
978-1-939133-13-7

Open access to the Proceedings of the
17th USENIX Symposium on Networked

Systems Design and Implementation
(NSDI ’20) is sponsored by

CarMap: Fast 3D Feature Map Updates
for Automobiles

Fawad Ahmad and Hang Qiu, University of Southern California; Ray Eells,
California State Polytechnic University, Pomona; Fan Bai, General Motors;

Ramesh Govindan, University of Southern California
https://www.usenix.org/conference/nsdi20/presentation/ahmad

This paper is included in the Proceedings of the
17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI ’20)
February 25–27, 2020 • Santa Clara, CA, USA

CarMap: Fast 3D Feature Map Updates for Automobiles

Fawad Ahmad
USC

Hang Qiu
USC

Ray Eells
Cal Poly, Pomona

Fan Bai
General Motors R&D

Ramesh Govindan
USC

Abstract
Autonomous vehicles need an accurate, up-to-date, 3D map to
localize themselves with respect to their surroundings. Today,
map collection runs infrequently and uses a fleet of special-
ized vehicles. In this paper, we explore a different approach:
near-real time crowd-sourced 3D map collection from vehi-
cles with advanced sensors (LiDAR, stereo cameras). Our
main technical challenge is to find a lean representation of a
3D map such that new map segments, or updates to existing
maps, are compact enough to upload in near real-time over a
cellular network. To this end, we develop CarMap,12 which
finds a parsimonious representation of a feature map, contains
novel object filtering and position-based feature matching
techniques to improve localization robustness, and incorpo-
rates a novel stitching algorithm to combine map segments
from multiple vehicles for unmapped road segments and an
efficient map-update operation for updating existing segments.
Evaluations show that CarMap takes less than a second to
update a map, reduces map sizes by 75× relative to compet-
ing strategies, has higher localization accuracy, and is able to
localize in corner cases when other approaches fail.

1 Introduction
Autonomous vehicles use a three-dimensional (3D) map of
the environment to position themselves accurately with re-
spect to the environment. A 3D map contains features in the
environment (§2), and their associated positions. As a vehi-
cle drives, it perceives these features using advanced depth
perception sensors (such as LiDAR and stereo cameras), then
matches these to features in the map, and using the feature
positions, triangulates its own position.

Maps need to be updated whenever there are significant
changes to the environment. Changes to the environment can
impact the set of features visible to a vehicle. For example,
road or lane closures due to construction or accidents, parked
delivery vans impeding traffic flow, parked vehicles on the
road-side, or closures for sporting events can cause the set
of features in the map to be different from the set of features
visible to the vehicle. This impacts feature matching, and
can reduce localization accuracy. Figure 1 quantifies this in
a simple scenario. In the image on the left, a street has been
closed due to an accident. With an outdated map, a car is

1https://github.com/USC-NSL/CarMap
2Video demo

Figure 1: If short timescale events like traffic accidents (left)
are not updated in maps, a vehicle cannot localize itself (blue
line) because it cannot match the scene with the map. On the
other hand, vehicles with updated maps (red line) can localize
themselves accurately.

unable to position itself; an updated map is necessary for
accurate positioning.

Keeping this map up to date can be tedious. Today, large
companies (e.g., Waymo [56], Uber [14], Lyft [12], Here [31],
Apple [6], Baidu [7], Kuandeng [11], Mapper [5]) employ
fleets of vehicles equipped with expensive sensors (LiDAR,
Radar, stereo cameras) and GPS devices. For instance, Apple
Map [1] uses vans equipped with a high-precision GPS device,
4 Lidar Arrays, and 8 cameras beside other equipment for
capturing mapping data. These vehicles scan neighborhoods
periodically with a frequency determined by cost consider-
ations, which could be up to several thousand dollars per
kilometer [4]. The scan frequency determines the timescale
of environmental changes captured by the map [2]. To capture
these changes, vehicle fleets have to continuously traverse
the mapped area at very fine timescales [8], which can be
prohibitively expensive.

In this paper, we take a first step towards answering the
question: What techniques and methods can ensure near real-
time updates to 3D maps? The most promising architectural
approach to this question, which we explore in this paper,
is crowd-sourcing.3 In this approach, which leverages the
increasing availability of depth perception sensors in vehicles,
each vehicle, as it drives through a road segment, uploads map
updates in near real-time over a cellular network to a cloud
service. The cloud service, which acts as a rendezvous point,
applies these updates to the map and makes these updates
available to other vehicles.

Given today’s cellular bandwidths, this architecture is most
suitable for a class of 3D maps in which landmarks are sparse

3Incentives for crowd-sourcing are beyond the scope of this paper. Waze
has successfully employed crowd-sourcing from vehicles, by providing a
navigation service and CarMap can use similar techniques.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 1063

https://github.com/USC-NSL/CarMap
https://youtu.be/SlG4QGq5ypk

features in the environment. Even so, today’s feature-based
3D maps of the kind generated by Simultaneous Localiza-
tion and Mapping (SLAM) algorithms require an order of
magnitude higher bandwidth than cellular speeds (§2).
Contributions. Our first contribution (§3) is to identify the
most parsimonious representation of feature maps. SLAM
feature maps preserve a large number of features, even tran-
sient ones, and build indices to enable fast and effective fea-
ture matching. We show that it is possible to preserve fewer
features, and reconstruct the indices, without impacting local-
ization accuracy while reducing map size significantly.

Because our lean map representation throws away informa-
tion, we have had to re-think feature matching. Our second
contribution leverages the observation that, unlike robots,
cars have approximate position information (e.g., from GPS).
Thus, instead of using statistics of features alone for match-
ing, we also use position information to enable a more robust
feature search, leading to improved localization accuracy.

Vehicles will use feature maps over longer time-scales than
SLAM maps used by robots,4 so we must avoid including
features (e.g., from parked cars, or pedestrians) that may
disappear over those time-scales. We observe that seman-
tic segmentation algorithms can identify such features. Our
third contribution is a robust resource-aware algorithm that
incorporates the semantics of objects in the scene to perform
dynamic object filtering.

Updates to a map can be of two kinds: map segments rep-
resenting a previously unseen road segment, and map diffs
representing a transient in a previously-mapped road segment.
Our last contribution is a collection of algorithms for map up-
date: a fast and efficient map diff algorithm which generates
compact diffs and can integrate these quickly into the map,
and a robust map segment stitching algorithm that reliably
identifies areas of overlap between the map segment and the
existing map, and uses features within the overlapped region
to transform the segment into the existing map’s coordinate
frame of reference.

We have embodied these contributions in a system called
CarMap. Using experiments on an implementation (§4) of
CarMap built upon the top-ranked visual open-source SLAM
algorithm [41], and real traces as well as traces from a game-
engine simulator [27] we show that (§5): CarMap requires
75× lower bandwidth than competing algorithms; it can gen-
erate a map update, disseminate it to a participating vehicle,
and integrate the update into the vehicle’s map in less than a
second; its localization accuracy is better than state-of-the-art
SLAM algorithms especially when a map is used in dramat-
ically different conditions (e.g., denser traffic) than when it
was collected; it can localize a vehicle in some cases when
other competitors cannot, such as when a map obtained from
one lane is used in another lane in a multi-lane street; its com-

4In a robot, SLAM algorithms perform mapping and localization si-
multaneously. For vehicular use, a SLAM map is collected once, updated
intermittently, and used often.

Feature extraction and tracking Feature map
Figure 2: Localization using a feature based map. The picture
on the left shows the features in an image, and the picture on the
right shows the feature map generated for an area. Features are
color-coded by the type of object those features belong to.

putational overhead is comparable to, and sometimes better
than competing strategies; and its feature labeling achieves up-
wards of 95% accuracy in distinguishing static from non-static
objects even when the underlying segmentation algorithms
have lower accuracy.

2 Background and Motivation

SLAM Principles. SLAM represents a map by a set of land-
marks and their associated positions [19]. As a vehicle tra-
verses the environment, its sensors (LiDAR, cameras) contin-
uously generate measurements of the environment. SLAM
continuously outputs (a) detected landmarks, and (b) the cur-
rent pose (position and orientation) of the vehicle. It does this
by using maximum a posteriori (MAP) estimation [42], find-
ing the landmark position and vehicle pose that best explain
the observed measurements.

Feature-based Maps: Terminology. SLAM maps can con-
tain either feature-based landmarks (extracted from cam-
eras [41] or LiDAR [57, 58]) or dense representations such
as image frames [28] and occupancy grids [54]. In this paper,
we explore crowd-sourcing feature-based maps (Figure 2),
leaving denser representations for future work5. A feature is a
lower-dimensional representation of some high-dimensional
entity in the environment (e.g., a leaf on a tree, or a part of
a letter on a roadside sign), and is represented by a feature
signature. Features are usually extracted from LiDAR or cam-
era frames. For storage efficiency, SLAM implementations
store features from approximately every k frames (so called
keyframes), for small k. These implementations associate
each feature in a keyframe with a relative 3D position with
respect to that keyframe. They extract landmarks for the
feature-based map from a subset of these features; we call
these map-features. Maps have a single coordinate frame of
reference, and map-features have 3D positions relative to the
map’s coordinate frame of reference.

SLAM Practice. Practical SLAM implementations are com-
plex (Figure 3) because they have to deal with sensor and
estimation errors. We briefly describe SLAM components

5Which map technology a vehicle uses is generally proprietary informa-
tion, but we conjecture, based on anecdotal evidence that lower levels of
autonomous driving [43] or vehicles that use stereo cameras will use feature-
based maps [9] for cost reasons, while higher-end fully-autonomous vehicles
with LiDAR will use denser maps.

1064 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Feature
Matching

Localization

Mapping

Error
Minimization

Map
Augmentation

Pose
Estimation

Input
frames

Feature map

Figure 3: Components of feature-based map generators.

here, and introduce additional background in later sections.

Feature matching. Feature matching (or data association) is
the process of matching features in the current frame with
features seen in one or more keyframes in the map. SLAM im-
plementations match features in a number of different ways:
e.g., image feature matching uses the similarity of image sig-
natures (feature descriptors), and LiDAR 3-D features use
feature geometry. Matching is a crucial building block for
identifying map-features (as described below). SLAM imple-
mentations contain two data structures to speed up feature
matching. A map-feature index associates map-features to
keyframes they occur in. A feature index can search for the
keyframe whose features most closely match the features in a
given frame.

Pose estimation. This component contains algorithms that
estimate the pose of the vehicle. As a vehicle traverses an en-
vironment, it first extracts features from each frame received
from its sensor. Then, the vehicle matches the extracted fea-
tures with those extracted in the last frame. At this point, the
vehicle knows (a) the pose estimate in the previous frame, (b)
the positions of the matched features in the previous frame
and the current frame. It then uses MAP estimation [42] to es-
timate the current pose of the vehicle. If the feature matching
step does not return enough features to estimate pose accu-
rately, the vehicle uses the feature index to search the entire
map for keyframes containing features matching those seen
in this frame, a step called relocalization.

Map augmentation. Pose estimation can estimate the 3D
positions of features in each keyframe. It adds some of these
features as map-features, but only after filtering transient
features (those that do not occur across multiple frames [41,
58]) or dynamic features (e.g., features that belong to moving
vehicles) whose position is not stable across frames.

Error minimization. This component minimizes the error
accumulated in the feature map. Local error minimization
rectifies error accumulation in successive frames using, for
example, extended Kalman filters for LiDARs and bundle ad-
justment [55] for cameras. When vehicles visit a previously-
traversed part of the environment, a loop closure algorithm
finds matches between features in the current frame and fea-
tures already in the map, then reconciles their position esti-
mates (while also correcting positions of features discovered

1. Data Collection

2. Segment Generator 3. Dynamic Object Filter

Stitcher/Patcher

6. Disseminate Map Updates7. Vehicle Localization

Base Map Updated Base Map

Map Diff/Segment

Vehicle Operations Cloud Operations
4. Upload to Cloud 5. Stitcher/Patcher

Updated Base MapMap Updates

M
ap

pi
ng

Lo
ca

liz
at

io
n

Figure 4: Architecture and workflow of CarMap

within the loop), thereby reducing error.
Challenges. CarMap faces four challenges.
Map size. CarMap could simply upload, over the cellular
network, a SLAM map to the cloud, but these maps, which
include map-features, keyframes, and the two indices, can be
large. A 1 km stretch of our campus generates a 1.5 GB map.
A car traveling at 30 kph would require a sustained bandwidth
of 100 Mbps, well above achievable LTE speeds [3].6 Our
first challenge is to find a lean map representation that fits
within wireless bandwidth constraints.
Environmental dynamics. CarMap maps are meant to be used
over a longer timescale than SLAM maps used by robots, so
they must be robust to environmental dynamics. For example,
if a map includes features from a parked car that has since
moved, localization error can increase.
Effective feature matching. As in SLAM, CarMap relies heav-
ily on accurate feature matching for pose estimation, relocal-
ization, and loop closure. However, because CarMap’s lean
map has less information than SLAM’s, its feature matching
accuracy can be lower, so CarMap must use a fundamentally
different strategy.
Fast map-updates. CarMap must devise fast algorithms to (a)
stitch additions to the map received from vehicles traversing a
previously unmapped road segment (decentralized SLAM al-
gorithms [29] have a similar capability but differ significantly
in the details, §6), (b) generate and incorporate changes to the
map from temporary obstructions.

3 Design of CarMap
Architecture and Workflow. As vehicles traverse streets
(Step 1, Figure 4), they derive lean representations of feature
maps using a map segment generator that runs on the vehicle
(Step 2, §3.1). To this representation, CarMap applies a
dynamic object filter to improve robustness to environmental
dynamics (Step 3, §3.3). CarMap then determines whether
this is a new map segment (not available in its own base map).
If so, it uploads the entire map segment, else it uploads a

6With standard compression techniques (e.g., gzip [26]) the sustained
bandwidth is approximately 60 Mbps. Moreover, gzip compression adds
latency: it takes approximately 25 seconds to compress a 500MB map
collected over 4 minutes.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 1065

map diff (Step 4) to a cloud service. The cloud service runs
a stitcher to add a new segment to the map, or a patcher to
patch the diff into the existing map (Step 5, §3.4).

A vehicle receives, from the cloud service, segments or
diffs contributed by other vehicles (Step 6), reconstructs the
complete map, and uses it for localizing the vehicle (Step 7,
§3.5). Diff generation, stitching, patching, and reconstruction
use a position-based feature index for feature matching (§3.2),
resulting in high feature matching accuracy.

The on-vehicle compute resources needed to run map gen-
eration, matching, diff generation, and reconstruction are
comparable to those provided by commercial on-vehicle com-
puting platforms like the NVIDIA Drive AGX [13]. CarMap
uses (a) cloud storage as rendezvous for map updates from
vehicles, and (b) cloud compute to integrate map updates. Ex-
tensions to this architecture to use road-side units for storage
and processing are left to future work.

3.1 Map Segment Generator
The Problem. As a vehicle traverses a street, it produces map
segments. The map segment generator must find the leanest
representation of the map that respects cellular bandwidth
constraints while permitting accurate localization.

As discussed in §2, a complete map contains four distinct
components: (A) map-features, (B) features associated with
every keyframe, (C) a map-feature index that associates map-
features with keyframes used to generate the map-features
(recall that a map-feature is one whose position is stable
across several keyframes), and (D) a feature index that finds
the most similar keyframe to the current frame. Uploading
the complete map is well beyond cellular bandwidths (§2).

Map-features Keyframe features

Map-feature index Feature index

A B

C D

Figure 5: Dependencies between map components

CarMap’s Approach. Consider Figure 5 in which an arrow
from B to A indicates that B is needed to generate A. Thus,
for example, map features are generated from keyframe fea-
tures. Similarly, to generate the map-feature index, we need
both map-features and keyframe features.

From this figure, it is clear that all other components can
be generated from keyframe features. Thus, in theory, it
would suffice for CarMap to upload only the keyframe fea-
tures, thereby reducing the volume of data to be uploaded.
Unfortunately, this does not provide significant bandwidth
savings. For a 1 km stretch of a street on our campus (§2), the
keyframe features require 400 MB. At 30 kmph, this would
require an upload bandwidth of 26.67 Mbps, still above nom-
inal LTE speeds. At higher speeds, CarMap would require
proportionally greater bandwidth since the vehicle covers

more of the environment (§A.3, Figure 19).

A Lean Map. CarMap uses a slightly non-intuitive choice
of map representation: the map-features alone. Each map-
feature contains the feature signature, the 3D position in
the map’s frame of reference, and the list of keyframes in
which the map-feature appears. In §5, we show that this
representation permits real-time map uploads.

Reconstruction. However, to understand why this is a rea-
sonable representation, we describe how one can reconstruct a
full SLAM map from these map-features. Map-features have,
associated with them, a list of keyframes in which they appear.
From these, we can generate keyframe features (a sequence
of keyframes and features seen in those keyframes). From
these keyframe features, it is possible to generate the feature
index and the map-feature index, resulting in the complete
SLAM map. §3.5 presents the details.

However, the CarMap map contains only map-features
whereas a SLAM map contains all features seen in every
keyframe. These fewer features can potentially impair feature
matching accuracy. To address this, CarMap employs a better
feature search strategy.

3.2 Robust and Scalable Feature Matching

Background. Feature matching is a crucial component in
feature-based localization, and determines both the robustness
of feature matching as well as scalability. Feature matching
requires two operations: given a frame F , (a) find keyframes
with the most similar features, and (b) given a feature f in F
and a keyframe K, find those map-features m in K that are
most similar to f . The first operation is used in relocalization
and loop closure, and the second operation is used for these
two tasks as well as fine-grained pose estimation (§2).

Similarity matching. Both of these operations use similarity
matching techniques. For example, if a feature is represented
by a vector, then, the most similar feature is one closest by
Euclidean distance to this feature. Similarly, if a frame F can
be represented by a signature in a multi-dimensional space,
then the most similar keyframe K is one that is closest by
some distance measure.

Scaling similarity matching. To derive scalable feature match-
ing, many SLAM implementations arrange keyframe features
in fast data structures. We have used the term feature index in
§3.1 to describe these data structures. In practice, implemen-
tations construct multiple indices.

To ground the discussion, we take a concrete example from
a popular visual SLAM [41] implementation. This implemen-
tation discretizes the space of features into hypercubes, and
represents each hypercube by a word. For example, if a fea-
ture f is represented by a vector < 1,5>, and the hypercube
has a side of 10 units, then, f falls into the hypercube defined
at the origin. Suppose the hypercube is assigned the word “0”.
Then, any feature f ′ that is assigned “0” (i.e., falls into the

1066 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

same hypercube) is close in feature space to f .

Search indices. The two feature matching operations can
be implemented in scalable fashion using this word-based
discretization. The first operation uses an inverted index I
that maps each word to all the keyframes that it appears in.
To find a keyframe closest to a given frame F , we can use the
following algorithm. (i) Map each feature f in F to a word wf .
(ii) For each wf in F , find all keyframes K associated with
wf in I. (iii) Take the intersection of all keyframes across all
words wf , then find those keyframes whose word histogram
is most similar to F . The second operation requires a word
search tree per keyframe K that maps a given wf to those
features in K that are closest to wf in feature space.

The Problem. While these data structures work well for in-
door robot navigation in relatively static environments, they
can fail in more dynamic environments for outdoor vehi-
cles. For example, keyframe word histogram matching can
fail when a map’s keyframe K was collected from an unob-
structed view, while frame F , taken at the same position, had
a car in front of it which obscured many of the features in K.
As another example, consider a map of a 2-lane street where
the map was taken from the right lane, but the vehicle using
the map is on the left lane; in this case, a feature’s signature
may change if perceived from a different 3D position and
orientation and hence result in a mismatch if the matching is
based on feature similarity. In these cases, feature matching
can result in false positives: a keyframe K far from the ve-
hicle’s current position may better match the current frame
F than the correct match K′ because features at completely
different locations in a frame may look visually similar (e.g.,
features from trees of the same species).

CarMap’s Approach. To address these problems, instead
of searching all keyframes in the map, CarMap searches
for matches in the vicinity of the vehicle’s current position.
CarMap relies on a vehicle’s GPS position to scope the search.
However, GPS is known to be erroneous, especially in highly
obstructed environments [40], so CarMap searches over a
large radius around the current GPS position (in our experi-
ments, 50 m, larger than the maximum error reported in [40]).

Keyframe matching. Specifically, in addition to using the in-
verted index and word histogram similarity to find matching
keyframes in the base map, CarMap maintains a global k-d
tree [16] of keyframes and uses it to search for all keyframes
in the map within a given radius. Then, to localize a vehicle
with a frame F in a given map, CarMap uses the GPS coordi-
nates of the vehicle to get all keyframes within a large radius
around the GPS position. It then finds the subset of these
keyframes that most closely resemble F based on histogram
matching. If it cannot find any resembling keyframes, then
CarMap uses the keyframes closest to the vehicle’s GPS coor-
dinates. For each keyframe K in this subset, CarMap tries to
find, for each feature f in F , the closest matching feature in
K. To do this, it first performs a coordinate transformation to

find the position of f in the map, assuming that F is at K’s
position, and then performs feature matching.
Feature matching. Based on the position hints of the features,
CarMap also maintains another global k-d tree of map fea-
tures, which partitions 3-D space into different regions to
find all features in the map that are closest (by position) to a
given feature f . Then, for each feature f in frame F , CarMap
finds all map-features that are spatial neighbors, and uses fea-
ture similarity to identify the matching features. Using these
matching features, it can perform pose estimation. CarMap
then attempts to refine this pose estimate by searching nearby
(in position) map-features for additional feature matches.

3.3 Dynamic Object Filter
Background. As a vehicle traverses an environment, it en-
counters three types of objects: a) static, b) semi-dynamic,
and c) dynamic objects. Static objects are those that are at
rest when perceived by the vehicle and are likely to stay in
the same position for a long time e.g., roads, buildings, traffic
lights, and traffic signs. Dynamic objects are those that are in
motion when perceived by the vehicle e.g., moving vehicles
and pedestrians. Semi-dynamic objects are those that have
the ability to move but might not be in motion when perceived
by the vehicle e.g., parked vehicles, construction trucks.
The Problem. SLAM algorithms contain techniques to esti-
mate whether a feature belongs to a dynamic object or not;
if it does, that feature is not used in the map (§2). However,
for a system designed for vehicles like CarMap, this is in-
sufficient. These techniques work only if the majority of the
scene is static and fail in highly dynamic environment (as
we show in §5). Similarly, unlike SLAM, CarMap maps are
intended to be re-used over longer time scales, during which
the environment might change significantly. If a map contains
a feature f , say, belonging to a semi-dynamic object such as a
parked car which has moved away by the time a vehicle uses
that map (before another vehicle has contributed a map diff),
keyframe matching and feature matching might fail.

Figure 6: Semantic segmentation of an image while driving.

CarMap’s Approach. To counter this, CarMap uses seman-
tic segmentation to classify the whole scene into static and
(semi-)dynamic objects. Semantic segmentation can be per-
formed on camera data as well as LiDAR data, and refers to
the task of assigning every pixel/voxel in a frame a semantic
label (Figure 6), such as “car”, “building” etc. In addition to
motion analysis (§2), CarMap leverages these semantic labels
to determine whether to add features to the map.

Specifically, CarMap extracts features (Figure 4) and uses

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 1067

semantic segmentation to label each point/pixel in the frame.
It then associates each feature with the corresponding seman-
tic label of the particular pixel(s) that the feature covers. As
a result, when a feature is generated, besides its feature sig-
nature and 3D position, CarMap also appends a semantic
label to it. If the semantic label belongs to a dynamic or
semi-dynamic7 object (e.g., car, truck, pedestrian, bike etc.),
CarMap does not add it to the map.

To detect moving objects we could have used background
subtraction, but CarMap needs the ability to also detect semi-
dynamic objects (e.g., parked cars). Object detectors can
generate loose bounding boxes for semi-dynamic objects,
which can result in incorrect matches between features and
their corresponding objects.
Challenges. Semantic segmentation poses two challenges in
practice. First, it is prone to errors, especially at the bound-
aries of different objects. For example, a state-of-the-art
segmentation tool, DeepLabv3+ [20], has an iIoU8 score of
62.4% on a semantic segmentation benchmark (CityScapes
[23]). Second, it uses deep convolutional neural networks that
are computationally very expensive (e.g., DeepLabv3+ runs
at only 1.1 FPS on a relatively powerful desktop equipped
with an NVIDIA GeForce RTX 2080 GPU).
Robust labeling. To tackle the first challenge, CarMap tracks
feature labels across multiple frames and uses a majority vot-
ing scheme for deriving robust labels. Consider a feature
f that is detected and tracked in multiple keyframes (only
these features are likely to be added as map-features). In each
keyframe, we determine the semantic label associated with the
f . Instead of labeling each feature with its semantic label, we
perform a coarser classification, determining whether that la-
bel belongs to a static (road surface, traffic signals, buildings,
and vegetation etc.) or a non-static (cars, trucks, pedestrians)
etc. This coarser classification overcomes boundary errors in
segmentation: even if the segmentation algorithm identifies
a pixel as belonging to a building when it actually belongs
to a tree in front of the building, because both of these are
static objects, the pixel would be correctly classified as static.
CarMap then does a majority voting across these coarser la-
bels to determine whether f is static or non-static. In §5, we
show that this approach results in high classification accuracy.
Resource usage. Semantic segmentation CNNs can run at
low frame rates. However, CarMap only needs to determine
the label of a feature when creating map-features. These
are assessed at keyframes, so, segmentation needs only be
applied at keyframes. Depending on the vehicle’s speed,
SLAM algorithms [41] can generate keyframes at 1-10 frames
per second. In §5, we explore a resource/accuracy trade-off:
running slightly less accurate, but lower resource intensive

7For brevity, we use the term dynamic object filter for this capability, but
it can detect semi-dynamic objects as well.

8The IoU (intersection over union) metric is biased towards classes cov-
ering a large image area. Hence, for autonomous driving, the iIoU metric is
preferred which is fairer towards all classes.

M
ap

 c
ol

le
ct

io
n

M
ap

 u
pd

at
e

Figure 7: When adding a new region to the base map, the vehicle
uploads the whole map segment (above). For updating a existing
map segment, CarMap generates a map diff containing new map
features (below, new map features marked in blue).

CNNs still gives acceptable performance in our setting. When
segmentation cannot run on every keyframe, we mark the
missed keyframe’s features as unlabeled.

3.4 Map Updater

Map Diffs. When a vehicle traverses a segment that exists in
its own map, CarMap generates a compact map diff to report
newly discovered map features.

The Problem. CarMap may discover new features for two
reasons. In Figure 7, if the feature map were constructed from
the top image, a vehicle traveling through the same region at
a later time (bottom image) might see new features previously
occluded by the bus. Moreover, sparse SLAM algorithms are
designed to capture only a small portion of all the features
in the environment to ensure real-time operation, so a new
traversal may discover additional features (Figure 7).

CarMap’s Approach. A map diff compactly represents the
newly discovered features. To explain how CarMap generates
a map diff, consider a vehicle V , traversing a road segmentRA

at time t1, having an on-board map segment MA of the same
area from an earlier time t0. CarMap loads the on-board map
segment MA into memory and marks all map elements (map-
points and keyframes) as pre-loaded elements in the map.
As the vehicle V traverses RA, it localizes itself in the map
segment MA. At the same time, for every feature froad the
vehicle perceives, it uses CarMap’s robust feature matching
(§3.2) to query and match it against features fA present in the
map segment MA in the same spatial vicinity. If the match
is successful, that means the feature is already present in the
map. If not, it is a new feature. This yields a set of features
fdiff and keyframes Kdiff that have been introduced in the
time interval δt= t1− t0. The vehicle uploads this diff map
to the cloud service. The cloud service’s patcher receives this
and patches these map elements (fdiff and Kdiff) into the
base map. It also sends out the patch to all vehicles so that
they can update their base maps.

Removing features no longer visible is tricky because those

1068 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 8: CarMap stitching together two feature maps. The
highlighted regions represent overlapped sub-segments.

features could be, for example, occluded by a parked vehicle.
It is, however, important to do this in practice (e.g., features
from objects present during a transient road closure). We are
currently working on a robust algorithm for this.
Map Segment Stitching. When it traverses a previously
unseen road segment, CarMap uploads the map segment to a
map stitcher in the cloud.
The Problem. CarMap’s stitcher adds map segments (§3.1)
received from vehicles into its base map (Figure 8). CarMap
must address three challenges while stitching a map segment
into a base map. It must efficiently find potential regions of
overlap between two map segments. The stitcher only has
access to map-features at keyframes whereas SLAM algo-
rithms preserve all features in each keyframe; feature match-
ing can potentially be more difficult in CarMap. To scale well,
CarMap must incrementally add new map segments to the
base map without recomputing the whole map.
CarMap’s Approach. Algorithm A.1 depicts the stitching
algorithm. Suppose we have two map segments, the new
incoming map segment Ms and the base map Mb. To stitch
Ms with the base map Mb, CarMap first reconstructs (lines 4-
5) (§3.5) the two map segments (Rb,Rs). Then, it uses (line 6)
fast feature search (§3.2) to find the sub-segments (sequences
of keyframes) that overlap (Ob,Os). It then applies (line 7)
feature matching between these sub-segments and uses these
matches to compute the coordinate transformation matrix
between Ms and Mb. It uses this matrix to transform Ms into
Mb’s coordinate frame of reference (lines 8-9). Finally, it
removes duplicate features observed in both segments. §A.1
describes some of the details of this algorithm.

3.5 Reconstruction
Map Segment Download. Before a vehicle enters a street, it
retrieves a map segment from the cloud service. This segment
uses the lean representation described in §3.1.
Reconstruction Details. CarMap places map-features into
keyframes, and adds them to the k-d tree structures. It then
generates word histograms and per-keyframe word search
trees as in SLAM. To do this, it must compute the 2D and 3D
positions of each map-feature in the associated keyframe (re-
call that a map-feature’s position in a map segment is with re-
spect to the map’s frame of reference). To reconstruct the posi-

tion of a given map-feature f in a keyframe k, Pf

(
k
)
, CarMap

uses the global 3D position of the map-feature Pf

(
O
)
, the

respective keyframe’s position PK

(
O
)

and rotation matrix
RK

(
O
)

to perform an inverse transformation:

Pf

(
k
)

=

[
R−1

K

(
O
)
∗
{
Pf

(
0
)
−PK

(
0
)}]

(1)

4 Implementation of CarMap
Software we use. We have implemented CarMap by mod-
ifying a visual SLAM algorithm, ORB-SLAM2 [41], the
top-ranked open-source visual odometry algorithm for mono,
stereo, and RGB-D cameras in the KITTI vision-based bench-
marks [30] for self-driving cars. At least one other visual
SLAM implementation [45] has a very similar implementa-
tion structure, so CarMap can be ported to it. It should also
be possible to incorporate CarMap ideas into LiDAR SLAM
implementations, but we have left this to future work.

For semantic segmentation, we use MobileNetV2 [51], a
light-weight version of DeepLabv3+ [20] designed for mobile
devices. We use OpenCV [18] for image transformations, the
Point Cloud Library (PCL) [50] for point cloud operations,
and the C++ Boost library [52] for serializing and transferring
the map files over the network.
Our Additions. On top of these, we have added a number
of software modules necessary for the six components de-
scribed in §3. CarMap reuses the feature extraction, index
generation, and similarity-based feature matching modules in
ORB-SLAM2 (ORB-SLAM2 is 9620 lines of C++ code), but
even so, it requires approximately 15,000 additional lines of
C++ code. §A.2 discusses these additions in detail.

5 CarMap Evaluation
In this section, we evaluate (a) real-time end-to-end latency of
map update using experiments and (b) the localization accu-
racy of CarMap using trace-driven simulation. We then report
on microbenchmarks for its lean map representation, feature
map stitching, segmentation, and spatio-temporal robustness
in localization, using both synthetic and real-world traces.

5.1 Methodology
Traces. For our end-to-end accuracy evaluations, we
use 15 km of stereo camera traces that we curated using
CarLA [27], the leading simulation platform for autonomous
driving supported both by car manufacturers and major play-
ers in the computing industry. CarLA can simulate multiple
vehicles driving through realistic environments — the simula-
tor has built-in 3D models of several environments including
freeways, suburban areas, and downtown streets. Each vehicle
can be equipped with stereo cameras or LiDAR sensors, and
the simulator produces a trace of the sensor outputs as the cars
drive through. When curating our CarLA traces, we model
a stereo camera with the same properties (stereo baseline,
focal length etc.) used in the KITTI dataset. When evaluating

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 1069

0 4 8 12 16
Vehicle driving time (minutes)

0.0

0.4

0.8

1.2

En
d-

to
-e

nd
 la

te
nc

y
(s

ec
on

ds
)

Vehicle to cloud time
Integration time

Cloud to vehicle time
Average E2E latency

Figure 9: End-to-end latency results for
CarMap’s map update operation enables
real-time map updates (average end-to-end
latency is approximately 0.6 seconds.)

0 4 8 12 16
Vehicle driving time (minutes)

0

2

4

6

En
d-

to
-e

nd
 la

te
nc

y
(s

ec
on

ds
)

Vehicle to cloud time
Reconstruction time
Stitching time

Cloud to vehicle time
Average E2E latency

Figure 10: End-to-end latency for
CarMap’s map stitch operation. The
stitch operation, on average, takes approxi-
mately 2.0 seconds for unmapped regions.

0 4 8 12 16
Vehicle driving time (minutes)

0.0

0.4

0.8

1.2

M
ap

 si
ze

 (M
B)

Map stitch
Map update

Average map stitch
Average map update

Figure 11: Vehicle map uploads for map
stitch and update operations. Map updates
reduce required bandwidth by 2x as com-
pared to stitching map segments.

CarMap, we only extract the left and right images from the
modeled camera after which we process the frames like we
would for a real-world camera. We do not extract depth or
segmentation labels from CarLA but instead generate them
using ORB-SLAM2’s stereo matching and a segmentation
CNN respectively.

For some of our microbenchmarks, we also used 22 km of
real-world traces from the KITTI odometry benchmark [30].
The KITTI benchmark traces only have a single run for each
route, but for our end-to-end evaluations, we need one run
to build the map, and another to use the map for localization.
This is why we use traces from CarLA.

Finally, to validate real-time map updates (§5.2), we used
8 km of stereo camera data from our campus.
Metrics. For most evaluations, we are interested in end-to-
end latency, localization accuracy, and map size. To calcu-
late localization accuracy, we build a map for a region and
then localize another vehicle that drives in the same region
using that map. In this case, the localization error is the aver-
age translational/localization error (used in KITTI odometry
benchmark [30]) between the ground truth position of the
vehicle and its estimated position, averaged over the whole
trace. In some experiments, we also measure compute times
for various operations. These measurements were taken on
an Alienware laptop equipped with an Intel i7 CPU running
at 4.4 GHz with 16 GB DDR4 RAM and an NVIDIA 1080p
GPU with 2560 CUDA cores.
Scenarios. For the end-to-end accuracy experiments, we gen-
erate CarLA traces to mimic three different kinds of driving
conditions: a) suburban streets (light traffic and some parked
vehicles), b) freeway roads (dense traffic), and c) downtown
roads (dense traffic, with parked vehicles on both sides). For
each of these, we generate traces for a static scene (no traffic),
and for a dynamic scene (with traffic). This allows us to eval-
uate maps built for one kind of scene (e.g., static), but used in
another (e.g., dynamic).
Comparison. In all these evaluations, we compare the perfor-
mance of: a) maps generated by ORB-SLAM2, b) a stitched

map generated by QuickSketch [15], and c) a stitched CarMap
map. QuickSketch is a competing approach to map crowd-
sourcing that does not attempt near real-time map updates.
In QuickSketch, map segments are raw stereo camera traces,
and the stitching algorithm feeds new map elements from the
camera trace into an existing base map generated by ORB-
SLAM2. QuickSketch uses ORB-SLAM2’s relocalization
and feature matching components. We repeat each experiment
three times and report the average values.

5.2 Near Real-Time Map Updates
Methodology. To measure end-to-end latency of map up-
dates, we drove a vehicle for 16 minutes (8 km) equipped
with an Alienware laptop tethered to a phone with an LTE
connection. The laptop sends map updates to a remote server
which runs CarMap’s diff integration and stitching operations,
then sends the map updates back to the vehicle. The end-
to-end latency includes: update generation and transmission
on the sender, update processing on the cloud, and update
transmission and integration on the receiver. We conducted
two experiments.
Map Diffs. In the first experiment, we measure end-to-end
latency when all updates are in the form of map diffs (i.e., the
vehicle drives through a previously mapped area). CarMap
generates map diffs every 10 s. As Figure 9 shows, the aver-
age end-to-end latency for CarMap’s map update operation
is 0.6 s9. Update transmission times dominate the cost, since
diff integration is fast (§3.4).
Map Segment Stitching. In the second real-time experiment,
we measure the end-to-end latency when all updates are in
the form of map segments (i.e., the vehicle drives through a
previously un-mapped area). As before, CarMap generates
map segments every 10 s; in this case, however, the cloud
service needs to perform an expensive stitch operation (§3.4).

The overall end-to-end latency for map segment updates
in CarMap (Figure 10), although about 3.2× more than map-

9As an aside, vehicles rely on these maps only to localize themselves, not
for safety-critical operations (for which they use their sensors).

1070 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

updates, is still only 2.1 seconds on average. Two factors
contribute to a higher end-to-end latency. First, map segments
are about 2-4× larger than map diffs (Figure 11). Second,
they require about 10× more computation than map updates.
Map update integration is only 50 ms whereas the partial
reconstruction (§A.1) and stitching take nearly 500 ms. Even
so, transmission and reception times dominate.

In summary, in CarMap, map updates can be made avail-
able to other vehicles in under a second. Even in the rare
event that a vehicle traverses an un-mapped road segment,
map updates can be made available in about 2 s.

5.3 End-to-End Localization Accuracy
We now demonstrate that CarMap has comparable or better lo-
calization accuracy than ORB-SLAM2 and QuickSketch [15]
for three different scenarios: static scene, dynamic scene, and
multi-lane localization.
Static Scene Maps. In this scenario, we build a map from
a static scene with no dynamic or semi-dynamic objects (a
static-map). We then use this map to localize a vehicle that
drives in: a) the same static scene (resulting in a static-trace),
and b) the same scene with parked and moving vehicles (re-
sulting in a dynamic-trace). Figure 12 shows the average
error and map sizes for each scheme and scenario. (We show
the error distributions in Figure A.9 and Figure A.11).

In all three environments (suburbia, downtown, and free-
way), the localization error for the static-trace in the static-
map shows that CarMap is able to localize as accurately as
ORB-SLAM2 even though the map sizes are 23-26× smaller.
Similar results hold for CarMap when compared against re-
cent map crowdsourcing work, QuickSketch. This is because
CarMap preserves all map-features that contribute most to-
wards accurate localization.

However, for the dynamic-trace on the static-map, CarMap
has nearly 28× better localization accuracy than ORB-
SLAM2 and Quicksketch. These differences arise from two
features in our scenarios: traffic, and the presence of parked
cars, which impact localization accuracy in different ways.

To understand why, consider a dynamic-trace on a suburban
street. If the location or number of parked cars in the dynamic-
trace are different from those in the static-map, the signature
of the observed frame (its word histogram) is different in
the trace than in the map. Because ORB-SLAM2 relies on
word-histogram matching for re-localization, it fails to find
the right keyframe candidates to localize. In contrast, because
CarMap filters features belonging to parked cars, the vehicle
in the suburban street sees similar features as in the map, and
can re-localize more accurately.

Now consider a dynamic-trace on the freeway, in which
a vehicle’s view can be obscured by other vehicles, so it is
unable to observe many of the features in the map. This causes
ORB-SLAM2’s word histogram matching to fail. CarMap
uses all keyframes within a 50 m radius of its current position,
so it always has keyframe candidates to search from. Even

when histogram matching succeeds, ORB-SLAM2 uses per-
keyframe word search trees that can result in false-positive
feature matches. CarMap uses feature position based search to
avoid this. In this scenario, moreover, ORB-SLAM2 believes
features belonging to vehicles moving in the same direction
to be stable (since their relative speed is near zero), makes
them map-features and uses them to track its own motion.
CarMap’s dynamic object filter avoids this pitfall.

Dynamic Scene Maps. In this scenario, we build a map
from a dynamic scene (a dynamic-map) and then use the map
to localize in a dynamic- or static-trace. Figure 13 summa-
rizes the results from this experiment (Figure A.10 plots the
distribution of mapping errors).

The results for the dynamic-map are more dramatic than
those for the static-map. CarMap’s map is 15-36× smaller
than ORB-SLAM2’s or QuickSketch’s map. Despite this,
these two approaches fail to localize (denoted by∞) on static-
traces in downtown and suburban streets. In the static-trace,
very few of the perceived features appear in the dynamic-map,
and relocalization fails completely. CarMap does well here
because it filters out all cars (parked or moving). For the
dynamic-trace, its accuracy is nearly 50× better than ORB-
SLAM2 and QuickSketch. CarMap’s accuracy is lowest for
the downtown dynamic-trace (with a 5% translational error)
in which parked and moving cars obscure a lot of features in
the map, resulting in fewer matches.

Multi-Lane Localization. In this set of experiments, we
consider a somewhat more challenging case, for each of our
scenarios: building a map by traversing one lane of a multi-
lane street (4 freeway lanes, or 2 lanes in the suburban and
downtown streets), and then trying to localize the vehicle
in each of the remaining lanes. As before, we build both
static-maps (Figure 14) and dynamic-maps (Figure 15).

For the freeway static-map, ORB-SLAM2 cannot localize
beyond the second lane, while CarMap can localize across all
four lanes. For the dynamic-map, a more challenging case,
CarMap can localize one lane over, but ORB-SLAM2 and
QuickSketch cannot localize at all (denoted by ∞). In all
these cases, ORB-SLAM2’s search strategy fails because its
keyframe search relies on the vehicle’s perspective being the
same as the map’s perspective: in these experiments, that
assumption does not hold. CarMap, by contrast, matches
features by position not perspective, so is much more robust.

Similar results hold for suburban and downtown streets:
ORB-SLAM2 and QuickSketch are unable to localize, but
CarMap is able to localize in all cases, with low error.

In §A.4, we show that CarMap’s mapping accuracy, which
measures the inherent error introduced by mapping, is com-
parable to ORB-SLAM2.

5.4 Other Performance Measures

Map Sizes in Real-World Traces. §5.3 shows that CarMap’s
maps are lean relative to competing strategies, but these are

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 1071

Figure 12: Mapping error and map sizes for
a static-map used with static- and dynamic-
traces, for each scenario. ∞ indicates that the
scheme was not able to localize at all.

Figure 13: Mapping error and map sizes for a
dynamic-map used with static- and dynamic-
traces, for each scenario. ∞ indicates that the
scheme was not able to localize at all.

Figure 14: Mapping error (%) for
multi-lane localization in static environ-
ments using maps collected from one
lane in other parallel lanes.

Figure 15: Mapping error (%) for multi-
lane localization in dynamic environments
using a map collected from one lane in
other parallel lanes. CarMap is robust to
spatio-temporal changes.

Figure 16: Mapping errors (m) for stitch-
ing map segments from different traffic
conditions. CarMap is robust to temporal
changes because: a) removes dynamics,
and b) robust feature search.

Figure 17: Semantic segmentation accuracy
for different DCNNs. By classifying labels
into static and dynamic objects, the segmen-
tation accuracy for all DCNNs is above 96%.

for synthetically generated traces. Figure 18 shows the map
sizes for the 11 real-world KITTI sequences. Across all se-
quences, CarMap reduces map size 20×. About 20% of
this savings comes from removing the reconstructible in-
dices (the No Index column), and another 60% from remov-
ing keyframe-features after generating the indices (the No
Keyframe-features column).

As a vehicle travels faster, feature maps capture more
data from the environment and generate data at a higher rate.
We validate this in Figure 19 by calculating the bandwidth
requirements of all 11 KITTI traces. Maps generated by
ORB-SLAM2 and the No-Index approach are impractical
at all speeds for LTE wireless upload and impractical for
LTE download at speeds over 40 kph. The No Keyframe-
features alternative is impractical for LTE upload at speeds
over 60 kph. CarMap requires less than 3 Mbps up to 80 kph
(the highest speed in the KITTI traces). Similar results hold
for CarLA-generated traces (§A.3).

Other factors determine map size, including visual richness
of the environment, lighting, weather etc. CarMap’s map size
should still be an order of magnitude smaller than competing
approaches; future work can validate this.

Localization Time. CarMap’s accuracy comes at the cost of
a slightly higher per-frame localization time. During local-
ization, CarMap’s feature search adds overhead. To quantify
this, we built a map from a very large trace with 4541 frames
and then tried to localize in the same trace. ORB-SLAM2 has
a per-frame localization cost of 0.023 s, while CarMap’s is
only marginally higher (0.033 s).

Map Load Time. When it receives a map segment, CarMap
needs to read the segment from disk, reconstruct the keyframe
features, and the indices. Figure 20 quantifies the total cost
of these operations (called the map load time) for each of the
11 KITTI sequences. The load times for other alternatives are
normalized by those for CarMap.

Interestingly, except for sequences 00, 01 and 06, load
times for CarMap are less than ORB-SLAM2 (on average,
0.95×). For most sequences, CarMap’s load time is lower
than ORB-SLAM2 because the latter’s map is large enough
that the time to load it from disk exceeds CarMap’s reconstruc-
tion overhead. Other alternatives (No Index and No Keyframe-
features) have large maps and high reconstruction overhead.
When CarMap’s reconstruction cost is (marginally) higher
than ORB-SLAM2, it is because the corresponding scenes
have a dense map-feature index, leading to a slightly higher re-
construction cost. (See §A.5 for details). Denser map-feature
indices are found in environments with keyframes that have a
large number of common map-features (e.g., freeways). We
have verified both these observations (equivalent map-load
times and slightly higher load times for dense map-feature
indices) for CarLA sequences.

Loop Closure. Loop closure is an important component of
SLAM systems. For the KITTI dataset, we have verified that,
even though its maps contain only map-features, CarMap can
perform all loop closures that ORB-SLAM2 can.

5.5 Robustness

Robust Feature Matching. We compare CarMap’s feature
matching performance to that of ORB-SLAM2’s native fea-
ture matching approach (we use ORB-SLAM2’s default pa-
rameters for matching). For this, we build a map segment
for a static trace and then use that trace to localize: a) the
same static trace, b) a static trace from a parallel lane, c) a
dynamic trace from the same lane, and d) a dynamic trace
from a parallel lane. We collect the trace using CarLA on a
freeway, and use two metrics: a) feature matching ratio (the
percentage of map-features matched in the current trace), and
b) localization error (m).

Figure 21 shows that for all scenarios, robust feature match-
ing is able to find more matches and hence results in lower

1072 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 1 2 3 4 5 6 7 8 9 10
KITTI Sequence Number

0

5

10

15

20

25

30

Ra
tio

 o
f m

ap
 si

ze
 w

rt
Ca

rM
ap

23 18 30
4

2

12 8 4 20 10
5

ORB-SLAM2
No index

No keyframe-features

Figure 18: Map sizes on KITTI traces:
for each alternative, the map size is nor-
malized by CarMap’s map size. The num-
ber on top of each group of bars shows the
size in MB of CarMap’s map for the cor-
responding KITTI trace. CarMap reduces
map size by 20x for unmapped regions.

20 30 40 50 60 70 80
Vehicle speed (km/hr)

0

10

20

30

40

50

M
ap

 d
at

a
ge

ne
ra

te
d

(M
bp

s)

ORB-SLAM2
No index
No keyframe-features

CarMap
LTE upload
LTE download

Figure 19: Bandwidth requirements for
the four mapping schemes averaged over
diverse environments in all 11 KITTI se-
quences at different speeds. CarMap can
support near-real time uploads over LTE
at speeds up to 80 kph whereas other
schemes fail even at low speeds.

0 1 2 3 4 5 6 7 8 9 10
KITTI Sequence Number

0

1

2

3

4

5

Ra
tio

 o
f l

oa
d

tim
es

 w
rt

Ca
rM

ap

6.0

6.4

6.6
1.0 0.8

2.8
2.2

0.9
4.0

2.1

1.2

CarMap
ORB-SLAM2

No index
No keyframe-features

Figure 20: Load times on KITTI traces:
for each alternative, the load times are nor-
malized by CarMap’s load time (whose
absolute value is on top of each group
of bars). CarMap loads faster than ORB-
SLAM2 (i.e., ORB-SLAM2’s load time
ratio > 1), except for 3 KITTI sequences.

Figure 21: CarMap’s robust feature matching finds more features
in different conditions and thus localize better than ORB-SLAM2.

Figure 22: Mapping error (m) for multi-lane stitching. CarMap’s
stitching algorithm uses a more robust feature search based on
position hints to stitch map segments two lanes apart where com-
peting strategies fail (∞ shows an unsuccessful stitch operation.)

localization error as compared to ORB-SLAM2’s feature
matching. The base case (static-map used by a static trace)
shows that normal feature matching fails to detect 30% of the
features even though the same trace is used for mapping and
localization. The introduction of dynamic objects reduces the
feature matching ratio because features are occluded by vehi-
cles and hence cannot be detected even with robust matching.

Making Semantic Segmentation Robust. CarMap makes
segmentation robust by voting across multiple keyframes, and
using a coarser static vs. non-static classification. Figure 17
shows CarMap’s overall accuracy, for three different versions

of DeepLabv3+. These DNNs are the DeepLabv3+ trained on
the CityScape dataset pre-trained, a fined tuned DeepLabv3+
trained on the KITTI dataset and a light-weight version of
DeepLabv3+ (MobileNetv2) for mobile devices. The third
column shows that CarMap achieves upwards of 96% accu-
racy if we apply segmentation to every keyframe. Semantic
segmentation, by itself, achieves only 70% accuracy in label
assignment (second column).

The first column shows the frame rate these DNNs run
at. The frame rate needs to be fast enough to process every
keyframe, or at worst, every other keyframe (at which seg-
mentation accuracy drops to about 85%, and below which it
drops to unacceptable levels, §A.7). In the KITTI dataset, the
average across the 11 sequences is 3.17 keyframes per sec-
ond, well within the rate of the MobileNetv2 version. One of
these sequences runs at 10 keyframes per second, so for this
sequence MobileNetv2 would process every other keyframe.
For more dynamic scenes, it might be necessary to devise
faster semantic segmentation techniques, and we expect the
vision community will make advances in this direction.

Multi-Lane Stitching. CarMap can stitch map segments
collected from different lanes. For this experiment, we collect
traces from four parallel lanes on a freeway in CarLA. Using
each of these four traces as base maps, we try to stitch map
segments from other lanes into it, then evaluate the mapping
error for the new maps. Figure 22 shows the absolute mapping
errors (in meters) for these stitched map segments. The first
column shows the lane used to collect the base map and
the last four columns show the absolute mapping error of a
stitched map with each of these lanes. The∞ sign represents
a failure to stitch segments from the two lanes.

Although QuickSketch’s base map has 20× more features
than CarMap and it localizes a stereo camera trace in that
base map instead of another map segment (CarMap), it cannot
stitch two lanes away. On the other hand, CarMap’s stitching
algorithm uses robust feature matching (§3.2) and can stitch
map segments collected two lanes away (e.g., map segments

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 1073

from lane 1 and lane 3). CarMap’s robustness comes purely
from using position hints to find the set of key-frames to
match, and to find matching map features, while QuickSketch
uses ORB-SLAM2’s built-in matching methods (in this ex-
periment, we do not compare against ORB-SLAM2 because
it does not contain a map stitch operation).

Stitching in Different Traffic Conditions. Besides being
robust to spatial changes, crowdsourced map collection and
update requires robustness to temporal changes as well (e.g.,
changes in traffic during different times of day). To evaluate
this, we collect stereo camera traces from CarLA in suburban
and downtown areas in the same environment during different
traffic conditions (no traffic and heavy traffic). Using these
traces, we evaluate the ability of the mapping schemes to
stitch these map segments by comparing their mapping error.

Figure 16 shows that QuickSketch is unable to stitch be-
cause it fails to relocalize a trace in different traffic conditions
(§5.3). This, again, is because its stitching is solely based on
appearance-based matching whereas CarMap uses position
hints as well to make its stitching more robust. By contrast,
CarMap is able to stitch map segments collected across differ-
ent traffic conditions. We evaluate the sensitivity of stitching
accuracy to the degree of map segment overlap in §A.6.

6 Related Work

Decentralized SLAM. Decentralized SLAM systems [24]
leverage multiple agents to run SLAM in unknown environ-
ments. CarMap can be considered an instance of decentral-
ized SLAM [22] with some differences. In decentralized
SLAM, the agents (robots) have limited compute-power and
only run visual odometry [29]. This leads to inaccurate local-
ization whereas vehicles in CarMap localize more accurately
because they run both mapping and localization. Decentral-
ized SLAM sends all keyframe features to a central collector
which performs all mapping operations [53] whereas CarMap
only sends map-features to a cloud service to ensure real-time
map exchanges. Similarly, in decentralized SLAM, the col-
lector finds overlap between maps of different agents using
the histogram word approach, does not remove environmental
dynamics and hence is not robust like CarMap. Decentralized
SLAM [47] uses features from a single keyframe overlap to
compute the transformation matrix whereas CarMap is more
robust and uses features from multiple keyframes.

Visual SLAM. Although we have implemented CarMap on
top of ORB-SLAM2 [41], our study of other SLAM systems
shows that it can be easily ported to other keyframe-based vi-
sual SLAM algorithms like S-PTAM [45]. In future work, we
can extend CarMap to group features into higher-dimensional
planes [32] to further improve localization accuracy. As wire-
less speeds increase, it might be possible to design over-the-
air map updates for dense mapping systems like [38] using
techniques similar to ours. We have left this to future work.

Long Term Mapping. Our implementation uses traditional

computer vision-based features (ORB [49]) to build the map,
but these can be replaced with better, more stable CNN-based
features [25]. After running a feature extractor, CarMap uses
motion tracking and semantic segmentation to select stable
features to build the map. Mask-SLAM [33] proposes a simi-
lar dynamic object filter to CarMap but CarMap uses majority
voting and robust labeling to account for limited on-board
computational resources and boundary segmentation errors.
Other approaches [17, 34] remove dynamic features from mul-
tiple maps collected along the same trace using background
subtraction. Even the most static features are not persistent
for larger timescales. Future work for longer timescale map-
ping can integrate CarMap with a persistence filter presented
in [48] that estimates the life period of a feature based on
an environmental evolution model. CarMap benefits from
map-element culling techniques [35] that scale maps sizes
by the scale of the environment rather than the number of
miles driven. Mobileye [10] crowdsources collecting 3D
maps for vehicles using monocular cameras whereas CarMap
is designed for 3D sensors like LiDARs, and stereo cameras.
Vehicle Sensing and Communication. LiveMap [21] uses
GPS and monocular cameras to automate road abnormality
detection (e.g., pothole detection). With its depth perception
capabilities, CarMap can more accurately position roadside
hazards. AVR [46] extends vehicular vision using feature
maps and would benefit from CarMap. Although the band-
width requirements for CarMap are within the LTE speeds
today, it can benefit from systems [36] that schedule redun-
dant transmissions over multiple networks. Recent work in
object detection on mobile devices [39] introduces a fast ob-
ject tracking method that can be used in CarMap to enable
faster segmentation. For stitching map segments from ru-
ral, unmapped regions, CarMap can benefit from [44] which
enables autonomous navigation in such areas.

7 Conclusion
CarMap enables near real-time crowd-sourced updates, over
cellular networks, of feature-based 3D maps of the environ-
ment. It finds a lean representation of a feature map that
fits within wireless capacity constraints, incorporates robust
position-based feature search, removes dynamic and semi-
dynamic features to enable better localization, and contains
novel map update algorithms. CarMap has better localization
accuracy than competing approaches, and can localize even
when other approaches fail completely. Future work can ex-
plore LiDAR sensors, mapping over timescales in which even
relatively static features can disappear, dense map represen-
tations, infrastructure-based sensing for map updates in low
vehicle density areas, and automated update of semantic map
overlays (accidents, available parking spots).
Acknowledgements. Our shepherd Kyle Jamieson and the
anonymous reviewers provided valuable feedback. The work
was supported by grants from the US National Science Foun-
dation (Grant No. CNS-1330118) and General Motors.

1074 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Apple Is Rebuilding Maps From the Ground

Up. https://techcrunch.com/2018/06/29/apple-is-
rebuilding-maps-from-the-ground-up/, 2018.

[2] Here Self-Healing Maps. https://go.engage.here.com/
self-healing.html, 2018.

[3] State of Mobile Networks: USA - OpenSignal.
https://opensignal.com/reports/2018/07/usa/state-of-
the-mobile-network, 2018.

[4] The Golden Age of HD Mapping for Autonomous Driv-
ing. https://medium.com/syncedreview/the-golden-age-
of-hd-mapping-for-autonomous-driving-b2a2ec4c11d,
2018.

[5] There’s No Google Maps for Self-Driving So This
Startup Is Building It. https://www.technologyreview.
com/s/612202/theres-no-google-maps-for-self-
driving-cars-so-this-startup-is-building-it/, 2018.

[6] Apple Maps Image Collection. https://maps.apple.com/
imagecollection/, 2019.

[7] Baidu. https://www.baidu.com/, 2019.

[8] Carmera. https://www.carmera.com/fleets/, 2019.

[9] GM’s Hands-free Driving Feature to Work on 70,000
Additional Miles of Highways This Year. https:
//www.theverge.com/2019/6/5/18653628/gms-super-
cruise-hands-free-driving-feature-highway-milage,
2019.

[10] HERE and Mobileye: Crowdsourced HD Mapping for
Autonomous Cars. https://360.here.com/2016/12/30/
here-and-mobileye-crowd-sourced-hd-mapping-for-
autonomous-cars/, 2019.

[11] Kuandeng. http://www.kuandeng.com/html/1/index.
html, 2019.

[12] Lyft Level 5. https://level5.lyft.com/, 2019.

[13] NVIDIA Drive AGX. https://www.nvidia.com/en-us/
self-driving-cars/drive-platform/hardware/, 2019.

[14] Upgrading Uber’s 3D Fleet. https://medium.com/uber-
design/upgrading-ubers-3d-fleet-4662c3e1081, 2019.

[15] Fawad Ahmad, Hang Qiu, Xiaochen Liu, Fan Bai, and
Ramesh Govindan. QuickSketch: Building 3D Rep-
resentations in Unknown Environments using Crowd-
sourcing. In 2018 21st International Conference on
Information Fusion (Fusion), pages 2314–2321. IEEE,
2018.

[16] Jon Louis Bentley. Multidimensional Binary Search
Trees Used for Associative Searching. Commun. ACM,
18(9):509–517, September 1975.

[17] Julie Stephany Berrio, James Ward, Stewart Worrall,
and Eduardo Nebot. Identifying Robust Landmarks in
Feature-based Maps. arXiv preprint arXiv:1809.09774,
2018.

[18] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal
of Software Tools, 2000.

[19] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif,
Davide Scaramuzza, Jose Neira, Ian Reid, and John J.
Leonard. Past, Present, and Future of Simultaneous Lo-
calization and Mapping: Toward the Robust-perception
Age. Trans. Rob., 32(6):1309–1332, December 2016.

[20] Liang-Chieh Chen, Yukun Zhu, George Papandreou,
Florian Schroff, and Hartwig Adam. Encoder-decoder
with Atrous Separable Convolution for Semantic Image
Segmentation. In ECCV, 2018.

[21] Kevin Christensen, Christoph Mertz, Padmanabhan Pil-
lai, Martial Hebert, and Mahadev Satyanarayanan. To-
wards a Distraction-free Waze. In Proceedings of the
20th International Workshop on Mobile Computing Sys-
tems and Applications, pages 15–20. ACM, 2019.

[22] Titus Cieslewski, Siddharth Choudhary, and Davide
Scaramuzza. Data-efficient Decentralized Visual Slam.
In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 2466–2473. IEEE, 2018.

[23] Marius Cordts, Mohamed Omran, Sebastian Ramos,
Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson,
Uwe Franke, Stefan Roth, and Bernt Schiele. The
Cityscapes Dataset for Semantic Urban Scene Under-
standing. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3213–
3223, 2016.

[24] Alexander Cunningham, Manohar Paluri, and Frank
Dellaert. Ddf-sam: Fully Distributed Slam using Con-
strained Factor Graphs. In 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages
3025–3030. IEEE, 2010.

[25] Daniel DeTone, Tomasz Malisiewicz, and Andrew Ra-
binovich. Superpoint: Self-supervised Interest Point
Detection and Description. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion Workshops, pages 224–236, 2018.

[26] P. Deutsch. RFC1952: GZIP File Format Specification
Version 4.3, 1996.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 1075

https://techcrunch.com/2018/06/29/apple-is-rebuilding-maps-from-the-ground-up/
https://techcrunch.com/2018/06/29/apple-is-rebuilding-maps-from-the-ground-up/
 https://go.engage.here.com/self-healing.html
 https://go.engage.here.com/self-healing.html
https://opensignal.com/reports/2018/07/usa/state-of-the-mobile-network
https://opensignal.com/reports/2018/07/usa/state-of-the-mobile-network
https://medium.com/syncedreview/the-golden-age-of-hd-mapping-for-autonomous-driving-b2a2ec4c11d
https://medium.com/syncedreview/the-golden-age-of-hd-mapping-for-autonomous-driving-b2a2ec4c11d
https://www.technologyreview.com/s/612202/theres-no-google-maps-for-self-driving-cars-so-this-startup-is-building-it/
https://www.technologyreview.com/s/612202/theres-no-google-maps-for-self-driving-cars-so-this-startup-is-building-it/
https://www.technologyreview.com/s/612202/theres-no-google-maps-for-self-driving-cars-so-this-startup-is-building-it/
https://maps.apple.com/imagecollection/
https://maps.apple.com/imagecollection/
https://www.baidu.com/
 https://www.carmera.com/fleets/
 https://www.theverge.com/2019/6/5/18653628/gms-super-cruise-hands-free-driving-feature-highway-milage
 https://www.theverge.com/2019/6/5/18653628/gms-super-cruise-hands-free-driving-feature-highway-milage
 https://www.theverge.com/2019/6/5/18653628/gms-super-cruise-hands-free-driving-feature-highway-milage
 https://360.here.com/2016/12/30/here-and-mobileye-crowd-sourced-hd-mapping-for-autonomous-cars/
 https://360.here.com/2016/12/30/here-and-mobileye-crowd-sourced-hd-mapping-for-autonomous-cars/
 https://360.here.com/2016/12/30/here-and-mobileye-crowd-sourced-hd-mapping-for-autonomous-cars/
http://www.kuandeng.com/html/1/index.html
http://www.kuandeng.com/html/1/index.html
https://level5.lyft.com/
 https://www.nvidia.com/en-us/self-driving-cars/drive-platform/hardware/
 https://www.nvidia.com/en-us/self-driving-cars/drive-platform/hardware/
https://medium.com/uber-design/upgrading-ubers-3d-fleet-4662c3e1081
https://medium.com/uber-design/upgrading-ubers-3d-fleet-4662c3e1081

[27] Alexey Dosovitskiy, German Ros, Felipe Codevilla,
Antonio Lopez, and Vladlen Koltun. Carla: An
Open Urban Driving Simulator. arXiv preprint
arXiv:1711.03938, 2017.

[28] Jakob Engel, Thomas Schöps, and Daniel Cremers.
LSD-SLAM: Large-scale Direct Monocular Slam. In
European conference on computer vision, pages 834–
849. Springer, 2014.

[29] Christian Forster, Simon Lynen, Laurent Kneip, and
Davide Scaramuzza. Collaborative Monocular Slam
with Multiple Micro Aerial Vehicles. In 2013 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems, pages 3962–3970. IEEE, 2013.

[30] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are
We Ready for Autonomous Driving? the Kitti Vision
Benchmark Suite. In 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3354–3361.
IEEE, 2012.

[31] Here. The Self-healing Map From Here. https://go.
engage.here.com/self-healing.html, 2019.

[32] Mehdi Hosseinzadeh, Yasir Latif, and Ian Reid. Sparse
Point-plane Slam. In Australasian Conference on
Robotics and Automation 2017 (ACRA 2017).

[33] Masaya Kaneko, Kazuya Iwami, Toru Ogawa, Toshi-
hiko Yamasaki, and Kiyoharu Aizawa. Mask-SLAM:
Robust Feature-based Monocular SLAM by Masking us-
ing Semantic Segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion Workshops, pages 258–266, 2018.

[34] B Ravi Kiran, Luis Roldao, Beñat Irastorza, Renzo
Verastegui, Sebastian Süss, Senthil Yogamani, Victor
Talpaert, Alexandre Lepoutre, and Guillaume Trehard.
Real-time Dynamic Object Detection for Autonomous
Driving using Prior 3d-maps. In European Conference
on Computer Vision, pages 567–582. Springer, 2018.

[35] Henrik Kretzschmar, Giorgio Grisetti, and Cyrill Stach-
niss. Lifelong Map Learning for Graph-based SLAM in
Static Environments. KI, 24:199–206, 09 2010.

[36] HyunJong Lee, Jason Flinn, and Basavaraj Tonshal.
Raven: Improving Interactive Latency for the Con-
nected Car. In Proceedings of the 24th Annual Interna-
tional Conference on Mobile Computing and Network-
ing, pages 557–572. ACM, 2018.

[37] Shiqi Li, Chi Xu, and Ming Xie. A Robust O (n) So-
lution to the Perspective-n-point Problem. IEEE trans-
actions on pattern analysis and machine intelligence,
34(7):1444–1450, 2012.

[38] Yonggen Ling and Shaojie Shen. Building Maps for
Autonomous Navigation using Sparse Visual Slam Fea-
tures. In Intelligent Robots and Systems (IROS), 2017
IEEE/RSJ International Conference on, pages 1374–
1381. IEEE, 2017.

[39] Luyang Liu, Hongyu Li, and Marco Gruteser. Edge
Assisted Real-time Object Detection for Mobile Aug-
mented Reality. In Proceedings of the 25th Annual
International Conference on Mobile Computing and
Networking. ACM, 2019.

[40] Xiaochen Liu, Suman Nath, and Ramesh Govindan.
Gnome: A Practical Approach to NLOS Mitigation for
GPS Positioning in Smartphones. In Proceedings of
the 16th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’18, page
163–177, New York, NY, USA, 2018. Association for
Computing Machinery.

[41] Raul Mur-Artal and Juan D Tardós. ORB-SLAM2:
An Open-source Slam System for Monocular, Stereo,
and Rgb-d Cameras. IEEE Transactions on Robotics,
33(5):1255–1262, 2017.

[42] Kevin P. Murphy. Machine Learning: A Probabilistic
Perspective. MIT Press, 2012.

[43] Society of Automotive Engineers International. Auto-
mated Driving Levels of Driving Automation Are De-
fined in New SAE International Standard J3016. (2014),
2014.

[44] Teddy Ort, Liam Paull, and Daniela Rus. Autonomous
Vehicle Navigation in Rural Environments Without De-
tailed Prior Maps. In 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 2040–
2047. IEEE, 2018.

[45] Taihú Pire, Thomas Fischer, Gastón Castro, Pablo
De Cristóforis, Javier Civera, and Julio Jacobo
Berlles. S-ptam: Stereo Parallel Tracking and Map-
ping. Robotics and Autonomous Systems, 93:27–42,
2017.

[46] Hang Qiu, Fawad Ahmad, Fan Bai, Marco Gruteser,
and Ramesh Govindan. AVR: Augmented Vehicular
Reality. In Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and Ser-
vices (Mobisys), MobiSys ’18, pages 81–95, Munich,
Germany, 2018. ACM.

[47] Luis Riazuelo, Javier Civera, and JM Martínez Montiel.
C2tam: A Cloud Framework for Cooperative Track-
ing and Mapping. Robotics and Autonomous Systems,
62(4):401–413, 2014.

1076 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://go.engage.here.com/self-healing.html
https://go.engage.here.com/self-healing.html

[48] David M Rosen, Julian Mason, and John J Leonard.
Towards Lifelong Feature-based Mapping in Semi-static
Environments. In 2016 IEEE International Conference
on Robotics and Automation (ICRA), pages 1063–1070.
IEEE, 2016.

[49] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary
Bradski. Orb: An Efficient Alternative to Sift or Surf.
2011.

[50] Radu B Rusu and S Cousins. Point Cloud Library (pcl).
In 2011 IEEE International Conference on Robotics and
Automation, pages 1–4, 2011.

[51] Mark Sandler, Andrew Howard, Menglong Zhu, An-
drey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted Residuals and Linear Bottlenecks. In CVPR,
2018.

[52] Boris Schling. The Boost C++ Libraries. XML Press,
2011.

[53] Patrik Schmuck and Margarita Chli. Multi-uav Collab-
orative Monocular Slam. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages
3863–3870. IEEE, 2017.

[54] Lu Sun, Junqiao Zhao, Xudong He, and Chen Ye. DLO:
Direct Lidar Odometry for 2.5d Outdoor Environment.
2018 IEEE Intelligent Vehicles Symposium (IV), Jun
2018.

[55] Bill Triggs, Philip F McLauchlan, Richard I Hartley,
and Andrew W Fitzgibbon. Bundle Adjustment—a
Modern Synthesis. In International workshop on vision
algorithms, pages 298–372. Springer, 1999.

[56] Waymo. Building Maps for a Self-driving Car.
https://medium.com/waymo/building-maps-for-a-self-
driving-car-723b4d9cd3f4, 2016.

[57] Ji Zhang and Sanjiv Singh. LOAM: Lidar Odometry
and Mapping in Real-time. In Robotics: Science and
Systems, volume 2, page 9, 2014.

[58] Ji Zhang and Sanjiv Singh. Visual-lidar Odometry and
Mapping: Low-drift, Robust, and Fast. In 2015 IEEE
International Conference on Robotics and Automation
(ICRA), pages 2174–2181. IEEE, 2015.

A Appendix
A.1 Map Stitching Details
Algorithm A.1 describes the details of the stitching algorithm.
The following two paragraphs discuss two key aspects of
stitching.
Finding Overlap. To find potential regions of overlap,
CarMap uses two strategies. When the cloud service re-
ceives the new map segment Ms, it uses the GPS positions
and word-histograms associated with Ms to coarsely find
potentially overlapping keyframes in the base map Mb. For
this, CarMap reconstructs all the data structures in Mb and
only word-histograms and keyframe-features of Ms using the
methods described in §3.5.

Then, CarMap finds a finer-grained overlap Ob and Os

(granularity level of map-points) between Ms and Mb. For
this, CarMap uses the reconstructed keyframe features of
Ms. For each keyframe ks in Os, it uses the k-D tree to find
all features (§3.2) in Ob that match features in ks, instead
of only matching features belonging to the two overlapping
keyframes ks and kb. At the end of this process, there is a
pairwise matching of features between Ob and Os.

Input : Base map Mb and new map segment Ms

Output: Stitched base map M ′b
1 if Mb is empty then
2 M ′b←Ms;
3 else
4 Rb← Reconstruct(Mb);
5 Rs← PartialReconstruct(Ms);
6 Ob,Os← FindOverlap(Rb,Rs);
7 Tbs← FindTransform(Ob, Os);
8 M?

s ← Tbs ∗Ms;
9 M ′b← Merge(Mb, M?

s);
10 end

Algorithm A.1: Stitching Algorithm

Computing the transformation matrix. In the next step,
CarMap computes the transform (translation and rotation)
to re-orient and position Ms in Mb. To do this, it finds the
keyframe ks from the new map segment with the maximum
number of matched features from the previous step. Then
it uses a perspective n-point (PnP [37]) solver to derive the
coordinate transformation matrix, then transforms each map
feature in Ms to Mb’s frame of reference. After the transfor-
mation, CarMap removes all the duplicate map-features in
the overlapping region Ob of the resulting base map M ′b that
originated as a result of the transformation.

A.2 Implementation Details
The following paragraphs describe how we have implemented
CarMap components on top of ORB-SLAM2.
Map segment generator. This component takes the output

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 1077

https://medium.com/waymo/building-maps-for-a-self-driving-car-723b4d9cd3f4
https://medium.com/waymo/building-maps-for-a-self-driving-car-723b4d9cd3f4

of ORB-SLAM2 (which includes map-features, keyframe
features, and the two indices), and simply strips all other
components other than the map-features. We have also added
the ability to periodically transmit complete map segments.
On the receiver, we added a module to reconstruct (§3.5)
the keyframe features from the received lean map, and re-
generates the indices.
Fast feature search. For this, we added the k-D tree data
structure, and associated code for manipulating the tree and
searching in the tree, and re-used ORB-SLAM2 code for
re-positioning a feature in a keyframe.
Stitcher. Stitching functionality does not exist in ORB-
SLAM2. For stitching maps, we wrote our own modules
for ORB-SLAM2. We also added support for finding over-
lapped keyframes and computing the transformation matrix.
Map updater. We wrote our own module for map updates. At
the vehicle, our map update module uses a fast feature search
for finding differences in the two feature sets (environment
and base map). At the cloud, the module integrates these
differences into the base map.
Dynamic object filter. We added a dynamic object filter to
the mapping component of ORB-SLAM2 which invokes se-
mantic segmentation and applies majority voting to decide
the label associated with each map feature.
Map exchange. We added another module to allow the ex-
change of map segments, map updates, and the base map
between the vehicles and the cloud service.

A.3 Bandwidth Requirements
Map Size with Change in Speed. As a vehicle’s speed in-
creases, it sees more features and hence generates larger maps.
As such, we generated CarLA traces in which we increased
the speed of the vehicle while keeping time constant. The
goal of this experiment is to see if CarMap’s maps can stay
within the wireless bandwidth limits at different speeds. Fig-
ure A.1 shows that CarMap’s maps are well below the wireless
bandwidth limits today by a large margin and this is not true
for competing strategies. ORB-SLAM2 and the No index
approach’s maps cannot be uploaded over current wireless
networks at all speeds and cannot be downloaded for speeds
greater than 10 kmph. The No keyframe-features approach is
also infeasible for LTE upload for speeds over 15 kmph. We
also validated this in Figure 19 for real-world traces from the
KITTI dataset.
Bandwidth Savings with Map Updates. In this section, we
evaluate the ability of CarMap’s update operation to reduce
the amount of bandwidth required to update the base map. For
these experiments, we collected traces from the same area in
CarLA in three different traffic conditions i.e., static with no
parked vehicles, semi-dynamic with only parked vehicles and
dynamic with both parked and moving vehicles. We build a
map for each traffic condition and then measure the amount of
bandwidth required to update the existing map with features

0 10 20 30 40 50
Vehicle speed (km/hr)

0

10

20

30

40

50

M
ap

 d
at

a
ge

ne
ra

te
d

(M
bp

s) ORB-SLAM2
No index
No keyframe-features

CarMap
LTE upload
LTE download

Figure A.1: Bandwidth requirements for mapping schemes at
different speeds in CarLA. The bandwidth required to upload
CarMap maps are well below the LTE upload limits.

Figure A.2: Bandwidth requirements for map updates in CarMap
under different traffic conditions

from a different set of conditions. The baseline we compare
is with the map stitch case in which we would upload the
whole map segment to the cloud service and the cloud service
would only add the new map elements to the map.

The results from the experiment (Figure A.2) show that,
given a base map of the area, map updates can reduce the
amount of bandwidth required to integrate new features in
the base map by 4-10× compared to sending the whole map
segment (75× savings as compared to QuickSketch and ORB-
SLAM2). This happens because the map update only sends
new features whereas the map stitch sends the whole per-
ceived map segment.

A.4 Mapping Accuracy
In this section, we evaluate how CarMap’s reduced map sizes
affect localization accuracy. For this experiment, we use all
11 real-world traces from the KITTI dataset. We generate
maps for each of these traces, use them as base maps and
localize the same trace in these maps. We compare the gen-
erated trajectory with the ground truth positions. Figure A.3
shows the average localization error divided by the length
of the whole sequence for all the KITTI sequences. Even
though CarMap reduces map sizes by a factor of 20, it is
able to localize as accurately as ORB-SLAM2 in almost all
KITTI sequences because: a) it preserves the most important
map elements (map-features), and b) robust feature matching.

1078 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure A.3: Localization error for CarMap over all KITTI se-
quences. Even though CarMap uses 20X fewer features in its
map, its localization error is almost the same as ORB-SLAM2.

Figure A.4: Mapping accuracy of mapping schemes with vary-
ing distance, averaged over all KITTI sequences. The overall
localization error decreases over longer distances and CarMap’s
localization error is almost the same as ORB-SLAM2’s

Figure A.8 shows the error distribution of CarMap is similar
to ORB-SLAM2, and QuickSketch for a map built from, and
used in the first KITTI sequence, despite reducing map sizes
by a factor of 20.

An important property of a map is to able to localize accu-
rately over long distances. To study how CarMap’s localiza-
tion accuracy changes with the mapped area, we calculate the
average translational error at different distances (i.e., 50m to
5km) for all 11 KITTI sequences. We average these errors on
all KITTI sequences and report the numbers in Figure A.4. As
distance increases, the average translational error decreases
and CarMap does as well as ORB-SLAM2 in almost all cases.
The reason for this, as mentioned in §3, is that although
CarMap removes keyframe-features, the robust feature match-
ing (§3.2) makes up for the 20x fewer features with better
matching.

A.5 Map Reconstruction
CarMap reduces map size by trading off compute for storage.
The map load time for CarMap consists of the time to load
the map from disk and the reconstruction time. After loading
the map into memory, CarMap reconstructs two indices and
infers the 2D and 3D position of map-features in keyframes
(§3.5). Even so, as shown in Figure 20, except for sequence
00, 01 and 06, the load times for CarMap are less than the
ORB-SLAM2 baseline (on average, 0.95×).

Figure A.5 shows the breakdown of the various map ele-
ments that contribute to map reconstruction time for all 11
KITTI sequences. In all sequences, reconstructing the feature-
index takes around 40% of the overall reconstruction time.
This, however, is still 2-4x less than the reconstruction time
for keyframes that contain keyframe-features (in other map-
ping schemes) instead of just map-features. Calculating the
2D and 3D positions of map-features also takes an average
35% of the overall reconstruction time. The main reason for
higher load times (Figure 20), as compared to ORB-SLAM2,
in some cases (sequence 00, 01, and 06) is because of the vari-
ability map-feature index (orange bar) reconstruction times.
The map-feature index is a graph that relates map-points to
keyframes they were detected in. Hence, for environments
like highways where the scene stays relatively constant, this
graph is denser and so the reconstruction costs for the map-
feature index are relatively greater. On the other hand, for en-
vironments where features change quickly e.g., narrow streets,
the map-feature index reconstruction times are lower because
these graphs are not as dense. For instance, the feature-index
reconstruction for sequence 00 (captured in narrow-streets) is
approximately 3x greater than sequence 01 (captured on the
highway).

A.6 Map Stitching Evaluation
In this section, we evaluate the ability of CarMap to accu-
rately stitch map segments collected from different spatial
and temporal conditions. We compare CarMap against two
other map stitching schemes: progressive relocalization and
QuickSketch. In progressive relocalization, as opposed to
CarMap (one-shot stitching), we relocalize every keyframe
from the incoming map segment instead of using the global
transformation matrix. QuickSketch can only stitch a stereo
camera trace with a QuickSketch generated map segment. So,
for stitching, QuickSketch loads the QuickSketch map as a
base map and then stitches by localizing the stereo camera
trace in it.

We evaluate two metrics for stitching: mapping error, and
stitching time. After stitching two map segments, we localize
a trace in the stitched map and calculate the absolute transla-
tional error (m) for each frame. Mapping error is the mean
of the translational errors over the whole trace. The stitching
time is the amount of time required to do the whole stitch
operation of two map segments.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 1079

0 1 2 3 4 5 6 7 8 9 10
KITTI Sequence Number

0

20

40

60

80

Po
rti

on
 o

f m
ap

 lo
ad

 ti
m

e
(%

)

Disk load
Map-feature index

Map-features
Feature index

Figure A.5: Breakdown of reconstruc-
tion time for CarMap across all KITTI
sequences

0 2 4 6 8 10
Keyframes per segmentation cycle

30

40

50

60

70

80

90

Se
gm

en
ta

tio
n

Ac
cu

ra
cy

Label accuracy
Class accuracy

Figure A.6: Semantic segmentation accuracy at
different frame rates. If CarMap segments every
other keyframe, classification accuracy is 85%.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Map segment size (MB)

0

1

2

3

4

5

6

7

St
itc

hi
ng

 ti
m

e
(s

ec
on

ds
)

200 400 600 800 1000
Number of keyframes

Figure A.7: Computational overhead of
stitching. Even map segments as large as
1000 keyframes can be stitched in under 7
seconds.

0.0 0.2 0.4 0.6 0.8
Mapping error (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CarMap
QuickSketch
ORB-SLAM2

Figure A.8: For a map built,
and used from a real-world
trace (KITTI Trace 00) 80% of
CarMap’s mapping errors are
less than 0.4% with respect to
the length of the trace.

0.0 0.5 1.0 1.5 2.0
Mapping error (%)

0.00

0.25

0.50

0.75

1.00

CD
F

CarMap
QuickSketch
ORB-SLAM2

Figure A.9: For a map built,
and used in a static trace col-
lected from CarLA, 75% of the
mapping errors for CarMap are
less than 0.2% with respect to
the length of the trace.

0 30 60 90
Mapping error (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CarMap
QuickSketch
ORB-SLAM2

Figure A.10: For maps built,
and used in CarLA’s dynamic
environments, CarMap has a
maximum error of 2%. ORB-
SLAM2 and QuickSketch have
maximum errors of 90%.

0 20 40 60 80
Mapping error (%)

0.00

0.25

0.50

0.75

1.00

CD
F

CarMap
QuickSketch
ORB-SLAM2

Figure A.11: For CarLA maps
built from static, and used in dy-
namic environments, CarMap
has a max error of 4%. ORB-
SLAM2 and QuickSketch have
maximum errors of 90%.

Figure A.12: Mapping error (m) with different overlapping re-
gions. CarMap can stitch with fewer overlapping frames than
QuickSketch and 30x faster than progressive relocalization.

Stitching Overlap. In the first experiment, we evaluate
the mapping error and stitching time of the three mapping
schemes as a function of the overlap between the two map seg-
ments. For this, we take a single stereo camera trace and split
it into two traces with different overlaps. Figure A.12 shows
that QuickSketch fails to stitch when the number of overlap-
ping frames between the two map segments is less than 10
frames (1 second). This is because it is not able to find enough
feature matches between the two map segments. On the other
hand, CarMap can find enough feature matches even though

it uses 20x fewer features due to its robust feature matching
(§3.2). The mapping accuracy remains relatively constant
irrespective of the amount of overlap because CarMap only
needs to localize a single keyframe in the base map for a
successful stitch operation. Although the mapping error of
progressive relocalization is identical to CarMap, it takes ap-
proximately 30x more time to stitch the same area. In the
stitch operation, localizing a keyframe in the base map is the
most expensive operation. CarMap intelligently localizes a
single keyframe in the base map and then uses a transforma-
tion matrix to shift the remaining map elements. On the other
hand, progressive relocalization localizes all keyframes in the
base map and hence takes a much longer time. So, as the size
of the incoming map segment increases, the stitching time for
progressive relocalization will increase significantly.

Stitching Overhead. To study the overhead of stitching, we
take a KITTI trace and split it into two map segments (with
a few overlapping frames). In doing so, we mark one as the
base map and the other as the incoming map segment. We
keep the size of the base map constant and vary the size of the
incoming map segment. Figure A.7 shows that the stitching
time increases with the size of the incoming map segment.
It also shows that for map segments containing as many as
1,000 keyframes (15 MB), stitching takes only 7 seconds.

1080 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A.7 Semantic Segmentation
In this experiment, we evaluate the object label and class
(static, and dynamic) estimation accuracy of CarMap against
the frame rate of semantic segmentation. For this experiment,
we generate stereo camera traces from CarLA. We segment
these images with MobileNetV2. For ground truth, we use
CarLA’s own semantic segmented images.

Figure A.6 plots the accuracy of segmentation in CarMap
using majority voting at different frame rates. We start by
running segmentation every keyframe and evaluate till run-
ning segmentation every 10 keyframes. In the KITTI dataset,
the average keyframes inserted per second is 3.17 and the
worst case is 10 keyframes per second. The worse case cor-
responds to running segmentation every 2 keyframes i.e., a
class accuracy of 86% with CarMap using MobileNetv2 in a
majority voting scheme.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 1081

	Introduction
	Background and Motivation
	Design of CarMap
	Map Segment Generator
	Robust and Scalable Feature Matching
	Dynamic Object Filter
	Map Updater
	Reconstruction

	Implementation of CarMap
	CarMap Evaluation
	Methodology
	Near Real-Time Map Updates
	End-to-End Localization Accuracy
	Other Performance Measures
	Robustness

	Related Work
	Conclusion
	Appendix
	Map Stitching Details
	Implementation Details
	Bandwidth Requirements
	Mapping Accuracy
	Map Reconstruction
	Map Stitching Evaluation
	Semantic Segmentation

