
This paper is included in the Proceedings of the
17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI ’20)
February 25–27, 2020 • Santa Clara, CA, USA

978-1-939133-13-7

Open access to the Proceedings of the
17th USENIX Symposium on Networked

Systems Design and Implementation
(NSDI ’20) is sponsored by

Meaningful Availability
Tamás Hauer, Philipp Hoffmann, John Lunney, Dan Ardelean,

and Amer Diwan, Google
https://www.usenix.org/conference/nsdi20/presentation/hauer

Meaningful Availability

Tamás Hauer
Google

Philipp Hoffmann
Google

John Lunney
Google

Dan Ardelean
Google

Amer Diwan
Google

Abstract
High availability is a critical requirement for cloud appli-

cations: if a sytem does not have high availability, users can-
not count on it for their critical work. Having a metric that
meaningfully captures availability is useful for both users
and system developers. It informs users what they should
expect of the availability of the application. It informs devel-
opers what they should focus on to improve user-experienced
availability. This paper presents and evaluates, in the context
of Google’s G Suite, a novel availability metric: windowed
user-uptime. This metric has two main components. First,
it directly models user-perceived availability and avoids the
bias in commonly used availability metrics. Second, by si-
multaneously calculating the availability metric over many
windows it can readily distinguish between many short peri-
ods of unavailability and fewer but longer periods of unavail-
ability.

1 Introduction

Users rely on productivity suites and tools, such as G Suite,
Office 365, or Slack, to get their work done. Lack of avail-
ability in these suites comes at a cost: lost productivity, lost
revenue and negative press for both the service provider and
the user [1, 3, 6]. System developers and maintainers use
metrics to quantify service reliability [10, 11]. A good avail-
ability metric should be meaningful, proportional, and ac-
tionable. By “meaningful” we mean that it should capture
what users experience. By “proportional” we mean that a
change in the metric should be proportional to the change
in user-perceived availability. By “actionable” we mean that
the metric should give system owners insight into why avail-
ability for a period was low. This paper shows that none
of the commonly used metrics satisfy these requirements
and presents a new metric, windowed user-uptime that meets
these requirements. We evaluate the metric in the context of
Google’s G Suite products, such as Google Drive and Gmail.

The two most commonly used approaches for quantifying
availability are success-ratio and incident-ratio. Success-

ratio is the fraction of the number of successful requests to
total requests over a period of time (usually a month or a
quarter) [5, 2, 9]. This metric has some important short-
comings. First, it is biased towards the most active users;
G Suite’s most active users are 1000x more active than its
least active (yet still active) users. Second, it assumes that
user behavior does not change during an outage, although
it often does: e.g., a user may give up and stop submit-
ting requests during an outage which can make the measured
impact appear smaller than it actually is. Incident-ratio is
the ratio of “up minutes” to “total minutes”, and it deter-
mines “up minutes” based on the duration of known inci-
dents. This metric is inappropriate for large-scale distributed
systems since they are almost never completely down or up.

Our approach, windowed user-uptime has two compo-
nents. First, user-uptime analyzes fine-grained user request
logs to determine the up and down minutes for each user
and aggregates these into an overall metric. By considering
the failures that our users experience and weighing each user
equally, this metric is meaningful and proportional. Second,
windowed user-uptime simultaneously quantifies availability
at all time windows, which enables us to distinguish many
short outages from fewer longer ones; thus it enables our
metric to be actionable.

We evaluate windowed user-uptime in the context of
Google’s G Suite applications and compare it to success-
ratio. We show, using data from a production deployment
of G Suite, that the above-mentioned bias is a real shortcom-
ing of success-ratio and that windowing is an invaluable tool
for identifying brief, but significant outages. Our teams sys-
tematically track down the root cause of these brief outages
and address them before they trigger larger incidents.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 motivates the need
for windowed user-uptime Section 4 describes user-uptime.
Section 5 extends user-uptime with windowed user-uptime.
Section 6 evaluates our approach and Section 8 concludes
the paper.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 545

2 Related Work

Understanding and improving availability of computer sys-
tems has been a goal for decades [22] with early work aim-
ing at developing stochastic models based on failure char-
acteristics of individual hardware and software components
[30, 20, 27, 21] . A more abstract approach [28] uses mean
time to failure (MTTF) and mean time to recovery (MTTR),
which are well suited to describe a system that shifts be-
tween binary up/down states. An extension to this approach
that differentiates between transient failures and short-term
downtime can be found in Shao et al. [26].

When describing complex distributed systems, however,
a binary up/down state is usually not accurate. Brown et
al. [13] focus on success-ratio instead, describing the avail-
ability of a system as the percentage of requests served suc-
cessfully and understanding it as a spectrum between up and
down.

Brevik et al.[12] show how to compute confidence bounds
for future performance based on collected past performance
data. Treynor et al. [29] describe error budgets connected to
an availability goal and how availability of individual com-
ponents affects the whole system.

In taking a user-centric approach, Dell’Amico et al.[18]
explore problems similar to those presented here, but with a
focus on prediction and future performance. In a sequel[17],
a probabilistic model is used to suggest optimizations to a
network application.

A common application for availability and error budgets
are contracts for cloud service providers [5, 2, 9]. Patel et al.
[25] discuss these Service Level Agreements (SLAs) focus-
ing on a framework to define and monitor metrics and goals
associated with SLAs while Endo et al. [19] describe issues
encountered when trying to achieve high availability in cloud
computing.

Microsoft Cloud services (such as Office 365) compute
and report uptime as the time when the overall service is
up divided by total time. [4] As a metric based on time, it
is immediately meaningful (e.g., everyone interprets 99.9%
uptime as “system will be down for a total of 1 day every
1000 days on average”).

Before the work in this paper, Gmail computed and re-
ported availability as the percentage of successful interactive
user requests (irrespective of which user the request comes
from). Google Cloud Platform computes and reports “down-
time” as the error rate and downtime period as consecutive
minutes of downtime.

Slack’s status page reports that it is “a distributed platform
and during any given incident it is rare for all Slack teams
to be affected. For this reason, we report our uptime as an
average derived from the number of affected users.” [7]

Amazon Web Services computes and reports “Error rate”
as the percentage of requests that result in errors in a 5
minute interval. The average of these five minute calcula-

tions is reported to customers, as “Monthly uptime percent-
age” - the average of all the 5-minute error rates. [2]

In the following sections, we will look at three desirable
properties of an availability metric: meaningful, proportional
and actionable. The surveyed systems each satisfy some but
not all of these three properties.

3 Motivation

Availability is the ability of a service to perform its required
function at an agreed instant or over an agreed period of
time [24]. At a high level, all availability metrics have the
following form:

availability =
good service

total demanded service
(1)

Availability metrics are invaluable to both users and de-
velopers [10].

For users, they tell them whether or not a service is suit-
able for their use case. For some use cases, unavailability
translates into lost productivity and a meaningful measure
can help quantify that.

For developers, availability metrics help prioritize their
work to improve their system. For this to be the case, the
measure should be proportional and actionable. A propor-
tional metric enables developers to quantify the benefit of
an incremental improvement. An actionable metric enables
them to zero in on episodes of worst availability and thus find
problems that they need to address.

Broadly speaking, availability metrics fall in two cate-
gories: time based and count based, according to how they
quantify the “good service” and “total demanded service” in
Eq. (1).

3.1 Time-based availability metrics

Toeroe et al. [28] define availability as MTTF
MTTF+MTTR

where MTTF is the mean-time-to-failure and MTTR is
mean-time-to-recovery. This measure is based on the du-
ration when the system is up or down; these concepts are
meaningful to users. Thus it is no surprise that many cloud
providers, e.g. Microsoft’s Office 365 [4], use it. The time
between failures is uptime and the time to recover from a fail-
ure is downtime, thus we can express this metric as Eq. (1)
once we identify uptime and downtime as the measure of
good and bad service, respectively [29]:

availability =
uptime

uptime+downtime
. (2)

At a deeper level, this measure depends in a complex way
on the precise meanings of “failure” and “recovery”. At one
extreme we could consider a system to have a failure only

546 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

when there is an outage that affects all users. At the other
extreme, we could consider a system to have a failure when
there is an outage that affects even a single user.

Neither of these definitions are adequate. The first is un-
satisfactory because the design and deployment of cloud sys-
tems, such as Azure [14], Dynamo [16], or Gmail, actively
avoid single points of failure by sharding data across many
machines and using replication [23] with failover when prob-
lems occur. Consequently, these systems rarely have an out-
age that affects all users [29]. The other extreme is not suit-
able, particularly for systems with hundreds of millions of
users, because there will always be some that are experienc-
ing failures. The system may not even be at fault for such
outages. For example, we once debugged a situation where
a user had authorized access to their Gmail account to many
third-party services, each of which was repeatedly making
extremely large requests against the user’s account, inadver-
tently and collectively causing a denial of service attack, and
in turn an outage for that user. It would be unreasonable to
consider this as an outage of Gmail.

Consequently, availability in terms of up and down states
either require manual labeling of up and down times (e.g.,
the incident ratio metric) or the use of thresholds, e.g., the
G Suite SLA defines downtime as “if there is more than a five
percent user error rate” [5]. While such thresholds avoid the
extremes above, they do so arbitrarily. Furthermore, avail-
ability metrics that use such thresholds are not proportional.
For example, the G Suite definition treats a system with 5%
error rate the same as a system with 0.0001% error rate; and
it treats a system with 5.1% error rate the same as a system
with 99% error rate.

Thus, commonly used time-based availability metrics:

• are not proportional to the severity of the system’s un-
availability (a downtime with 100% failure rate weighs
as much as one with 10%).
• are not proportional to the number of affected users (a

downtime at night has the same weight as a downtime
during peak period).
• are not actionable because they do not, in themselves,

provide developers guidance into the source of failures.
• are not meaningful in that they rely on arbitrary thresh-

olds or manual judgments (e.g., incident-ratio).

3.2 Count-based availability metrics
While the most common definitions of availability (including
the ones discussed above) are in terms of time, some systems
use “success-ratio” instead. Success-ratio is the ratio of suc-
cessful requests to total requests. Since success-ratio does
not use a threshold, it is more proportional than commonly-
used time-based metrics.

Success-ratio as an availability measure is popular be-
cause it is easy to implement and is a reasonable measure:
it accurately characterizes a service, whose (un-)reliability

stems solely from a stochastic distribution of failures. Be-
cause the computation is based on user requests, it approx-
imates user perception better than if we used some internal
instrumentation to reason about the service’s health. It is,
however, prone to bias: the most active users are often 1000x
more active than the least active users and thus are 1000x
over-represented in the metric.

Even if we disregard the bias with respect to different
users’ activity, this metric can fail to proportionally capture
changes in availability. Consider, for example, that a ser-
vice is down for 3 hours and then up for 3 hours. While the
system is up, users are active on the system and thus make
many (successful) requests to the system. While the system
is down, they will periodically probe the system to check if
is still down but the inter-arrival time of the requests is likely
lower than if the system is in active use. For certain systems,
particularly ones that provide a service to other systems, the
opposite situation may hold: a client service may flood our
system with retries thus inflating failure count. Users ulti-
mately care about time, thus a count-based measure - in con-
trast to a time-based one - can misrepresent the magnitude of
an outage.

In summary, count-based (success-ratio) availability met-
rics:

• are not meaningful in that they are not based on time.
• are biased by highly active users.
• are biased because of different client behavior during

outages.

3.3 Probes

Using synthetic probes may mitigate some of the shortcom-
ings of success-ratio. For example, probing the system au-
tomatically at regular intervals can avoid bias. This ap-
proach works well for low-level systems with modest busi-
ness logic, for example, a network which “just” sends and
receives packets. In contrast, a cloud application may have
hundreds of types of operations and the work required by
an operation type depends on the type and the user’s cor-
pus (e.g., a search operation for a user with a few documents
is fundamentally different, in terms of the work involved,
from a search for a user with millions of documents). Con-
sequently, despite years of effort, we have been unable to
fully represent real workloads on our system with synthetic
probes [8]. Thus, for cloud applications, a metric which uses
synthetic probes may not be representative of real-user expe-
rience.

In summary, availability metrics based on synthetic
probes:

• are not representative of user activity.
• are not proportional to what users experience.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 547

3.4 Actionable metrics

The availability metrics that we have described so far repre-
sent different points in the tradeoffs for “proportional” and
“meaningful”. All of them, however, have a similar weak-
ness when it comes to being “actionable”: a single number
associated with a reporting period does not allow enough in-
sight into the source or the shape of unavailability.

Indeed, none of the existing metrics can distinguish be-
tween 10 seconds of poor availability at the top of every hour
or 6 hours of poor availability during peak usage time once a
quarter. The first, while annoying, is a relatively minor nui-
sance because while it causes user-visible failures, users (or
their clients) can retry to get a successful response. In con-
trast the second is a major outage that prevents users from
getting work done for nearly a full day every quarter.

In the following section, we describe a new availability
measure, user-uptime that is meaningful and proportional.
Afterwards, we’ll introduce windowed user-uptime, which
augments it to be actionable.

4 Proportional and meaningful availability:
user-uptime

As discussed in Section 3, prior metrics for availability are
not meaningful or proportional. A seemingly straightforward
variant of Eq. (2) satisfies both proportionality and meaning-
fulness:

user-uptime =
∑

u∈users
uptime(u)

∑
u∈users

uptime(u)+downtime(u)
, (3)

Since this metric is in terms of time, it is meaningful to
users. Since it is free from arbitrary thresholds, it is (in-
versely) proportional to the duration and magnitude of the
unavailability. The calculation of this metric, however, is
not straightforward as it requires a definition of uptime(u)
and downtime(u) per user. The remainder of this section
describes how we calculate these.

4.1 Events and durations

An obvious approach to uptime and downtime would be to
introduce evenly spaced synthetic probes for each user (Fig-
ure 1) and count the successful and failing probes. In Fig-
ure 1 the light green circles are successful events and dark
red diamonds are failed ones from a single user’s perspec-
tive. The green horizontal line at the top marks the period
when the user perceives the system to be up (i.e., its length
represents uptime) while the red one on the bottom marks
the period when the user perceives the system to be down.
As discussed in Section 3.1, however, synthetic probes fail to

Figure 1: System availability as seen through evenly-spaced
prober requests. success-ratio=67%, user-uptime=67%

mimic true user behavior. For example, we may probe cer-
tain operations but users may experience unavailability for
other operations. In a recent Gmail outage, for example, the
failure of the system serving attachments impacted only op-
erations that accessed attachments; but other operations were
largely unaffected.

Our key insight, therefore, is to use user requests as
probes. A user’s perception of a system being up or down
depends on the response they get when they interact with it:
if the response is successful (unsuccessful) they perceive the
system as being up (down). For example, as long as the user
can successfully edit a document, she perceives the system to
be up; once she experiences a failing operation she perceives
the system to be down.

Success versus failure of individual events is not always
obvious to the user: for example, if a device’s request to
synchronize the contents of the user’s mailbox fails, the user
may not notice that the system is down. Despite this, we
want our availability metric to be conservative: if there is
any chance that a user may perceive a failure (even one as
subtle as a longer-than-usual delay in the notification for a
new email) we consider it as a failure.

Fig. 2 illustrates this approach. In contrast to Fig. 1, avail-
ability is not necessarily the same as success-ratio. Sec-
tion 4.2 discusses some variations of this approach and the
consequences of our choices.

Figure 2: Availability as seen through unevenly spaced
requests from a single user. success-ratio=68%, user-
uptime=65%

Fig. 3 illustrates a system with four users. Each user ex-
periences an outage of a different duration and generates re-
quests at a different rate from the other users. Thus if we
use success-ratio across the users, it will skew availability
towards the most prolific user. User-uptime does not suffer
from this bias.

548 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 3: An outage which affects users selectively.

4.2 Challenges with user uptime
While we have illustrated user-uptime using examples, there
are two main questions that we have glossed over: (i) how
do we label a duration as up or down; and (ii) how do we
address users that are inactive. The remainder of this section
addresses these challenges.

4.2.1 Labeling durations

As long as back-to-back events are both failures or suc-
cesses, it is obvious how to label the duration between the
two events. But if back-to-back events are different (i.e.,
one is a failure and one is a success) there are three choices
(Fig. 4):

• After a successful (or failing) operation, assume that the
system is up (or down) until the user sees evidence to
the contrary.
• Before a successful (failing) operation, assume that the

system is up (down) until the previous event. Intu-
itively, this option takes the position that the user re-
quest probes the state (up or down) of the system up to
the previous operation.
• Split the duration between events (i.e., half the time is

uptime and half is downtime).

Assuming that transitions (from up to down or vice versa)
occur at random points between the events, the differences
between the above three options will be negligible. This is
not always the case when the client aggressively retries fail-
ing operations. For simplicity, and because it captures user
intuition of system availability, we use the first option.

4.2.2 Active and inactive periods

If a user stops all activity for an extended period (e.g., goes
on a vacation) they have no perception of the system being
up or down: assuming that the system is up or down continu-
ously after the last seen request does not make sense and may

Figure 4: Three choices to extrapolate uptime or downtime
from neighboring events

even optimistically bias the data: e.g., if a user has an unsuc-
cessful request they may retry until they get success and thus
the last request before a vacation is disproportionately likely
to be successful.

To this end, we introduce a cutoff duration; if a user has
been inactive for more than this duration, we consider the
user as being inactive on the system and thus do not count
uptime or downtime. We pick the cutoff duration as the 99th
percentile of the interarrival time of user requests. For Gmail
this is 30 minutes. Experiments with multiples of this dura-
tion have shown that our availability metric does not change
significantly with different values of the cutoff duration.

Now we can define how we label durations as uptime or
downtime for each user:

Definition (uptime, downtime): A segment between two
consecutive events originating from the same user is:

• inactive if the two events are further apart than cutoff,
otherwise
• uptime if the first of the two events was success
• downtime if the first of the two events was failure.

Fig. 5 illustrates this definition.

Figure 5: Definition of uptime and downtime segments

For each user u and a measurement period of interest,
uptime(u) is the sum of the lengths of the uptime segments
and downtime(u) is the sum of the lengths of the downtime

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 549

segments. We can calculate overall availability for the sys-
tem by aggregating across all users as in Eq. (3).

4.3 Properties of user-uptime

We now study the properties of user-uptime and success-
ratio in synthetic situations where we know the ground truth;
later (Section 6) we evaluate them in a production system.

For the first example, we generated synthetic user requests
for an hour such that all user requests within a contiguous 15
minute period failed. We simulated this thousands of times
for 10,000 synthetic active users. Fig. 6 illustrates what this
outage looks like for 2 users.

Figure 6: Two users’ activity around a hard outage during
30 < t < 45

Fig. 7 shows the distribution of the success-ratio and user-
uptime metrics across the different simulations. We see that
both metrics show an availability of around 0.75 but the stan-
dard deviation for user-uptime is much smaller indicating
that user-uptime more precisely and consistently captures the
outage.

Figure 7: Normalized distribution of success-ratio and user-
uptime measurements

For the second example, we incorporated retries: when a
request fails, the user retries the request. Fig. 8 shows the
distribution for success-ratio and user-uptime for this experi-
ment. We see that user uptime is more accurate than success-
ratio: identifying the availability of 0.75 with a tight distri-
bution. Success-ratio, on the other hand, is affected by the
retries and indicates a lower availability than what users ac-
tually experienced.

In summary, at least with synthetic examples we see that
user-uptime better captures availability than success-ratio.
Section 6 compares the two metrics using production data.

Figure 8: Normalized distribution of success-ratio and user-
uptime measurements with automatic retries

5 Actionable availability: windowed user-
uptime

Cloud productivity suites commonly define, track, and re-
port monthly or quarterly availability. As Section 3.4 points
out, monthly or quarterly availability data is often not action-
able. Concretely, monthly availability does not distinguish
between a flaky system that routinely fails a small percent-
age of the requests from a system whose failures are rare but
when they happen the system is unavailable for an extended
duration.

To distinguish long outages from flakiness, we must look
at availability at the timescale of the outages: looking at a
timescale of months may average away the unavailability and
paints a rosier picture than reality. Our approach, windowed
user-uptime, addresses this by combining information from
all timescales simultaneously. The rest of this section de-
scribes windowed user-uptime and explores its properties.

5.1 Calculating windowed user-uptime

Windowed user-uptime iterates over all time windows fully
included in the period of interest (e.g., month or quarter) and
it computes an availability score for each window size. For
example, to calculate windowed user-uptime over the month
of January 2019, windowed user-uptime finds the worst pe-
riod of each window size from 1 minute up to a month. The
score for a window size w is the availability of the worst
window of size w in our period of interest. We calculate the
availability for a particular window from t1 to t2 as follows:

A(t1, t2) =
good service between t1 and t2
total service between t1 and t2

To obtain the score for a window of size w, we enumerate
all windows of duration w, compute the availability for each
of them, and take the lowest value. Thus, we end up with one
score for each window size. We call this score the minimal
cumulative ratio (MCR).

Formally, the MCR for a window size w in a period (T1,T2)
is as follows:

550 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 9: Windowed user-uptime:

MCR(w)≡ min
T1<t1<t2<T2

{A(t1, t2)|t2− t1 = w} (4)

MCR picks the worst availability for each window size
because that is the window that had the most impact on over-
all availability. Prior work in evaluating real-time garbage
collectors and specifically the Minimum-Mutator-Utilization
metric [15] inspired our windowing approach.

Fig. 9 shows an example of windowed user-uptime over a
period of one quarter; the x-axis gives the window size and
the y-axis (in log scale) gives the corresponding MCR. Fig. 9
enables us to readily make the following observations:

• The overall availability for the quarter is 99.991%; this
is the rightmost point in the curve.

• There was no window of one minute or longer whose
availability was worse than 92%.

• Knees of the curve can give insight into the longest inci-
dents and their distribution for the service. In the exam-
ple, the knee at about 2 hours indicates that the episode
that brought availability down to 92% lasted for two
hours; availability rapidly improves for larger windows.

By maintaining a mapping from each window size to the
start of the window, we can readily examine the worst win-
dow(s) of a particular size in detail (e.g., Fig. 10). We can
automatically discover the knee by finding the peak of the
2nd derivative of the windowed graph.

In summary, windowed user-uptime provides us with a
rich view into the availability of our services. This data is
actionable: it tells us the windows that degrade our overall
availability. Our engineers use these graphs to find and fix
sources of unavailability.

Figure 10: Per-minute availability over time

5.2 Monotonicity with integer-multiple sized
windows

Intuitively, we expect windowed user-uptime to be mono-
tonically non-decreasing in the size of the window; i.e., we
expect larger windows to have better availability. This sec-
tion proves that this is the case as long as window sizes are
integer multiples of smaller ones.

We use boldface to distinguish windows: w = [t1, t2] from
window sizes: w = t2− t1. For the remainder of this section
a window w will always be a continuous interval. The avail-
ability of a window w is the ratio of uptime and total time1

over that window:

A(w) =
u(w)

t(w)
.

Given a period of interest, [T1,T2], windowed user-uptime, or
the minimal cumulative ratio is the least of the availabilities
of all windows (Eq. (4)) of size w that are fully enclosed
within [T1,T2]:

MCR(w)≡ min
w⊆[T1 ,T2]
|w|=w

(
u(w)

t(w)

)
.

One expects MCR(w) to be a monotonic function. Indeed,
the availability over a window w′ of size w′ is intuitively
the mean of a fluctuating time series. Scanning the inter-
val with windows of smaller size w < w′, we should find
both higher and lower availability values and the minimum
of these should be smaller than the mean over the whole win-
dow:

MCR(w)
?
≤MCR(w′) w≤ w′. (5)

1We use user-uptime terminology but windowing can be defined for
other availability metrics. Substitute the corresponding concepts for good
and total service, for example request count in case of success-ratio.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 551

Eq. (5) indeed holds when we can cover a larger window
fully using windows of the next smaller size without overlap.
Consider w′ of size w′ covered with windows of size w as in
Fig. 11

Figure 11: Covering a window with smaller ones: w′ = kw

We denote the uptime and total time of the ith window as ui
and ti, respectively. Then the availability of w′ can be written
as:

A(w′) =
u1 +u2 + . . .+uk

t1 + t2 + . . .+ tk
.

It is impossible that all of the ratios ui/ti are greater than
A(w′). Indeed, the above equation can be rearranged to

0 =
k

∑
i=1

(ui−A(w′)ti)

and at least one term in the sum must be non-positive for the
sum to yield zero: u j ≤ A(w′)t j. Therefore there is at least
one window of size w whose availability is at most that of
w′:

u j

t j
≤ A(w′).

It follows that every window of length kw contains at least
one window of size w with lower availability. Since there
exists a window whose availability is MCR(kw), it follows
that:

MCR(w)≤MCR(kw) ∀k ∈ N (6)

5.3 Monotonicity in the general case
For practical purposes, Eq. (6) is “enough”: the worst avail-
ability of a day is always better than the worst availability of
an hour or of a minute. Curiously, windowed user-uptime is
not monotonically non-decreasing in the general case. The
Appendix gives a proof that we can bound the extent of this
apparent anomaly:

k
k+1

MCR(w)≤MCR(w′) kw < w′. (7)

In practice, we can guard against the apparent anomaly
and enforce strict monotonicity by restricting to integer mul-
tiples, e.g. compute windowed user-uptime for windows that
are powers of two.

6 Evaluation

Since last year, we have used windowed user-uptime for all
G Suite applications (Calendar, Docs, Drive, Gmail, etc.).
This section presents case studies where this metric pro-
vided keen insight into availability especially compared to
the success-ratio metric.

We present availability data from production Google
servers; in doing so we ignore unavailability due to issues
with user devices or mobile networks.

Since the actual availability data is Google proprietary, we
linearly scale and shift all curves in our graphs. This transfor-
mation preserves the shape of the curves and enables mean-
ingful comparison between them.

6.1 Availability due to hyper-active users
As we have discussed, bias (due to hyper-active users) can
negatively affect success-ratio. This section shows a real-life
example of this phenomenon.

Fig. 12 shows (scaled) user-uptime and success-ratio for
a large user base. One observes a consistent and significant
mismatch between success-ratio and user-uptime.

Figure 12: Uptime discrepancy due to mixed use-cases (log
scale)

Upon diving into this discrepancy, we discovered that
most (99%) active users contribute fewer than 100 events
each in the duration of the graph. The remaining (1%) of
the users are hyper-active and contribute 62% of all events.

Fig. 13 breaks down the availability data. The “Over-
all” curves give overall availability, the “Hyperactive users”
curves give availability for the most active 1% of the users,
and the “Typical users” curves give availability for the rest
of them. Success-ratio appears heavily biased towards the
availability for hyper-active users even though they make up
only 1% of the user base.

Bias due to hyper-active users for success-ratio is, thus,
not a theoretical possibility: we see this in production: in-
deed our most active users are 1000x more active than our

552 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 13: Left: user-uptime for the two clusters of events and the combined user-uptime. Right: success-ratio for the two
clusters of events and the combined success-ratio

Figure 14: Monthly windowed uptime: success-ratio and
user-uptime

“typical” users which makes this bias a common occurrence.
When this bias occurs, success-ratio can mislead us towards
thinking that an incident is much more or much less severe
than it actually is.

6.2 Availability and hyper-active retries
While so far we have shown availability data for all cus-
tomers of a G Suite application, we also separately measure
availability for large customers since they often have their
own unique patterns of usage and thus may experience differ-
ent availability from other users. From this data we noticed
that a particular large customer (> 100,000 users) had much
poorer success-ratio than other users of Gmail; moreover we
noticed a discrepancy between success-ratio and user uptime
(Fig. 14). While the curves for user-uptime and success-ratio
have the same shape, they are far apart with user-uptime in-
dicating a better availability than success-ratio.

Fig. 15 shows the user-uptime and success-ratio over time.

Figure 15: Effect of abusive users

We can see that before and after the incident (i.e., the two
ends of the graph) the two metrics were similar, but during
the incident the two metrics diverged.

On investigation we uncovered that a small number of
users had enabled a third-party application which synced
their mailboxes; this external service was unable to han-
dle large mailboxes and for these users it would retry the
sync operation repeatedly and without exponential back-off.
This generated bursts of failing requests. The event count of
these failures drove the success-ratio availability down, even
though this impacted only a handful of users and other re-
quests for the users (e.g., to read an email) were successful.
User-uptime did not suffer from the bias due to these retries.
We were able to resolve this incident by communicating with
the third-party vendor.

In summary, users (and the clients they use) can behave
differently during incidents than during normal operations.
Clients may make many more requests during incidents (our
example above) or they may just decide to give up on the

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 553

Figure 16: Impact assessment

system and try few hours later. In both cases, success-ratio
over- or under-estimates the magnitude of an outage while
user-uptime matches user perception.

6.3 Quantifying impact of outages

We quantify the impact of every outage on our users. This
impact advises the aftermath of the outage: for example,
a really severe outage may result in a temporary freeze in
deploying new versions until we address all the underlying
issues while a less severe outage may require less extreme
measures.

When using success-ratio, this quantification is difficult
since the metric is not based on time. Concretely, since re-
quest patterns (and specifically retry behavior) changes dur-
ing outages, using success-ratio to derive impact is not mean-
ingful.

Consider, for example Fig. 16 which displays an outage
from one of our products. Both success-ratio and user-
uptime dip at 12:10 to around 97%, then recover over the
course of an hour. What impact did this outage have on our
users? Was it the case that 100%− 97% = 3% of our users
couldn’t work for over an hour? Or that the impact was more
evenly spread across our users and that automatic retries hid
most of the negative impact?

The seconds of downtime, which we compute as part of
user uptime, provides more insight. From there we see the
minutes of downtime that our users experience. The large
number we measured for this indicated that this was clearly
a significant outage for some users and the retry behavior
was unable to mask this outage from our users.

6.4 Combining user-uptime and success-ratio

The Drive team extensively uses windowed user-uptime to
investigate, root-cause and fix sources of unavailability. The
proportionality of user-uptime is critical for their use case:

Figure 17: User-uptime analysis of Google Drive traffic, 30
days.

they need to be able to make changes and notice a propor-
tional change in the availability metric. Sometimes, combin-
ing user-uptime with success-ratio yields valuable insights.

Fig. 17 illustrates this situation. A first analysis of the up-
time graph shows a drop on the 4th day followed by a degra-
dation that reached a plateau on day 18 then was finally fixed
on day 26. Looking at success-ratio instead of user-uptime
paints the same picture, as can be seen in Fig. 18. Looking
at either of these two graphs, it is reasonable to assume that
this incident has a single cause.

Figure 18: success-ratio of Google Drive, same 30 days as
Fig. 17.

But if we plot success-ratio and user-uptime together as
in Fig. 19, we see that they diverge on day 18. Indeed,
an investigation showed that the period between day 18 and
day 26 was caused by a different issue, introduced by an at-
tempted fix for the first problem. It manifests differently in
user-uptime compared to success-ratio due to different client
behavior for this new issue. This divergence led the engi-
neers to the correct path in fixing the new issue instead of
trying to find out why the old issue was still ongoing, and
made the path to resolution easier and quicker.

554 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 19: Divergence of user-uptime and success-ratio

6.5 Windowed uptime indicates burstiness of
unavailability

When we look at availability metrics aggregated over a
month or a quarter we cannot see short episodes of poor
availability. Fig. 20 shows the windowed user-uptime of
Drive and Hangouts. The two curves meet at the same point
at the 1 month mark; thus they have the same scaled avail-
ability (99.972%) over the course of the month. Their win-
dowed user-uptime graphs, however, tell different stories.

Windowed user-uptime reveals that it is a four hour
episode (the knee of the curve) that held back Hangouts from
having an even higher availability. In a different month with-
out such an episode or if we fix the root cause behind such
episodes, this product would have a higher availability.

For Drive, the windowed user-uptime curve has no pro-
nounced knee; this means that rather than a single long
episode, there are continuous short episodes which are hold-
ing back the service from having a higher availability. Thus,
unless we fix their root cause, Drive will continue to suffer
from these downtimes month after month.

By exposing shorter episodes of low availability (e.g.,
Hangouts’ four hour episode), windowed user-uptime alerts
us to problems that would otherwise be masked by the
(commonly-used) monthly aggregation. Our teams conse-
quently use windowed user-uptime to identify, root-cause
and then fix the sources of these short episodes, improving
overall availability.

7 Applicability of windowed user-uptime

To calculate windowed user-uptime we need fine-grained
logs of individual user operation. These logs must include
a key that enables us to chain together operations for each
user, the timestamp of the operation and the status of each
operation (success or failure). In some cases, additional in-
formation is invaluable: for example, (i) knowing the type of

Figure 20: Monthly windowed user-uptime distinguishes be-
tween the nature of unavailability

the operation enables us to determine if different operations
have different availability and (ii) knowing the organization
of a user enables us to determine if a particular organization
is experiencing worse availability compared to other organi-
zations.

In the simplest case we need to retain only the cumulative
count of up and down minutes for each minute to calculate
windowed user-uptime over any time duration. If we want to
slice data along additional dimensions we must maintain the
count of up and down minutes for each dimension (organi-
zation, operation type, etc.).

It took us about 1 year to deploy windowed user-uptime
to all of the G Suite applications. This time included imple-
mentation (e.g., to normalize the different log formats so we
can use the same pipeline across all of our applications and to
build the pipeline for calculating the metric) but the bulk of
the time was in determining which operations we should con-
sider in windowed user-uptime and whether or not a given
operation’s availability could be visible to users. From this
experience we are confident that windowed user-uptime is
broadly applicable: any cloud service provider should be
able to implement it.

8 Conclusion

We have introduced a novel availability metric, user-uptime
which combines the advantages of per-user aggregation with
those of using a time-based availability measure. We have
shown that as a result user-uptime avoids multiple kinds of
bias: hyper-active users contribute similarly to the metric as
regular users, and even behavioral changes during an outage
result in a proportional and meaningful measurement that in
many cases is even more precise than success-ratio.

We have evaluated our metric against the commonly-used
success-ratio metric using production data from G Suite ser-
vices. We show that the bias in success-ratio is not an aca-

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 555

demic argument: we actually encounter it in production and
that user-uptime avoids this bias.

We have introduced a visualization technique, windowed
availability, that allows us to study multiple time-scales
from single minutes to a full quarter in an easy to under-
stand graph. Again using production data from G Suite ser-
vices, we show that windowed user-uptime sheds invaluable
and actionable insight into the availability of our services.
Specifically, windowed user-uptime enables us to differenti-
ate between many short and fewer but longer outages. This
ability focuses our engineering efforts into improvements
that will yield the most gains in user-perceived availability.

Acknowledgments

We are grateful for insighful contributions from André
Prinsloo, Jesse Bickmore, Aaron Isotton, Andrés Martı́nez
and Tony Scelfo, all of Google, and thoughtful comments
from the anonymous reviewers.

References

[1] 5-minute outage costs google $545,000 in rev-
enue. https://venturebeat.com/2013/08/16/3-minute-
outage-costs-google-545000-in-revenue/.

[2] Amazon s3 service level agreement.
https://aws.amazon.com/s3/sla/.

[3] Amazon.com goes down, loses $66,240 per minute.
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-
com-goes-down-loses-66240-per-minute/.

[4] Cloud services you can trust: Office 365 availabil-
ity. https://www.microsoft.com/en-us/microsoft-
365/blog/2013/08/08/cloud-services-you-can-trust-
office-365-availability/.

[5] G suite service level agreement.
https://gsuite.google.com/intl/en/terms/sla.html.

[6] Google’s bad week: Youtube loses mil-
lions as advertising row reaches us.
https://www.theguardian.com/technology/2017/mar/25/google-
youtube-advertising-extremist-content-att-verizon.

[7] Slack system status: How is uptime calculated?
https://status.slack.com/.

[8] Dan Ardelean, Amer Diwan, and Chandra Erdman.
Performance analysis of cloud applications. In 15th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 405–417, Ren-
ton, WA, 2018. USENIX Association.

[9] Salman Abdul Baset. Cloud slas: present and future.
Operating Systems Review, 46, 2012.

[10] Betsy Beyer, Chris Jones, Jennifer Petoff, and
Niall Richard Murphy. Site Reliability Engineering:
How Google Runs Production Systems. “ O’Reilly Me-
dia, Inc.”, 2016.

[11] Betsy Beyer, Niall Richard Murphy, David K. Rensin
Rensin, Stephen Thorne, and Kent Kawahara. The
Site Reliability Workbook: Practical Ways to Imple-
ment SRE. “ O’Reilly Media, Inc.”, 2018.

[12] John Brevik, Daniel Nurmi, and Rich Wolski. Quan-
tifying machine availability in networked and desktop
grid systems. Technical report, CS2003-37, University
of California at Santa Barbara, 2003.

[13] Aaron B. Brown and David A. Patterson. Towards
availability benchmarks: A case study of software
RAID systems. In Proceedings of the General Track:
2000 USENIX Annual Technical Conference, 2000.

[14] David Chappell. Introducing the windows azure plat-
form. David Chappell & Associates White Paper, 2010.

[15] Perry Cheng and Guy E Blelloch. A parallel, real-time
garbage collector. ACM SIGPLAN Notices, 36(5):125–
136, 2001.

[16] Giuseppe DeCandia, Deniz Hastorun, Madan Jam-
pani, Gunavardhan Kakulapati, Avinash Lakshman,
Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: Amazon’s
highly available key-value store. In Proceedings of
Twenty-first ACM SIGOPS Symposium on Operating
Systems Principles, SOSP ’07, pages 205–220, New
York, NY, USA, 2007. ACM.

[17] Matteo Dell’Amico, Maurizio Filippone, Pietro
Michiardi, and Yves Roudier. On user availabil-
ity prediction and network applications. CoRR,
abs/1404.7688, 2014.

[18] Matteo Dell’Amico, Pietro Michiardi, and Yves
Roudier. Back to the future: On predicting user up-
time. CoRR, abs/1010.0626, 2010.

[19] Patricia Takako Endo, Moisés Rodrigues, Glauco Esta-
cio Gonçalves, Judith Kelner, Djamel Fawzi Hadj
Sadok, and Calin Curescu. High availability in clouds:
systematic review and research challenges. J. Cloud
Computing, 5, 2016.

[20] A. L. Goel and J. Soenjoto. Models for hardware-
software system operational-performance evaluation.
IEEE Transactions on Reliability, R-30(3), 1981.

[21] A. Goyal and S. S. Lavenberg. Modeling and analysis
of computer system availability. IBM Journal of Re-
search and Development, 31(6), 1987.

556 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[22] Jim Gray and Daniel P. Siewiorek. High-availability
computer systems. IEEE Computer, 24(9), 1991.

[23] Rachid Guerraoui and André Schiper. Software-based
replication for fault tolerance. IEEE Computer, 30(4),
1997.

[24] ISO Iso. iec/ieee international standard-systems and
software engineering–vocabulary. Technical report,
ISO/IEC/IEEE 24765: 2017 (E), 2017.

[25] Pankesh Patel, Ajith H Ranabahu, and Amit P Sheth.
Service level agreement in cloud computing. 2009.

[26] Lingshuang Shao, Junfeng Zhao, Tao Xie, Lu Zhang,
Bing Xie, and Hong Mei. User-perceived service avail-
ability: A metric and an estimation approach. In 2009
IEEE International Conference on Web Services, 2009.

[27] Ushio Sumita and Yasushi Masuda. Analysis of soft-
ware availability/reliability under the influence of hard-
ware failures. IEEE Trans. Software Eng., 12(1), 1986.

[28] Maria Toeroe and Francis Tam. Service availability:
principles and practice. John Wiley & Sons, 2012.

[29] Ben Treynor, Mike Dahlin, Vivek Rau, and Betsy
Beyer. The calculus of service availability. Commu-
nications of the ACM, 60(9), 2017.

[30] S. R. Welke, B. W. Johnson, and J. H. Aylor. Relia-
bility modeling of hardware/software systems. IEEE
Transactions on Reliability, 44(3), Sep. 1995.

Appendix: Monotonicity
We prove Eq. (7) which was stated in Section 5 without
proof.

k
k+1

MCR(w)≤MCR(w′) kw < w′. (7)

Figure 21: Embedding length-w windows in length-w′ one.
for w′ 6= kw

To prove Eq. (7), we cover the larger window of size w′

with windows of size w. Pick some 0 ≤ j ≤ k and fill the
segment with j windows without a gap from the left and k− j

windows from the right, as in Fig. 21. As w′ is not an integer
multiple of w, this will leave a small segment uncovered in
the middle. Like before, we write the availability of w′ in
terms of the uptime and total time of the segments as:

A(w′) =
U
T

=
u1 + . . .+u j +u′j +u j+1 + . . .+uk

t1 + . . .+ t j + t ′j + t j+1 + . . .+ tk
.

The availability of each window of length w is bounded by
MCR(w):

ui

ti
≥MCR(w).

Substituting ui ≥MCR(w)ti and u′j ≥ 0 yields:

A(w′)≥MCR(w)
t1 + . . .+ t j + t j+1 + . . .+ tk

t1 + . . .+ t j + t ′j + t j+1 + . . .+ tk

or

TA(w′)≥MCR(w)(T − t ′j).

Depending on how many windows we add on the left or
on the right, j can be any integer between 0 (all windows
on the right) and k (all windows on the left). Each of these
possibilities yields the same inequality as above, they differ
only in the respective value of t ′j. Let’s add all of these k+1
inequalities:

(k+1)TA(w′)≥MCR(w)(kT +T −
k

∑
j=0

t ′j).

Note, however, that

T −
k

∑
j=0

t ′j ≥ 0

because t ′j are total times of non-overlapping intervals, all
part of T . Substituting this yields the promised bound:

A(w′)≥ k
k+1

MCR(w).

We see, therefore, that every window of length w′ > kw con-
tains at least one window of size w with lower availability.
Since there exists a window whose availability is MCR(w′),
Eq. (7) follows.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 557

	Introduction
	Related Work
	Motivation
	Time-based availability metrics
	Count-based availability metrics
	Probes
	Actionable metrics

	Proportional and meaningful availability: user-uptime
	Events and durations
	Challenges with user uptime
	Labeling durations
	Active and inactive periods

	Properties of user-uptime

	Actionable availability: windowed user-uptime
	Calculating windowed user-uptime
	Monotonicity with integer-multiple sized windows
	Monotonicity in the general case

	Evaluation
	Availability due to hyper-active users
	Availability and hyper-active retries
	Quantifying impact of outages
	Combining user-uptime and success-ratio
	Windowed uptime indicates burstiness of unavailability

	Applicability of windowed user-uptime
	Conclusion

