it. If a link failure removes P1, then the control plane

would select path P2. However, all packets from src will be

dropped at the ACL on P2. In this case, a single link failure

(that took down P1) is sufficient to disconnect src and dst.

Hence the true min-cut is 1. On the other hand, Tiramisu

would remove the offending ACL edge from the graph. The

graph will now have paths P1 and P3, and the ILP would

conclude that the min-cut is 2, which is incorrect.

We address this issue as follows. Nodes can become un-

reachable when failures either disconnect the graph or lead to

a path with an ACL. We compute two quantities: (1) N: Mini-

mum failures that disconnects the graph, and, (2) L: Minimum

failures that cause the control plane to pick a path blocked by

an ACL. The true min-cut value is min(N,L).
First we use our min-cut ILP to compute N. To compute L,

in theory, we could simply run TPVP to exhaustively explore

k-link failures for k = 1,2, .., and determine the smallest fail-

ure set that causes the path between src and dst to traverse an

ACL. However, this is expensive.

We can accelerate this process by leveraging TYEN, similar

to our approach for PREF. We first construct a TPG without

removing edges for ACLs. Then, we run TYEN until we find

the first path with a dropping ACL on it. Say this was the Mth

preferred path. Then, we remove all edges from the graph

that do not exist in any of the previous M− 1 paths. Next,

we use our min-cut ILP to compute the minimal failures L to

disconnect this graph. This represents the minimal failures to

disconnect previous M−1 paths and pick the ACL-blocked

path. If min(L,N)≥ K then KFAIL is satisfied.

Overall, to compute KFAIL, the above requires Tiramisu to

run (a) TYEN to compute M paths; and (b) two min-cut ILPs

to compute N and L respectively. Note that to verify KFAIL,

Minesweeper will explore all combinations of k link failures.

6.2 Tiramisu Longest path

Always bounded length policy (BOUND) states that for a given

K, BOUND is true if under every failure scenario, traffic from

src to dst never traverses a path longer than K hops. Enumer-

ating all possible paths and finding their length is infeasible.

However, this policy can be verified efficiently by viewing

it as a variation of computing a quantitative path property,

namely the longest path problem: for a given K, BOUND is

true if the longest path between src and dst is ≤ K.

Finding the longest path between two nodes in a graph is

also NP hard [19]. To verify BOUND, we thus propose another

ILP whose objective is to maximize the number of inter device

edges (dEdges) traversed by traffic (Ai).

Objective: maximize ∑
i∈dEdges

Ai (2)

We present detailed constraints and a proof of correctness

in Appendices B.2 and C.2, respectively.

Constraints. We first add constraints to ensure that traffic

flows on one path, src sends traffic, and dst receives it (Eqn 11

and Eqn 12). For other nodes, we add the flow conservation

property, i.e., the sum of incoming flows is equal to the sum of

outgoing flows (Eqn 13). Finally, we add constraints on traffic

propagation: traffic will be blocked on edge e if it satisfies the

tag constraints (Eqn 14).

In Appendix D, we show that a similar ILP can be used to

verify other policies of interest—e.g., all paths between src

and dst have equal length (EB).

7 Category (iii) Policies

Finally, we describe how Tiramisu verifies policies that only

require us to check for just the existence of a path, e.g., “al-

ways blocked” (BLOCK). For these policies, we use a new

simple graph traversal algorithm. Tiramisu’s performance is

fastest when checking for such policies (§8).

Standard graph traversal algorithms, like DFS, also do

not account for tags. DFS will identify the prohibited path

from Figure 3b (Dbgp:c→ Dvlan:CD:out followed by Cbgp:b→
Cvlan:BC:out) as valid, which is incorrect. To support tags, we

propose TDFS, Tiramisu Depth First Search (Algorithm 2).

TDFS makes multiple calls to DFS to account for tags.

TDFS. As mentioned in §4, edges can add, remove or block

on tags. In presence of such edges, the order in which these

edges are traversed in a path determines if dst is reachable.

TDFS first checks if dst is unreachable from src according

to DFS (line 3, 4). If they are reachable, then TDFS checks

if all paths that connect src to dst (i) have an edge (say X)

that blocks route advertisements and hence traffic (for dst)

with a tag (line 5 to 6), (ii) followed by an edge (say Y) that

adds the tag to the advertisements for dst (line 7 to 8), and

(iii) has no edge between X and Y that removes the tag (line

9 to 10). If all these conditions are satisfied, then src and dst

are unreachable. If any of these conditions are violated, the

nodes are reachable.

We prove the correctness of TDFS in Appendix C.3.

The above algorithm naturally applies to verifying BLOCK.

It can similarly be used to verify WAYPT (“always waypoint-

ing”): after removing the waypoint, if src can reach dst, then

there is a path that can reach dst without traversing the way-

point. TDFS can also verify “always chain of waypoints

(WAYPT)” and “no blackholes (BH)” (Appendix D).

8 Evaluation

We implemented Tiramisu in Java (≈ 7K lines of code) [2].

We use Batfish [13] to parse router configurations and

Gurobi [3] to solve our ILPs. We evaluate Tiramisu on a

variety of issues:

• How quickly can Tiramisu verify different policies?

• How does Tiramisu perform compared to state-of-the-art?
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Algorithm 2 Always blocked with tags

1: procedure T DFS(G,src,dst)
2: tA, tR, tB← edges that add, remove, or block on tag (respectively)

3: if dst is unreachable by DFS (G, src) then

4: return true (nodes are already unreachable)

5: if dst is reachable by DFS (G-tB, src) then

6: return false (∃ path src dst where tagged-routes are not blocked)

7: if ∃eb ∈ tB s.t. dst is reachable by DFS (G-tA, eb) then

8: return false (tag-blocking edges can get ads for dst without tags)

9: if ∀eb ∈ tB,ea ∈ tA: ea is unreachable by DFS (G-tR, eb) then

10: return false (tags always removed before reaching blocking edges)

11: return true
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• How does Tiramisu’s performance scale with network size?

Our experiments were performed on machines with dual 10-

core 2.2 GHz Intel Xeon Processors and 192 GB RAM.

8.1 Network Characteristics
In our evaluation, we use configurations from (a) 4 real uni-

versity networks, (b) 34 real datacenter networks operated by

a large online service provider, (c) 7 networks from the topol-

ogy zoo dataset [20], and (d) 5 networks from the Rocketfuel

dataset [27]. The university networks have 9 to 35 devices

and are the richest in terms of configuration constructs. They

include eBGP, iBGP, OSPF, static routes, packet/route filters,

BGP communities, local preferences, VRFs and VLANs. The

datacenter networks have 2 to 24 devices and do not employ

local preference or VLANs. The topology zoo networks have

33 to 158 devices, and the Rocketfuel networks have 79 to

315 devices. The configs for topology zoo and Rocketfuel

were synthetically generated for random reachability poli-

cies [11, 23] and do not contain static routes, packet filters,

VRFs or VLANs. Details on the TPGs for these networks are

in Appendix E. The main insight is that the number of rout-

ing processes and adjacencies per device varies. Hence, the

number of nodes and edges in the TPG do not monotonically

increase with network size.

Policies. We consider five polices: (PREF) path preference,

(KFAIL) always reachable with < K failures, (BOUND) always

bounded length, (WAYPT) always waypointing, and (BLOCK)

always unreachable. Recall that: PREF is category i and is

accelerated by TYEN calling TPVP from within; KFAIL and

BOUND are category ii and use ILPs; BLOCK and WAYPT are

category iii and use TDFS.

8.2 Verification Efficiency

We examine how efficiently Tiramisu can construct and verify

these TPGs. First, we evaluate the time required to generate

the TPGs. We use configurations from all the networks. Fig-

ure 4 shows the time taken to generate a traffic class-specific

TPG for all networks. Tiramisu can generate these graphs,

even for large networks, in ≈ 1 ms.

Next, we examine how efficiently Tiramisu verifies various

policies. Since the university networks are the richest in terms

of configuration constructs, we use them in this experiment.

Because of VRF/VLAN, Minesweeper, Plankton and ARC

cannot model these networks. Figure 5 shows the time taken

to verify PREF, KFAIL, BOUND, and BLOCK. Since WAYPT

uses TDFS, it is verified in a similar order-of-magnitude time

as BLOCK. Hence for brevity, we do not show their results.

In this and all the remaining experiments, the values shown

are the median taken over 100 runs for 100 different traffic

classes. Error bars represent the std. deviation.

We observe that BLOCK can be verified in less than 3 ms.

Since it uses a simple graph traversal algorithm (TDFS), it is

the fastest to verify among all policies. In fact, for BLOCK,

our numbers are comparable to ARC [14]. The time taken to

verify PREF is higher than BLOCK, because TPVP and TYEN

algorithms are more complex, as they run our path vector

protocol to convergence to find paths (and in TYEN’s case,

TPVP is invoked several times). Finally, KFAIL and BOUND,

both use an ILP and are the slowest to verify. However, they

can still be verified in ≈ 80 ms per traffic class.

Although Uni2 and Uni3 have fewer devices than Uni4,

their TPGs are larger (§E), so it takes longer to verify policies.

8.3 Comparison with Other tools

Next, to put our performance results in perspective, we com-

pare Tiramisu with other state-of-art verification tools.

Minesweeper [6] In this experiment we use datacenter net-

works and consider policies PREF, BOUND, WAYPT, and

BLOCK. Minesweeper takes the number of failures (K) as

input and checks if the policy holds as long as there are ≤ K

failures. To verify a property under all failure scenarios, we

set the value of K to one less than the number of physical links

in the network. Figure 6 shows the time taken by Tiramisu

and Minesweeper to verify these policies, and Figure 7 shows

the speedup provided by Tiramisu.

PREF is the only policy where speedup does not increases

with network size. This is because larger networks have longer

path lengths and more possible candidate paths, both of which

affect the complexity of the TYEN algorithm. The number

of times TYEN invokes TPVP increases significantly with

network size. Hence the speedup for PREF is relatively less,

especially at larger network sizes. For BOUND, the speedup

is as high as 50X . For policies that use TDFS (BLOCK and

WAYPT), Tiramisu’s speedup is as high as 600-800X .

Next, we compare the performance of Tiramisu and

Minesweeper for the same policies but without failures, e.g.

“currently reachable” instead of “always reachable”. Tiramisu

verifies these policies by generating the actual path using

TPVP. Figure 8 (a, b, c, and d) shows the speedup provided

by Tiramisu for each of these policies. Even for no failures,
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Figure 7: Speedup under all failures: Tiramisu vs Minesweeper (datacenter networks)

Tiramisu significantly outperforms Minesweeper across all

policies. Minesweeper has to invoke the SMT solver to find a

satisfying solution even in this simple case.

To shed further light on Tiramisu’s benefits w.r.t.

Minesweeper, we compare the number of variables used by

Minesweeper’s SMT encoding and Tiramisu’s ILP encoding

to verify KFAIL and BOUND. We observed that Tiramisu uses

10-100X fewer variables than Minesweeper. For Tiramisu, we

also found that BOUND uses fewer variables than KFAIL.

Plankton [23] Next, we compare Tiramisu against Plankton

using the Rocketfuel topologies. We generate two sets of

configurations: one with only OSPF and one with iBGP and

OSPF. We run Plankton with 32 cores to verify reachability

with one failure, i.e. k=1 in KFAIL. Figure 9(a) shows the time

taken by Plankton (SPVP on 32 cores) and Tiramisu (ILP

on 1 core) to verify this policy. Due to dependencies, Plank-

ton (P-iBGP) performs poorly for iBGP networks. It gave an

out-of-memory error for large networks. For small networks,

Tiramisu (T-iBGP) outperforms Plankton by 100-300X . On

networks that run only OSPF, Plankton (P-OSPF) performed

better on a single network with 108 routers. Communica-

tion with the authors revealed that Plankton may have gotten

lucky by quickly trying a link failure that violated the policy.

Disregarding that anomaly, Tiramisu (T-OSPF) outperforms

Plankton by 2-50X on the OSPF-only networks.

Batfish [13] Data-plane verifiers, like Batfish, generate data

planes and verify policies on each generated data plane.

ARC [14] showed that Batfish is impractical to use even

for small failures. Here, we show that even without failures,

Tiramisu outperforms Batfish. We run Batfish with all its op-

timization, on the datacenter networks to verify reachability

without failures. As mentioned earlier, Tiramisu verifies this

policy using TPVP. Figure 9(b) shows that it outperforms

Batfish by 70-100X .

Bonsai Bonsai [7] introduced a compression algorithm to im-

prove scalability of configuration verifiers like Minesweeper,

to verify certain policies exclusively under no failures. We

repeat the previous experiment to evaluate Bonsai (built on

Minesweeper). Figure 9(b) shows that Tiramisu still outper-

forms Bonsai, and can provide speedup as high as 9X .

8.4 Scalability

Here, we evaluate Tiramisu’s performance to verify PREF,

KFAIL, BOUND, and, BLOCK, on large networks from the

topology zoo. Figure 10 shows the time taken to verify these

policies. Tiramisu can verify these policies in < 0.12 s.

For large networks, time to verify PREF (TYEN) is as high

as BOUND. Again, this is due to larger networks having longer

and more candidate paths. Large networks also have high di-

versity in terms of path lengths. Hence, we see more variance

in the time to verify PREF compared to other policies.

For large networks, the time to verify KFAIL is significantly

higher than other policies. This happens because KFAIL’s ILP

formulation becomes more complex, in terms of number of

variables, for such large networks. As expected, verifying

BLOCK is significantly faster than all other policies, and it is

very fast across all network sizes.

Impact of TYEN acceleration. In our analysis of PREF and

KFAIL, we invoke TYEN’s acceleration. To evaluate how much

acceleration TYEN provided, we now measure the time taken

to verify PREF on the Rocketfuel and datacenter networks,

with and without TYEN’s optimization. Our main conclusions

are (i) on small networks (< 20 devices), TYEN provides a

acceleration as high as 1.4X , and (ii) on large networks (>

100 devices), TYEN provides acceleration as high as 3.8X .

Evaluation Summary. By decoupling the encoding from al-

gorithms, Tiramisu uses custom property-specific algorithms

with graph-based acceleration to achieve high performance.

9 Extensions and limitations
Although we describe Tiramisu’s graphs in the context of

BGP and OSPF, the same structure can be used to model

other popular protocols (e.g., RIP and EIGRP). Additionally,

virtual routing and forwarding (VRFs) can be modeled by

replicating routing process vertices for each VRF in which

the process participates. To verify policies for different traffic

classes, Tiramisu generates a TPG per traffic class. To reduce

the number of TPGs, we can compute non-overlapping packet

equivalence classes (PEC) [17,23] and create a TPG per PEC.
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Unlike SMT-based tools, Tiramisu does not symbolically

model advertisements. Consequently, Tiramisu cannot deter-

mine if there exists some external advertisement that could

lead to a policy violation; Tiramisu can only exhaustively ex-

plore link failures. Tiramisu must be provided concrete instan-

tiations of external advertisements; in such a case, Tiramisu

can analyze the network under the given advertisement(s) and

determine if any policies can be violated. A related issue is

that Tiramisu cannot verify control plane equivalence: two

control planes are equivalent, if the behavior of the control

planes (paths computed) is the same under all advertisements

and all failure scenarios. In essence, while Tiramisu can re-

place Minesweeper for a vast number of policies, it is not a

universal replacement. Minesweeper’s SMT-encoding is use-

ful to explore advertisements. Additionally, Tiramisu cannot

check quantitative advertisement policies—e.g., does an ISP

limit the number of prefixes accepted from a peer.

Tiramisu’s modeling of packet filters in the TPG only con-

siders IP-based filtering. Consequently, in networks with

protocol- or port-based packet filters, Tiramisu may over-

or under-estimate reachability for packets using particular

ports or protocols. Additionally, Tiramisu does not account

for packet filters that impact route advertisements—e.g., filter-

ing packets destined for a particular BGP neighbor—or route

filters where multiple tags affect the same destination—e.g.,

community groups, AS-path filters, etc. We plan to extend

Tiramisu in the future to address these limitations.

Finally, Tiramisu cannot correctly model a control plane

where (1) iBGP routes lead to route deflection, and (2) an

iBGP process assigns preferences (lp) or tag-based filters to

routes received from its iBGP neighbors (Appendix C).

10 Related Work

We surveyed various related works in detail in earlier sections.

Here, we survey others that were not covered earlier.

ERA [12] is another control plane verification tool. It

symbolically represents advertisements which it propagates

through a network and transforms it based on how routers

are configured. ERA can verify reachability against arbitrary

external advertisements, but it does not have the full coverage

of control plane constructs as Tiramisu to analyze a range of

policies. Bagpipe [29] is similar in spirit to Minesweeper and

Tiramisu, but it only applies to a network that only runs BGP.

FSR [28] focuses on encoding BGP path preferences.

Batfish [13] and C-BGP [24] are control plane simula-

tors. They analyze the control plane’s path computation as a

function of a given environment, e.g., a given failure or an

incoming advertisement, by conducting low level message

exchanges, emulating convergence, and creating a concrete

data plane. Tiramisu also conducts simulations of the control

plane; but, for certain policies, Tiramisu can explore multiple

paths at once via graph traversal and avoid protocol simula-

tion. For other policies, Tiramisu only simulates a path vector

protocol. Although P-Rex [18] is modeled for fast verification

under failures, it focuses solely on MPLS.

11 Conclusion

While existing graph-based control plane abstractions are fast,

they are not as general. Symbolic and explicit-state model

checkers are general, but not fast. In this paper, we showed that

graphs can be used as the basis for general and fast network

verification. Our insight is that, rich, multi-layered graphs,

coupled with algorithmic choices that are customized per

policy can achieve the best of both worlds. Our evaluation of

a prototype [2] shows that we offer 2-600X better speed than

state-of-the-art, scale gracefully with network size, and model

key features found in network configurations in the wild.
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A Yen’s and TYEN Algorithm
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Figure 11: Example for Yen’s Algorithm

Yen’s algorithm. We use the graph in Figure 11 to explain

this algorithm. Although line numbers below refer to TYEN,

those lines of code also apply to the original Yen’s algorithm.

Yen uses two lists: listA (to keep track of the shortest path

seen so far) and listB (to keep track of candidates for the next

shortest path). At the start, Yen finds the first shortest path

(line 2) from src to dst using any shortest path algorithm (e.g.

Dijkstra’s). In Figure 11, it is A→ B→C→ D. Let this path

be P. Yen adds P to listA.

During each iteration of k, Yen takes every node n in path

P (line 13, 14), and finds the rootPath and spurPath of that

node. The rootPath of n is the subpath of P from src to node n

(line 15). The spurPath is the shortest path from node n to dst

(line 20) after making the following changes to the graph: i) to

avoid loops, Yen removes all rootPath node except n from the

graph, ii) to avoid recomputation, Yen removes all outgoing

edges e from n, where e is part of any path PA from listA

having the same rootPath (line 17, 18). For example, if PA is

A→ B→C→ D and B is n, then A→ B is the rootPath and

e is edgeB→C. By condition (i), Yen removes A and edgeA→B.

By condition (ii), it removes edgeB→C. Then, it computes

spurPath as B→ F → D. Yen combines the rootPath and

spurPath to form a new path P′ (line 21) that is not blocked

by tags. P′ is added to listB if it doesn’t already exist in listA

or listB (line 23).

After traversing each node n in path P, Yen picks the short-

est path from listB and reruns the previous steps with this

path as the new P. This continues till Yen finds k paths.

Tiramisu Yen. To verify PREF, we make two simple modi-

fications to Yen (TYEN). First, we replace Dijkstra with TPVP.

Next, we add a condition to check that during each ith itera-

tion of k, the ith path follows the preference order specified

in PREF. To achieve this, TYEN associates each path with a

variable, eRemoved. eRemoved keeps track (line 22) of edges

that were removed from L3TPG (line 17-19) to compute that

path. During each iteration of P, TYEN identifies the most

preferred path specified in PREF that did not have an edge in

P.eRemoved (line 8). If it varies from P, then preference is

violated (line 9, 10).

Algorithm 3 Tiramisu Yen

Input:

G is the graph

src, dst are source and destination nodes

K is no. of path specified in path-preference policy

PREF, a map of preference level and path

1: procedure TYEN (G,src,dst,K)
2: P← path from src to dst returned by TPVP

3: pathsSeen← 0

4: P.eRemoved ← [], as best path requires no edge removal

5: listA← [], tracks paths already considered as P

6: listB← [], tracks paths not yet considered

7: while pathsSeen < K do

8: mostPre f ← most preferred path in PREF whose edges

don’t overlap with P.eRemoved

9: if P 6= mostPre f then

10: return false, since path preference is violated

11: pathsSeen← pathsSeen + 1

12: add P to listA

13: for i← 0 to P.length - 1 do

14: sNode← ith node of P

15: rootPath← subpath of P from src to sNode

16: for each sp ∈ listA do ⊲ paths in listA

17: if sp has same rootPath at sNode then

18: remove out edge of sNode in sp, so path sp is not

considered

19: remove all nodes and edges of rootPath except sNode to

avoid loops

20: spurPath← path from sNode to dst returned by TPVP

21: P′← rootPath + spurPath

22: eRemoved← all edges removed in this iteration

23: add P′ to end of listB if P′ is valid and P′ /∈ [listA, listB]

24: append P′.eRemoved to include eRemoved

25: add back all nodes and edges to the graph

26: P← remove first path from listB

27: return true, since loop didn’t find preference violation

B Tiramisu ILPs
Table 2 lists the boolean indicator variables and functions

used in the ILPs.

B.1 Tiramisu Min-cut

We now present the complete ILP for KFAIL (§6.1). We repeat

the description of the constraints to ensure ease of reading.

The objective is to minimize the number of physical link
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Name Description

V
ar

ia
b

le

Fe set as 1 if edge e fails

Ae set as 1 if traffic propagates on edge e

Rn set as 1 if traffic reaches node n

Be set as 1 if edge e carries blocked tag

Tn,t set as 1 if node n forwards tag t

F
u

n
ct

io
n

nodes returns all nodes of graph

edges returns all edges of graph

dEdges returns all inter-device edges of graph

pEdges returns all physical edges of the network

oNodes returns all nodes except src and dst

iE(n) returns incoming edges of node n

oE(n) returns outgoing edges of node n

iN(n) returns start nodes of all incoming edges of

node n

at(e) returns tags added by edge e

rt(e) returns tags removed by edge e

bt(e) returns tags blocked on edge e

ot(e) returns tags /∈ [at(e),rt(e)]
start(e) returns start node of edge e

end(e) returns end node of edge e

phy(e) returns physical edge associated with edge e

Table 2: Variables and Functions

failures required to disconnect src from dst.

Objective: minimize ∑
i∈pEdges

Fi (1)

Forwarding constraints. We first discuss the constraints

added to represent traffic forwarding. The base constraint

states that src originates the traffic. To disconnect the graph,

the next constraint states that the traffic must not reach dst.

Rsrc = 1 (2)

Rdst = 0 (3)

For other nodes, the constraint is that traffic can reach a node

n if it gets propagated (Ae) on any incoming edge e.

∀n ∈ oNodes,Rn =
∨

e∈iE(n)

Ae (4)

(Logical AND/OR can be expressed as ILP constraints.)

Traffic can propagate through an edge e: if it reaches the start

node of e (start(e)); if the traffic does not carry a tag that is

blocked on e (¬Be); and if e represents an inter-device edge,

the underlying physical link does not fail (¬Fphy(e)). This is

represented as

∀n ∈ oNodes,∀e ∈ iE(n) :

Ae = Rstart(e)∧¬Be∧¬Fphy(e) (5)

Tag Constraints. We now add constraints to model route tags.

Route tags propagate in route advertisements from processes

that add tags to processes that remove tags or block adver-

tisements based on tags. However, the TPG models traffic

propagation, which occurs in the opposite direction of route

propagation. Hence, instead of modeling the flow of tags from

the nodes that add them to the nodes that block/remove them,

we model the flow of blocked tags from the nodes that block

them to the nodes that remove/add them. The base constraints

state that each edge that blocks on the tag “forwards” the

blocked tag, and each edge that removes the blocked tag does

not forward it.

∀e ∈ edges,∀t ∈ bt(e) :

Te,t = 1 (6)

∀e ∈ edges,∀t ∈ rt(e) :

Te,t = 0 (7)

For other edges, we add the constraint that edge e forwards a

blocked tag t iff the start node of e (start(e)) receives traffic

with t.

∀e ∈ edges,∀t ∈ ot(e) :

Te,t =
∨

i∈iE(start(e))

Ti,t (8)

Finally, we add the constraint that an edge e carries blocked

traffic iff e receives a tag that is added by e.

∀e ∈ edges :

Be =
∨

t∈at(e)

Te,t (9)

B.2 Tiramisu Longest Path

We now present the complete ILP for BOUND (§6.2). For ease

of reading, we repeat our description of the constraints.

Recall that our objective is to maximize the number of inter

device edges (dEdges) traversed by traffic (Ai).:

Objective: maximize ∑
i∈dEdges

Ai (10)

Path constraints. To ensure traffic flows on only one path,

src sends traffic, and dst receives traffic, we add the following

constraints:

∑
out∈oE(src)

Aout = 1 (11)

∑
in∈iE(dst)

Ain = 1 (12)

For other nodes, we add the flow conservation property, i.e.

the sum of incoming flows is equal to the outgoing flows.

∀n ∈ oNodes : ∑
in∈iE(n)

Ain = ∑
out∈oE(n)

Aout (13)

Traffic constraints. Next, we add constraints on traffic prop-

agation. Traffic will be blocked on edge e if it satisfies the tag

(Be) constraints. This is similar to Eqn 9.

∀e ∈ edges : Ae ≤ ¬Be (14)
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C Proofs
We first prove the correctness of TPVP (§C.1). This theorem

is then used to prove the correctness of our ILPs(§C.2) and

TDFS (§C.3).

C.1 TPVP

In this section, we prove that we correctly model and solve

the stable paths problem. Griffin et al [15] showed that an

instance of the stable paths problems is a graph together with

the permitted paths P at each node and the ranking functions

for each node. Hence, we first need to prove that we correctly

model the permitted paths P and the ranking function. We

will use the following lemmas to prove them. Finally, we will

prove that as long as the network converges, TPVP finds the

exact path taken in the network and hence the solution to the

stable path problem.

Lemma 2. All permitted paths p ∈ P that a routing process

v ∈V may take in the actual network to reach the destination,

exists in the TPG (p ∈ T PG).

Proof: Consider the path vi → vi+1 ...→ vn, where v rep-

resents a node in the graph. We will inductively prove that

for any path p ∈ P , a node vi has a path to the dst node in

the TPG, if there is an equivalent path that traverses the same

routing processes (i.e. the traffic matches the RIB entries of

these routing processes) and vlan-interfaces on the real net-

work.

When i = n, then the node vi represents the destination (dst)

of traffic.

Assume there is a path from node vi+1 to vn and this is mod-

eled correctly. We will now prove that vi is connected to vi+1

in the TPG if vi can use vi+1 to reach the next-hop router (in

its path towards the destination node). Node vi can be one of

the following types of nodes

Case (i): node vi is an OSPF node According to §4.2, node

vi+1 will be a VLAN-egress node. TPG connects vi and vi+1

if OSPF is configured to operate on that V LAN interface.

OSPF uses its configured interfaces [22] to (a) receive link-

state advertisement from its neighbors, and (b) forward/send

traffic towards its neighbors. Hence, OSPF will use the VLAN-

egress node to forward traffic to its neighbors/next-hop router.

Hence case (i) is modeled correctly.

Case (ii): node vi is an BGP node According to §4.2,

node vi+1 will be either an OSPF node or an VLAN-egress

node. These instances represent BGP using either an OSPF-

computed route or a connected subnet to reach the next hop

router. Assume vi+1 is an OSPF node. BGP process is al-

lowed to communicate with its neighboring adjacent process

through an OSPF-computed path. Hence these nodes can be

connected in the actual network. Assume vi+1 is a VLAN-

egress node for VLAN interface V . TPG connects them if

BGP’s next-hop IP address falls within the subnet assigned to

VLAN interface V . Similar to case (i), this interface is use to

receive advertisements and send traffic to the next-hop router.

Hence case (ii) is modeled correctly.

Case (iii): node vi is a VLAN-ingress node According

to §4.2, node vi+1 will be either an OSPF/BGP node rep-

resenting the processes running on the same router, or an

egress node for the same VLAN on that router. Assume vi+1

is an OSPF/BGP node. In the TPG, all traffic enters a router

through a VLAN-ingress node. In the actual network, all in-

coming traffic looks up the global RIB of the router to move

to the next-hop router. A router’s global RIB contains entries

from all the RIBs of all of its routing processes. The TPG con-

nects the VLAN-ingress node to an OSPF/BGP node if that

node is tainted in the RAG. Since only those processes that

have a RIB entry for the dst are tainted, this is modeled cor-

rectly. Assume vi+1 is an VLAN-egress node. TPG connects

them iff the underlying device is a switch. Since flooding

occurs at Layer-2, this is modeled correctly.

Case (iv): node vi is a VLAN-egress node According

to §4.2, node vi+1 will be a VLAN-ingress node. TPG con-

nects them if they belong to the same VLAN and their un-

derlying routers are connected in the physical topology. This

models basic physical connectivity in the real network. Hence,

case (iv) is modeled correctly.

Case (v): node vi is the src node According to §4.2, node

vi+1 will be either an OSPF node or a BGP node. The src

node is like any other VLAN-ingress node, with the difference

being that the src originates the traffic. Hence, using similar

arguments as case (iii), case (v) is modeled correctly.

Lemma 3. TPVP will not choose a path p /∈ P from a routing

process v ∈ V to the destination, that the routing process v

cannot choose in the actual network.

Proof: A TPG is partially based on the physical topology.

In the TPG, the only inter-device edge is the edge between

the VLAN-egress node of a device and the VLAN-ingress

node of its neighboring device. Hence, the TPG will not have

any path that does not exist in the actual physical network

topology.

In the TPG, OSPF and BGP nodes are connected to a VLAN-

egress node if they processes is configured to operate on that

VLAN. Additionally, a VLAN-ingress node is connected to

OSPF and BGP nodes if those processes are tainted in the

RAG. Hence, the TPG will correctly connect the interfaces

with its associated routing process, and won’t have any path

due to incorrect route adjacency.

Next, we prove that Tiramisu correctly models

prefix/neighbor-based and tag-based filters. The TPG

models prefix/neighbor-based filters by removing edges from

the node associated with the process that uses those filters.

Hence, the TPG will not have any path that is blocked due to

prefix/neighbor-based filters in the actual network.

The only path that may exist in the TPG and not in the

network is the path blocked by tags. TPVP uses routing

algebra [16, 25] to model route computation and route

selection operations. [16] showed that routing algebra can

model and filter routes based on tags. Routing algebra uses

“tag” attributes in their edge labels and path signatures. Their
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⊕ (operation) function models both addition of tags and

blocking routes based on tags. Hence TPVP will not choose a

path that is blocked by tags.

Hence TPVP will not choose a path p that cannot be chosen

in the actual network.

Lemma 4. L3TPG has the same set of layer 3 paths as the

actual network and has no path that cannot exist in the actual

network.

Proof: Since advertisements can flow between layer 3

nodes as long as there is at least one layer 2 path that connects

them, Tiramisu uses path contraction to replace layer 2 paths

with a layer 3 edge.

Assume there is a layer 3 path P∗ in the L3TPG that does not

exist in the network. Since path contraction replaces subpaths

with edges and does not add paths, P∗ with (layer 2 nodes

inbetween) must exist in the original TPG. I.e. If nodes are

connected in the layer-3 graph, then they have to be connected

even before path contraction. This contradicts Lemma 3.

Assume there is a layer 3 path P# in the network that does not

exist in the L3TPG. Since path contraction replaces subpaths

with edges and does not eliminate paths, P# with (layer 2

nodes inbetween) must not exist in the original TPG. This

contradicts Lemma 2.

In the following lemmas, we operate on the contracted

L3TPG.

Lemma 5. For all routing process v ∈V , given a set of paths

P , best(P ,v) matches the path that v would choose when

paths P are given as choices in the actual network.

Proof: TPVP uses routing algebras to model the ranking

behavior of actual protocols (OSPF and BGP). Routing alge-

bras model route selection/path ranking using a � preference

relation over path signatures. This correctly models the route

selection algorithm in the underlying network. Hence the path

chosen by best(P ,v) for each routing process v ∈V matches

the path chosen in the actual network.

Lemma 6. For all routing process v ∈V , the set of paths P

considered by TPVP matches the paths that v can choose from

in the actual network.

Proof: Our networks may run either (i) only OSPF pro-

cesses, (ii) only BGP processes, or (iii) both OSPF and BGP

processes. We leverage Lemma 5 to prove the correctness for

each scenario.

Case (i): OSPF-only network In the L3TPG, we have only

OSPF nodes. From Lemma 5, we know that OSPF nodes will

make the same choice as the actual OSPF processes. Hence

case (i) is modeled correctly.

Case (ii): BGP-only network In the L3TPG, we have only

BGP nodes. From Lemma 5, we know that BGP nodes will

make the same choice as the actual BGP processes. Hence

case (ii) is modeled correctly.

Case (iii): OSPF+BGP network In the layer 3 TPG, we

have both BGP and OSPF nodes. Here choices made by

OSPF or BGP nodes may depend on the opposite protocol’s

choices.

Case (iii-a): both node vi and vi+1 are BGP nodes. This is

similar to case (ii). Hence it is modeled correctly.

The next three cases represent instances where BGP uses an

OSPF computed path to reach its next hop.

Case (iii-b): node vi is a BGP node, node vi+1 is an OSPF

node, and vi+1 is connected to a single BGP node. Since

OSPF has only one choice, it will select the BGP process as

its next hop and case (iii-b) is modeled correctly.

Case (iii-c): node vi is a BGP node, node vi+1 is an OSPF

node, and vi+1 is connected to multiple BGP nodes hav-

ing equal preference (same cost). Since BGP processes

are equally preferred, OSPF cost is used to select the best

path/route [1]. Case (i) showed that given a set of OSPF-costs,

the OSPF node will make the right choice. Hence, this case

(iii-c) is modeled correctly.

Case (iii-d): node vi is a BGP node, node vi+1 is an OSPF

node and vi+1 is connected to multiple BGP nodes having

different preferences. Since an OSPF node cannot make a

decision using BGP preferences, Tiramisu cannot model this

scenario. In the real network, this scenario arises when an

iBGP process assigns preferences (lp) or tag-based filters to

routes received from its iBGP neighbors.

Case (iii-e): node vi is a BGP node, node vi+1 is an OSPF

node and vi+1 is connected to one or multiple OSPF nodes.

This scenario can only happen if BGP and OSPF have route

redistribution. In this scenario, vi+1 makes the choice for intra-

domain routing and vi makes the choice for inter-domain rout-

ing. Using similar arguments as case (i) and case (ii), choices

made by vi+1 and vi will be correct.

Case (iii-f): node vi is an OSPF node. Assume node vi+1 is

an OSPF node. This is similar to case (i). Hence it is modeled

correctly. Assume node vi+1 is a BGP node. This will lead to

similar scenarios as case (iii-c) to case (iii-e). Hence, using

similar arguments, case (iii-f) is modeled correctly as long as

iBGP processes do not assign preferences to routes received

from its iBGP neighbors.

Theorem 1. If the network control plane converges, TPVP

always finds the exact path taken in the network under any

given failure scenario.

Proof: Lemma 2 and 3 showed that we correctly model

permitted paths P . Lemma 5 and 6 showed that we correctly

model path selection/ranking function. Now, we need to prove

that under convergence, TPVP is equivalent to PVP.

The body of the loop code of TPVP (line 7 to 11) is equiva-

lent to the PV P code that runs at each node [26]. The termi-

nation conditions of PV P and TPVP (line 12 to 13) are also

similar. Both of them establish convergence when there are

no new messages in the distributed and shared buffers respec-

tively. And finally, both of them are executed after removing

edges to represent failures.

The main difference between PV P [15, 26] and TPVP is

the following: In PVP, there is no restriction on the order in

which messages are processed by different routers. As long

as the network converges and there exists a stable path, PV P
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will find it irrespective of the order in which messages are

sent and processed. In TPVP, we process and send messages

in a fixed round-robin order (line 5). Since any ordering of

messages in PV P leads to a valid solution, a fixed ordering

of messages should also lead to a valid solution. Hence if the

network converges, TPVP finds the exact path.4

C.2 ILP

We will first use two lemmas to prove that TPVP and the

min-cut ILP consider the same set of paths. Recall that the

min-cut ILP can be applied directly only on a TPG with no

ACLs; in §6.1, we showed how it deals with ACLs.

Lemma 7. The min-cut ILP only considers paths computed

by TPVP.

Proof: Assume the min-cut ILP considered a path that was

not computed by TPVP. This implies the path was ignored

by TPVP but not the ILP. This is not possible because (i)

according to Lemma 2 and 3, TPVP correctly models permit-

ted paths, and (ii) the ILP and TPVP exclude the same set

of paths, i.e. both of them exclude paths based on tags. The

ILP constraints on tags (Eqn 6 and 14) ensure that all paths

blocked by tags are ignored by the ILP.

Lemma 8. The min-cut ILP considers all paths computed by

TPVP.

Proof: Assume the min-cut ILP did not consider a path

computed by TPVP. This implies the path was ignored by

the ILP but not by TPVP. Similar to Lemma 7, this is not

possible because (i) the ILP correctly models permitted paths

(Lemma 2 and 3), and (ii) the ILP and TPVP exclude the same

set of paths.

Theorem 9. In the absence of ACLs, the min-cut ILP com-

putes the minimal failures to disconnect the src and dst in the

TPG.

Proof: By Lemma 7 and 8, the ILP considers the same set

of paths as TPVP. Next, we will show that this ILP computes

a valid cut. Then, we will show that the cut is minimum.

Assume the ILP does not compute a valid cut. This means

there is a path where all its edges Ae are equal to 1. However

that also means that by Eqn 4, one of Rstart(e) is Rdst and Rdst

is equal to 1. This contradicts Eqn 3.

Assume the ILP computes an invalid cut. This means there

is still a path where all its edges Ae are equal to 1. Using the

same argument, this will again contradict Eqn 4 with Eqn 3.

Assume the cut computed by ILP is not the minimum. This

will contradict the objective function (Eqn 1) which mini-

mizes the number of edge failures (removals) to disconnect

the graph.

Next, we prove the correctness of the longest-path ILP.

Theorem 10. The longest-path ILP computes the length of

the longest inter-device path between src and dst in the TPG.

Proof: Note that the longest-path ILP is modeled for the

4Note that Tiramisu assumes network convergence. The routing alge-

bra that models TPVP will have all the algebraic properties required for

convergence.

same TPG as the min-cut ILP. Although the ILPs are different,

the constraints used to block based on tags are the same. Using

similar arguments as min-cut ILP, we can prove the following

two lemmas

Lemma 11. The longest-path ILP only considers paths com-

puted by TPVP.

Proof: Similar to Lemma 7

Lemma 12. The longest-path ILP considers all paths com-

puted by TPVP.

Proof: Similar to Lemma 8

Hence, by Lemma 11 and 12, this ILP also considers the

same set of paths as TPVP. Next, we will show that this ILP

computes a valid path. Then, we will show that this path is

the longest.

Assume, the ILP finds an invalid path. This means there is

some node which has an outgoing flow without any incom-

ing flow. This contradicts the flow conservation constraint

(Eqn 13). Assume, the ILP misses a valid path. This means

there is some node which does not have an outgoing flow but

has an incoming flow. This also contradicts Eqn 13.

Assume the path computed by ILP is not the longest. This

will contradict the objective function (Eqn 10) which maxi-

mizes the number of edges traversed to reach the destination.

C.3 TDFS

Theorem 13. TDFS identifies a src-dst pair as always un-

reachable iff there never exists a path from src to dst under

all possible failures

Proof: Assume there existed some path in the network that

TDFS did not consider. This implies the path was ignored by

TDFS and not TPVP. We will now prove by contradiction

why this is not possible.

There are four types of paths that can exist in the network

to establish reachability. We will show that TDFS will capture

each of those paths.

Case (a): assume a path p1 exists from src to dst which does

not traverse any edge with tags. Assume this path is ignored

by TDFS. Line 5 of TDFS runs DFS after removing edges that

block on tags. In this case, no edges are removed. Since p1

connects src to dst, DFS will return true and TDFS will say

dst is reachable from src. This contradicts our assumption.

Case (b): assume a path p2 exists from src to dst which does

not traverse any edge that blocks on a tag. Assume this path is

ignored by TDFS. Line 5 of TDFS runs DFS after removing

edges that block on tags. Since p2 connects src to dst without

traversing any of these removed edges, DFS will return true

and TDFS will say dst is reachable. This again contradicts

our assumption.

Case (c): assume a path p3 exists from src to dst that tra-

verses an edge that blocks on tags but does not traverse any

edge which adds tags to an advertisement. Assume this path

is ignored by TDFS. Line 7 of TDFS runs DFS after (i) estab-

lishing that all paths go through edges that block on tags, and,

(ii) removing edges that add tags. Because of (i), we know all
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p3 will traverse a tag blocking edge. Since p3 connects src to

dst (and hence a tag-blocking edge to dst) without traversing

the removed edges, DFS will return true and TDFS will say

dst is reachable. This again contradicts our assumption.

Case (d): assume a path p4 exists from src to dst which

traverses an edge that blocks on tags, followed by an edge

that removes that tag and an edge that adds that tag. Assume

TDFS ignores this path. Line 9 of TDFS runs DFS after (i)

establishing that all paths go through both edges that block

on a tag and add that tag, and (ii) removing edges that remove

that tag.

TDFS will return false if DFS states that the tag-blocking

edge cannot reach the tag-adding edge. This can happen in

two scenarios. In the first scenario, the tag-blocking edge

could not reach the tag-adding edge even before node removal.

In the second scenario, the tag-blocking edge could reach the

tag-adding edge, but the removal of the tag-removing edge

disconnected them. p3 already captures the first scenario. And

p4 represents the second scenario. TDFS captures both these

scenarios. Hence, this again contradicts our assumption.

Assume there exists some path P# that is considered by

TDFS as a valid path but does not exist in the network. As

mentioned in Lemma 3, the only path that exists in the TPG

and not in the network is the path blocked by tags. Hence, P#

must be blocked by tags. However, Line 11 of TDFS returns

true if all paths that connect src to dst traverses a tag-blocking

edge X , followed by a tag-adding edge Y , and no tag removing

edge between X and Y . Hence, TDFS correctly identifies

and ignores paths based on tags. This again contradicts our

assumption.

D Other Policies
Some of the other policies that Tiramisu can verify are listed

below:

Always Chain of Waypoints (CW). Similar to waypoint-

ing, we remove nodes associated with each waypoint, one

at a time. Using TDFS, we check if nodes associated with

one of the preceding waypoints in the chain can reach nodes

associated with one of the following waypoints in the chain.

Equal Bound (EB). This policy checks that all paths from

src to dst are of the same length. The objective of the ILP

in §6.2 can be changed to find the shortest path length. If

the longest and shortest path length varies, then this policy is

violated.

Multipath Consistency (MC). Multipath consistency is

violated when traffic is dropped along one path but blocked by

an ACL on another. To support multipath in TPVP, we change

the p∗ variable to keep track of multiple most preferred path

signatures to reach dst. Using TPVP, Tiramisu can identify

the number of best paths to reach dst. We run TPVP on graphs

with and without removing edges for ACLs. If the number
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Figure 12: Size of multilayer graphs of all networks

of paths varies with and without ACLs, then the policy is

violated.

Always no black holes (BH). Black holes occur when traf-

fic gets forwarded to a router that does not have a valid for-

warding entry. Blackholes are caused by i) ACLs: routers

advertises routes for traffic that is blocked by their ACLs; ii)

static routes: the next-hop router of a static route cannot reach

dst. Tiramisu uses TDFS to check these conditions. For (i)

Tiramisu first creates the graph without removing edges for

ACLs. Let R be the router with a blocking ACL. If src can

reach router R and R can reach dst (using TDFS), then traffic

will reach router R under some failure, and then get dropped

because of the ACL. For (ii) if src can reach the router with

the static route and the next-hop router cannot reach dst, then

the traffic gets dropped.

E Protocols/Modifiers in Network

We used university, datacenter, topology zoo, and Rocketfuel

configurations in our evaluation §8. Table 3 shows what per-

centage of networks in these datasets support each network

protocol/modifier.
% of Networks

Protocols/Modifiers University Datacenter Topology Zoo Rocketfuel

eBGP 100% 100% 100% 100%

iBGP 100% 0% 100% 100%

OSPF 100% 97% 100% 100%

Static routes 100% 100% 0% 0%

ACLs 100% 100% 0% 0%

Route Filters 100% 97% 100% 0%

Local Prefs 50% 0% 100% 0%

VRF 100% 0% 0% 0%

VLAN 100% 0% 0% 0%

Community 100% 100% 100% 0%

Table 3: Configuration constructs used in networks
Figure 12 characterizes the size of the TPGs generated by

Tiramisu for these networks. It shows the number of nodes and

edges used to represent the graph. We observe two outliers

in both Figure 12a and Figure 12b. These occur for networks

Uni2 (24 devices) and Uni3 (26 devices), from the university

dataset. These networks have multiple VRFs and VLANs, and

Tiramisu creates multiple nodes (and edges between these

nodes) for different VRFs, routing processes and VLAN in-

terfaces. Note also that for the other networks, the number

of routing processes per device varies. Hence, the number of

nodes and edges do not monotonically increase with network

size.
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