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Abstract
Observability on data communication is always essential

for prototyping, developing, and optimizing communication
systems. However, it is still challenging to observe transac-
tions flowing inside PCI Express (PCIe) links despite them
being a key component for emerging peripherals such as smart
NICs, NVMe, and accelerators. To offer the practical observ-
ability on PCIe and for productively prototyping PCIe devices,
we propose NetTLP, a development platform for software
PCIe devices that can interact with hardware root complexes.
On the NetTLP platform, software PCIe devices on top of
IP network stacks can send and receive Transaction Layer
Packets (TLPs) to and from hardware root complexes or other
devices through Ethernet links, an Ethernet and PCIe bridge
called a NetTLP adapter, and PCIe links. This paper describes
the NetTLP platform and its implementation: the NetTLP
adapter and LibTLP, which is a software implementation of
the PCIe transaction layer. Moreover, this paper demonstrates
the usefulness of NetTLP through three use cases: (1) observ-
ing TLPs sent from four commercial PCIe devices, (2) 400
LoC software Ethernet NIC implementation that performs
an actual NIC for a hardware root complex, and (3) physical
memory introspection.

1 Introduction

PCI Express (PCIe) is a widely used I/O interconnect for
storage, graphic, network, and accelerator devices [16,24,25].
Not limited to connect the peripheral devices, some high-
performance interconnects adopt the PCIe protocol [5,22,35].
Moreover, specifications of future interconnects are designed
by extending the PCIe protocol [10, 14]. Such versatility of
PCIe is derived from the packet-based data communication
and the flexibility of PCIe topology. The PCIe specification
defines building blocks comprising PCIe topologies: endpoint,
switches, bridges, and root complexes. PCIe packets flow
through point-to-point PCIe links between the blocks, and
motherboard manufacturers can expand the PCIe topologies
with these blocks depending on the use cases.

Table 1: Comparison of platforms for prototyping PCIe de-
vices from the viewpoints of software and hardware.

PCIe device
Software Hardware

Root Complex Software QEMU �
Hardware NetTLP FPGA/ASIC

By contrast to the spread of PCIe, it is still difficult for
researchers and software developers to observe PCIe and pro-
totype PCIe devices, although they are crucial for optimizing
performance and developing future PCIe devices. Observ-
ing PCIe transactions is difficult because PCIe transactions
are confined in hardware. PCIe is not just a simple fat-pipe
between hardware elements; it also has several features for
achieving high-performance communication, i.e., hardware
interrupt, virtualization, and CPU cache operations. Utilizing
these features is important for exploiting PCIe efficiently;
however, the concrete behaviors of the transactions in PCIe
links cannot be determined unless special capture devices for
observing PCIe hardware are used.

In addition to the observation, prototyping PCIe devices
lacks productivity. Field Programmable Gate Array (FPGA)
is a major platform for prototyping PCIe devices [26, 40, 44,
45, 50]. However, developing all parts of a PCIe device on
an FPGA still requires significant effort, such as the great
devotion of the NetFPGA project [52] for networking devices.
Another approach is to adopt virtualization or simulation, e.g.,
GEM5 [11,23] and RTL simulators [4,31]. QEMU [9], which
is a famous virtualization platform, can be used for proto-
typing PCIe devices from the software perspective. QEMU
enables researchers and developers to prototype new hardware
architecture; however, its environment is fully softwarized.
QEMU devices can communicate with only the emulated
root complex and cannot communicate with the physical root
complex and other hardware connected to the root complex.

The goal of this paper is to bridge the gap between software
and hardware for PCIe, as shown in Table 1. Our proposed
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platform, called NetTLP, offers softwarized PCIe endpoints
that can interact with hardware root complexes. By using Net-
TLP, researchers and software developers can prototype their
PCIe devices as software PCIe endpoints and test the soft-
ware devices with actual hardware root complexes through
the PCIe protocol. This hybrid platform of software and hard-
ware simultaneously improves both the observability of PCIe
transactions and the productivity of prototyping PCIe devices.

The key technique for connecting softwarized PCIe end-
points to hardware root complexes is to separate the PCIe
transaction layer into software and put the software transac-
tion layer on top of IP network stacks. Our FPGA-based add-
in card, called NetTLP adapter, delivers Transaction Layer
Packets (TLPs) to a remote host over Ethernet and IP net-
works. The substance of the NetTLP adapter is implemented
in software on the IP network stack of the remote host with
LibTLP, which is a software implementation of the PCIe trans-
action layer. The NetTLP platform consisting of the adapter
and library enables software PCIe devices on IP network
stacks to interact with hardware root complex through the
NetTLP adapter. Moreover, TLPs delivered over Ethernet
links can be easily observed by IP networking techniques
such as tcpdump and Wireshark.

In this paper, we describe NetTLP, the novel platform for
software PCIe devices. To achieve the platform, we investi-
gate PCIe from the perspective of packet-based communica-
tion (§2) and then describe the approach to connect the soft-
ware PCIe devices with hardware root complexes and process
TLPs in software (§3) and describe its implementation (§4).
In addition to micro-benchmarks (§5), we demonstrate three
use cases of NetTLP (§6): observing behaviors of a root com-
plex and commercial devices at a TLP-level, prototyping an
Ethernet NIC in software interacting with a physical root
complex, and physical memory introspection using NetTLP.

The contributions of this paper include the following:

• We propose a novel platform for prototyping PCIe de-
vices in software, while the software devices can commu-
nicate with physical hardware such as root complexes,
CPU, memory, and other PCIe devices. This platform
offers high productivity for prototyping PCIe devices
with actual interactions with hardware.

• We provide observability of PCIe transactions confined
in hardware by the softwarized PCIe endpoints on the
IP network stack. Our modified tcpdump can distinguish
the encapsulated TLPs in Ethernet by NetTLP, enabling
us to easily capture TLPs in an IP networking manner.

• We present detailed observation results of PCIe transac-
tions with a root complex and commercial peripherals:
an Intel root complex, Intel X520 10 Gbps NIC, Intel
XL710 40 Gbps NIC, Intel P4500 NVMe, and Samsung
PM1724 NVMe. The observation results by NetTLP re-
veal differences in their behaviors on PCIe transactions,
for example, different usage of TLP tag fields.

CPU Memory

Root ComplexPCIe Switch

PCIe
Device

PCIe
Device

PCIe
Device

PCIe
Device

CPUMemory

Root Complex

PCIe
Device
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Device

CPU-to-Device/Device-to-CPU
Device-to-Device Remote DMA

Figure 1: A PCIe topology and three communication models.

• We show a prototype of a nonexistent Ethernet NIC
with NetTLP. This prototyping demonstrates the high
productivity of the NetTLP platform; the NIC is certainly
implemented in software, but it performs as an actual
Ethernet NIC for a physical root complex.

• We demonstrate the possibility of developing memory
introspection methods on NetTLP without implement-
ing dedicated devices. As a proof-of-concept, we imple-
mented two applications that gather process information
from a remote host by DMA through NetTLP.

All source codes for hardware and software and captured
data described in this paper are publicly available [1].

2 Background

PCIe is not only an interconnect, but also a packet-based data
communication network. As with IP networks, PCIe has a
layering model composed of a physical layer, a data link layer,
and a transaction layer. The data link layer delivers PCIe
packets across one hop over a PCIe link, while the transaction
layer is responsible for delivering TLPs from a PCIe endpoint
to a PCIe endpoint across the PCIe links. PCIe interconnect is
composed of the following elements that are capable of sup-
porting the layer functionalities: endpoints, switches, bridges,
and root complexes. PCIe switches and root complexes route
and forward PCIe packets in accordance with the addresses
in memory-mapped I/O (MMIO) space or requester IDs. Any
functionalities of PCIe stand at the packet-based communi-
cation, e.g., MSI-X for hardware interrupts is implemented
by memory writes to specific memory addresses. Because of
being such a packet-based network, PCIe topologies and their
communication models are flexible, as depicted in Figure 1.

In IP networks, we can easily prototype and implement any
part of the networks, such as end hosts, switches, and routers,
and observe packets flowing in the networks; however, PCIe
cannot do such things despite PCIe also being a packet-based
network. PCIe was originally designed for I/O interconnects
inside a computer; therefore, it is assumed that all the PCIe
elements were implemented in hardware. This assumption
and the current situation cause difficulty in investigating and
developing PCIe and its elements.
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For investigating PCIe, there are two major platforms:
FPGA and QEMU. FPGA offers programmability on hard-
ware for prototyping PCIe devices. By contrast, developing
PCIe devices on FPGA still involves significant effort. Even
when implementing a device, the device requires purpose-
specific logic and various logic blocks such as PCIe core,
DMA engine, memory controller, etc. Such functional blocks
are not available, unlike software libraries. Moreover, we can-
not observe the PCIe packets sent by the FPGA. We can
see only part of the signals using logic analyzers, or expen-
sive dedicated hardware. On the other hand, QEMU enables
implementing PCIe devices on a full virtualized environ-
ment [15,37]. However, QEMU does not implement the PCIe
protocol, only DMA APIs. QEMU is used as a platform for
researching new PCIe devices and discussing OS abstractions
and implementations without real hardware and the PCIe pro-
tocol. Thus, QEMU PCIe devices cannot interact with the real
host and hardware on the PCIe, although the features of root
complexes have been evolving.

The two platforms have advantages and disadvantages:
FPGA requires significant effort for prototyping and lacks
observability, while QEMU devices cannot interact with hard-
ware elements with the PCIe protocols. These disadvantages
are because the platforms focus on only hardware or soft-
ware. Root complexes and devices—the two major elements
of PCIe—are hardware in FPGA or software in QEMU.

As a third platform, we advocate connecting software and
hardware elements of PCIe. If PCIe devices are moved to soft-
ware and connected to a hardware root complex, we achieve
productive PCIe device prototyping in software and interac-
tions with the real PCIe elements connected to the hardware
root complex. Moreover, we can observe the PCIe transac-
tions at the software PCIe device without resorting to dedi-
cated hardware mechanisms. This relationship is similar to IP
networks; IP network stacks at end hosts are software, while
routers and switches are hardware.

3 NetTLP

To feasibly connect software PCIe devices and hardware root
complexes, we propose to separate the transaction layer of
PCIe into software, as illustrated in Figure 2. The transaction
layer is responsible for the fundamental part of end-to-end
PCIe communications: identifiers, i.e., memory addresses and
requester IDs, routing, and issuing PCIe transactions. The
softwarized transaction layer offers high productivity of PCIe
device prototyping in software on top of the layer and observ-
ability of PCIe transactions by software.

To connect the softwarized transaction layer and the hard-
ware data link layer, NetTLP has chosen a configuration that
bridges a PCIe link and an Ethernet link. Because PCIe and
Ethernet are packet-based networks, it is possible to deliver
TLPs over Ethernet links by encapsulation. Once TLPs go
to an Ethernet network, we can easily observe the TLPs like

Transaction Layer

Data Link Layer

Physical Layer
TX RX

Data Link Layer

Physical Layer
TX RX

SW-HW bridge

PCIe link

Root Complex PCIe device
TLP Software-based 

Transaction Layer

Figure 2: The layering model of PCIe and our approach that
separates the transaction layer into software.

IP packets, implement the transaction layer in software, and
prototype PCIe devices on top of software IP network stacks.

As with NetTLP, ExpEther [47, 48] and Thunderclap [29]
also enable observing and manipulating TLPs. ExpEther ex-
tends PCIe links by delivering TLPs over Ethernet links. TLPs
encapsulated by ExpEther would be observed on an Ethernet
link between an ExpEther adapter and a hardware extension
box in which peripheral devices are installed. In Thunderclap,
Linux running on an ARM CPU on an FPGA processes TLPs
with software. Similarly, some smart NICs can send and re-
ceive TLPs from CPUs on the NICs with abstracted DMA
APIs [30, 33].

In contrast to the existing technologies, NetTLP focuses
on prototyping new PCIe devices in software. For this pur-
pose, manipulating TLPs with software is one of the essential
functionalities. In addition, how devices and CPUs interact
with each other must be designed flexibly. ExpEther does not
focus on this point so that it extends PCIe links over Ethernet,
and the software PCIe devices on Thunderclap pretend exist-
ing devices to reveal vulnerabilities through their drivers. In
the NetTLP platform, researchers and developers can design
how new software devices interact with CPUs through root
complexes. More specifically, it is possible to design and im-
plement the usage of registers of the software devices, e.g.,
descriptor rings, from scratch on the NetTLP platform. This
functionality enables designing and implementing nonexistent
devices and observing its interaction in software (Section 6.2).

3.1 Platform Overview
A key component of NetTLP delivering TLPs over Ethernet
is a NetTLP adapter, which is an FPGA-based add-in card
equipped with a PCIe link connected to the host and an Eth-
ernet link. Another key component is LibTLP, which is a
software library of the PCIe transaction layer on the IP net-
work stack. The NetTLP platform is composed of two hosts,
an adapter host having the NetTLP adapter and a device host
where LibTLP-based applications are run, as illustrated in
Figure 3.

The NetTLP adapter is responsible for the bridge between
the hardware data link layer and the software transaction layer
depicted in Figure 2. The NetTLP adapter delivers TLPs be-
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Figure 3: The overview of the NetTLP platform.

tween a host’s PCIe link and the Ethernet link. When the
NetTLP adapter receives TLPs from the PCIe link, the Net-
TLP adapter encapsulates each TLP in Ethernet, IP, UDP, and
NetTLP header for sequencing and timestamping and sends
the packets to the device host via the Ethernet link. When
the NetTLP adapter receives a UDP packet from the Ethernet
link, the NetTLP adapter checks whether the packet’s payload
is a TLP, decapsulates the packet, and sends the inner TLP to
the PCIe link. As a result, from the perspective of the adapter
host, all TLPs sent from the device host by the software are
recognized as TLPs generated by the NetTLP adapter.

LibTLP implements the PCIe transaction layer in software
and provides abstracted DMA APIs for applications. The ap-
plications on the device host can send and receive TLPs to
the NetTLP adapter on the adapter host through UDP sockets.
By using LibTLP, researchers and software developers can
implement their own PCIe devices in software that perform
actual behaviors of the NetTLP adapter for the root complex
on the adapter host. In addition, splitting software PCIe de-
vices and physical adapters on the distant hosts enables us to
observe actual PCIe transactions flowing through the Ethernet
link. We can capture the encapsulated TLPs by tcpdump at
the device host or capture the TLPs on the Ethernet link by
optical taps or port mirroring on Ethernet switches.

Although a NetTLP adapter is a single peripheral device,
the NetTLP adapter can be applied to some PCIe commu-
nication models in PCIe topologies organized in Figure 1.
Naturally, the NetTLP adapter and the software PCIe device
can become a device on CPU-to-device and device-to-CPU
communications. Applying the NetTLP adapter into device-
to-device communication, also known as peer-to-peer DMA,
realizes interactions between commercial PCIe devices and
software PCIe devices. Section 6.1 shows TLPs sent from
product devices by the NetTLP platform and peer-to-peer
DMA integration. In addition, the NetTLP adapter can be con-
sidered a raw remote memory access device. Applications on
the device host can issue DMA to any address of the memory
on the adapter host through the NetTLP adapter. Section 6.3
demonstrates memory introspection methods exploiting the
remote memory access by NetTLP.

3.2 TLP Processing in Software

Processing PCIe transactions in software is challenging be-
cause PCIe was originally designed to be processed by hard-
ware. This section describes three issues to design NetTLP for
achieving PCIe interactions between hardware and software.

Receiving burst TLPs: The first issue is that LibTLP
needs to receive burst TLPs sent from the hardware. The
minimum TLP length is 12 bytes when the TLP is a memory-
read (MRd) TLP with the 32-bit address field, for instance.
NetTLP adapter encapsulates TLPs with Ethernet, IP, UDP,
and NetTLP headers; thus, the minimum encapsulated packet
length is 64 bytes. This length is the same length as the mini-
mum packet size of IP networks. Meanwhile, the flow control
of PCIe is based on the credit system [7], and PCIe endpoints
can send TLPs continuously as long as the credit remains. In
particular, PCIe devices often send small TLPs using the TLP
tag field to achieve high performance [21]. Because these TLP
transmission intervals are continuous clock units, the through-
put of encapsulated TLPs could momentarily be wire-rate on
the Ethernet link with short packets.

To receive such burst TLPs by software, NetTLP exploits
the TLP tag field to distribute receiving encapsulated TLPs
among multiple hardware queues of an Ethernet NIC and
CPU cores. The tag field is used to distinguish individual
non-posted transactions that can be processed independently.
The NetTLP adapter embeds the lower 4-bit of the tag values
into the lower 4-bit of UDP port numbers when encapsulating
TLPs. As a result, PCIe transactions to the NetTLP adapter
are delivered through different UDP flows based on the tag
field, and the device host can receive the flows by different
NIC queues. This technique, called tag-based UDP port distri-
bution, enables the software side to process TLPs on multiple
cores associated with multiple NIC queues.

Completion Timeout: Another issue is the completion
timeout. In accordance with PCIe specifications, root com-
plexes and PCIe endpoints support a completion timeout
mechanism on the PCIe transaction layer. When a requester
send memory-read requests, the requester sets timeout periods
for each request, and the completer need to send the comple-
tions within the periods. Hence, software PCIe devices on
the NetTLP platform need to be able to send completions
within the hardware-level timeout periods. The timeout period
is configured in the PCIe configuration space. For instance,
the minimum and maximum completion timeout periods of
X520 NIC are 50 microseconds and 50 milliseconds, respec-
tively [6]. Therefore, software PCIe devices built on LibTLP
also must be capable of replying memory requests during such
periods. Fortunately, Linux network stacks on general server
machines are not too slow at the millisecond scale; therefore,
we expect that LibTLP would meet the requirement. Section 5
examines this issue through a latency benchmark.

Encapsulation Overhead: To take TLPs to software on
top of IP network stacks, NetTLP encapsulates TLPs with IP
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headers although encapsulation involves throughput reduction
due to the header overhead. NetTLP encapsulates TLPs into
multiple headers: 14-byte Ethernet, 4-byte FCS, 20-byte IP,
8-byte UDP, and 6-byte NetTLP headers. The throughput
of data transfer over DMA on the NetTLP platform can be
calculated with:

T hroughputdma = BWeth ⇥ T LP_Data
T LP_hdr+T LP_Data+Pkt_Hdr+ET H_Gap

BWeth is the Ethernet link speed, Pkt_Hdr is 52-byte for the
headers and FCS mentioned above, and ET H_Gap is 20-
byte for preamble and inter-frame gaps. From this formula,
throughput with 256-byte T LP_Data (usual max payload
size) and 12-byte T LP_hdr for 3DW memory-write TLP on
10 Gbps links is approximately 7.53 Gbps, which is the theo-
retical limitation with 10 Gbps Ethernet. Although throughput
is required depending on use cases, the overhead is not signif-
icant for just prototyping software PCIe devices.

4 Implementation

We implemented the NetTLP adapter using an FPGA card
and LibTLP on Linux. This section describes the details of
the NetTLP adapter, APIs provided by LibTLP, hardware
interrupts, and limitations of the NetTLP platform.

4.1 NetTLP Adapter
The NetTLP adapter was implemented using the Xilinx
KC705 FPGA development board [51]. This board has Xilinx
Kintex 7 FPGA, an Ethernet 10 Gbps port, and a PCIe Gen
2 4-lane link. We used the board because its PCIe Endpoint
IP core enables user-defined logic to handle raw TLP head-
ers. This feature is suitable for designing the NetTLP adapter.
However, the Xilinx’s newer PCIe IP core, which supports
PCIe Gen 3, does not allow user-defined logic to handle raw
TLP headers. Therefore, the current implementation of the
NetTLP adapter does not support PCIe Gen 3.

Figure 4 shows the overview of the circuit diagram of the
NetTLP adapter. The current NetTLP adapter has three base
address register (BAR) spaces for different roles. BAR0 is
used to configure the NetTLP adapter. The configurations
through BAR0 support changing source and destination MAC
addresses and source and destination IP addresses for encap-
sulating TLPs. The BAR2 space is used for the MSI-X table to
support the hardware interrupts from software PCIe devices.
The detail of MSI-X in NetTLP is described in Section 4.3.
Both BAR0 and BAR2 memory spaces are implemented with
Block RAM on the FPGA, and the NetTLP adapter has the
Peripheral I/O (PIO) engine above the BAR0 and BAR2 to
reply with completion TLPs for operations to the BARs.

BAR4 is different from BAR0 and BAR2; BAR4 space is
connected to the Ethernet PHY and not connected to the PIO
engine. All TLPs from the root complex or other devices to

PCIe Link to Host

Remote Host

PCIe 
Endpoint

PCIe Configuration Register

BAR0: Adapter Register

IP filter + 
IP decap

BAR4:
IP encap

Ethernet PHY

BAR2: MSI-X Table

PIO
Engine

Figure 4: The circuit diagram of the NetTLP adapter.

the BAR4 space are encapsulated in Ethernet, IP, UDP, and
NetTLP headers and transmitted to an external host via the
Ethernet link. Namely, LibTLP on the device host commu-
nicates to the root complex on the adapter host through the
memory region assigned to the BAR4.

When encapsulating TLPs to the BAR4, source and desti-
nation port numbers of the UDP headers are generated based
on the tag field of their TLP headers. This is the tag-based
UDP port distribution described in Section 3.2. In the current
implementation, the UDP port numbers are generated with
0x3000 +(T LP_Tag^0x0F). Thus, the NIC on the device
host receives the TLPs by a maximum of 16 hardware queues.
When the NetTLP adapter receives UDP packets from the
device host, the IP filter logic checks whether the IP addresses
match the configured addresses on BAR0. If the IP addresses
and port numbers are correct, the packets are decapsulated,
and the inner TLPs are sent to the host via the PCIe link.

The driver for the NetTLP adapter depends on types of
software PCIe devices. If a software PCIe device is an Ether-
net NIC, the driver is for the Ethernet NIC, and if a software
PCIe device is an NVMe SSD, the driver is for the NVMe
SSD. Regardless of the driver types, we implemented a sim-
ple driver that supports basic functionalities for the NetTLP
adapter. This driver enables the NetTLP adapter, initializes
MSI-X, and prepares a simple messaging API. The software
PCIe device on the device host can obtain information about
the NetTLP adapter, i.e., addresses of the BAR spaces of the
adapter, PCIe bus and slot numbers, and MSI-X table. Users
of the NetTLP platform can develop drivers for their software
PCIe devices by extending the basic NetTLP driver.

4.2 LibTLP
LibTLP is a userspace library that implements the PCIe trans-
action layer. On top of the transaction layer implementation,
the LibTLP provides a well-abstracted DMA API and a call-
back API for handling each type of TLPs.

Figure 5 shows the DMA API of LibTLP. A LibTLP in-
stance that contains a socket descriptor, a tag value, and a
destination address of a target NetTLP adapter is represented
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Figure 5: The DMA API of LibTLP.

by a nettlp structure initialized by nettlp_init(). The
DMA APIs for DMA reads and DMA writes are invoked
by specifying a nettlp structure. As with the read() and
write() system calls, dma_read() attempts to read up to
count bytes into buf and dma_write() writes up to count

bytes from buf. addr indicates a target address of a DMA
transaction. The return values of the functions are the number
of bytes read or written, or -1 and errno is set on error. For the
DMA reads, applications can notice TLP loss or completion
errors through the return value and errno.

In addition to the DMA API that issues DMAs to the mem-
ory on the adapter host, LibTLP provides a callback API for
handling TLPs from the adapter host to the device host. The
callback API allows applications to register functions for ma-
jor TLP types: memory read (MRd), memory write (MWr),
completion (Cpl), and completion with data (CplD). When
the sockets of the nettlp structures receive TLPs, the regis-
tered functions are invoked for the TLPs. By using this API,
the applications on the device host can respond to MRd TLPs
from the root complex to the BAR4 on the NetTLP adapter
by sending associated CplD TLPs, for instance.

4.3 Hardware Interrupt
For hardware interrupt, the NetTLP platform supports MSI-
X, which is widely used by modern PCIe devices. MSI-X
interrupt is invoked by sending a MWr TLP with particular
data to a specified address from a device. The address and
data for the interrupt are stored in an MSI-X table on a BAR
space specified by the PCIe configuration space of the device.
In other words, to send a hardware interrupt by MSI-X, it is
necessary to refer to the MSI-X table on the BAR.

To achieve MSI-X on the NetTLP platform, there are two
approaches: (1) placing the MSI-X table on the BAR4 and a
software PCIe device on a device host holds the MSI-X table,
and (2) placing the MSI-X table on other BAR spaces under
the PIO engine and a software PCIe device on a device host
gets the MSI-X table through other communication paths. The
current implementation chooses the latter approach. The for-
mer approach does not need any other communication paths
to obtain the MSI-X table from the adapter host. However,
the MSI-X table is initialized by the NetTLP driver, so the
software PCIe device must run on the device host before
the NetTLP driver is loaded on the adapter host. Moreover,
software PCIe device implementations must always be ca-
pable of maintaining the MSI-X table, even if they do not
use MSI-X. These characteristics might inconvenience the
development of software PCIe devices. For these reasons, we
placed the MSI-X table on BAR2 under the PIO engine that is

controlled by only the hardware logic of the NetTLP adapter.
The software PCIe devices can obtain the content of the MSI-
X table through the simple messaging API provided by the
basic NetTLP driver.

4.4 tcpdump and Wireshark
To observe TLPs, we slightly modified tcpdump and imple-
mented a Wireshark plugin. In the NetTLP platform, the en-
capsulated TLPs flow through the Ethernet link between the
NetTLP adapter and the device host; hence, the TLPs can
be easily captured by the monitoring tools of IP networking.
The modified tcpdump can recognize the encapsulated TLPs
and display the contents of TLPs on the popular tcpdump out-
put. The Wireshark plugin also displays the contents of TLPs
on the GUI. These tools offer researchers and developers a
convenient method to observe TLPs.

4.5 Limitations
The current implementation of the NetTLP platform cannot
handle the PCIe configuration space. The PCIe configuration
space manages properties of the PCIe device such as Device
ID, Vendor ID, and address regions of BAR spaces. The PCIe
configuration space is stored in the memory of the PCIe device
hardware. When the host boots up or re-scans PCIe devices,
the devices use the CfgRd and CfgWr TLPs to communicate
with the root complex to set up their PCIe configurations.
In the current implementation of NetTLP adapter, the PCIe
Endpoint IP core for Kintex 7 FPGA manages the PCIe con-
figuration space as shown in Figure 4. The IP core does not
allow user-defined logic to manipulate the configuration reg-
isters by raw TLPs. Therefore, the software PCIe devices
cannot see and change their PCIe configurations. As a result,
the current implementation does not support functionalities
that require the manipulation of PCIe configuration registers,
i.e., changing structures of MSI-X tables and SR-IOV.

5 Micro-benchmarks

To estimate performances of the software PCIe devices and ap-
plications, we conducted micro-benchmarks for the through-
put and latency of DMAs on the NetTLP platform.

In the NetTLP platform, there are two directions of PCIe
transactions: (1) from LibTLP to the NetTLP adapter, and (2)
from the NetTLP adapter to LibTLP. They represent DMA
reads and writes from a software PCIe device to a root com-
plex, and DMA reads and writes from a root complex to a
software PCIe device, respectively. In the former direction,
we assume that PCIe transactions issued from the software
PCIe device can be processed without packet loss because
all of the components on the adapter host is hardware, which
has higher bandwidth (the 16 Gbps PCIe Gen 2 4-lane link
of the NetTLP adapter) than the 10 Gbps Ethernet link. In
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Direction 2: Adapter to LibTLP
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Figure 6: Benchmark setup.

the opposite direction, DMA reads from the root complex to
the software PCIe devices also would not be dropped because
the root complex does not send a memory read request until
receiving a completion for the last read request (non-posted
transaction). Based on this assumption, we measured through-
put of DMA reads and writes from LibTLP (Section 5.1), and
DMA reads from the NetTLP adapter (Section 5.2).

By contrast, the throughput of DMA writes from the root
complex to the software PCIe device cannot be measured. The
root-complex can send MWr TLPs up to the link speed of the
NetTLP adapter without explicit acknowledgment (posted
transactions). The current NetTLP adapter does not have
mechanisms to notify congestion on the Ethernet link to the
root complex; therefore, MWr TLPs are dropped if the 10
Gbps Ethernet link of the NetTLP adapter overflows. Notify-
ing the overflow to the root complex and other devices is a
future work. However, for recent peripherals such as Ethernet
NICs and NVMe SSDs, usual use cases of memory writes
to PCIe devices are updating registers on the devices from
CPUs, and these do not require significant throughput. There-
fore, we argue that the current NetTLP adapter is sufficient to
prototype PCIe devices in software.

Figure 6 depicts the two directions and the components
we used to generate PCIe transactions for the benchmarks.
To generate PCIe transactions from LibTLP to the NetTLP
adapter, we developed a LibTLP-based benchmark applica-
tion called tlpperf. Users can send memory read and write re-
quests to the memory on the adapter host through the NetTLP
adapter from the device host by using tlpperf. For generating
PCIe transactions in the opposite direction, we implemented
a LibTLP-based pseudo memory device, called psmem, and
slightly modified the pcie-bench [34]. psmem on the device
host pretends a memory region associated with the BAR4 of
the NetTLP adapter. As described in Section 4.1, TLPs to
the BAR4 space of the NetTLP adapter are transmitted to the
device host. When psmem receives a MWr TLP, psmem saves
the data and the associating address. When psmem receives a
MRd TLP, psmem sends CplD TLP(s) with proper data asso-
ciating the requested address. In addition, to generate memory
requests to the BAR4 of the NetTLP adapter, we modified
pcie-bench implementation for NetFPGA-SUME. The mod-
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Figure 7: DMA Read
throughput from LibTLP to
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Figure 8: DMA Read
throughput from LibTLP to
the NetTLP adapter versus
the request sizes.

ified pcie-bench can use the BAR4 space as the benchmark
destination instead of main memory.

For the micro-benchmark, we prepared two machines for
the adapter and device hosts. The adapter host was an Intel
Core i9-9820X 10 core CPU and 32 GB DDR4 memory with
an ASUS WS X299 SAGE motherboard. This motherboard
has PCIe switches. The NetTLP adapter and the NetFPGA-
SUME card for pcie-bench were installed on PCIe slots under
the same PCIe switch. The device host was an Intel Core i9-
7940X 12 core CPU, 32 GB DDR4 memory, and Intel X520
10 Gbps NIC with an ASUS PRIME X299-A motherboard.
The device host was connected to the NetTLP adapter on the
adapter host via a 10 Gbps Ethernet link. OSes were Linux
kernel 4.20.2. Note that we enabled hyperthreading on the
device host that had 12 physical cores to fully utilize 16 NIC
queues by the tag-based UDP port distribution.

In the experiments described in this section, all the through-
put results are goodput. The throughput does not include TLP
and encapsulation headers. In addition, all memory requests in
each iteration access the same address. We measured through-
put and latency with random and sequential access patterns;
however, there were no differences because of the memory
access patterns in any experiment. The processing time for the
software part is relatively dominant and obscures differences
in performances because of the memory access patterns.

5.1 LibTLP to NetTLP Adapter
In the first benchmark, we measured the throughput of PCIe
transactions from LibTLP to the memory on the adapter host
through the NetTLP adapter. It is expected that the throughput
would be limited by Linux kernel network stack performance
where tlpperf runs because the data path on the adapter host
is fully hardware and its links are the 16 Gbps PCIe Gen 2
4-lane link and the 10 Gbps Ethernet link.

Figure 7 shows the throughput of DMA reads issued by
tlpperf on the device host. The key indicates request sizes of
each DMA read request. As shown, the throughput linearly
increases along with the number of CPU cores. This result
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Figure 11: DMA Read throughput
from the NetTLP adapter to LibTLP.

indicates that the tag-based UDP port distribution technique
successfully utilizes multiple queues and multiple cores on
the Linux-based device host. On the other hand, the read re-
quest size greater than 512-byte does not contribute to the
throughput because the maximum read request size (MRRS)
is 512-byte. The maximum throughput in this direction, which
is approximately 3.6 Gbps, is less than the PCIe Gen 2 x1 link
speed; however, the required throughput depends on appli-
cations and use cases. For example, Section 6 demonstrates
use cases not depending on throughput. Note that the current
LibTLP uses Linux Socket API; therefore, LibTLP would han-
dle more UDP traffic with high-speed network I/O [28, 39].

Next, we measured the throughput of DMA reads from
tlpperf with 16 cores while increasing the read request sizes
by 16 bytes. The result shown in Figure 8 represents the saw-
tooth pattern, which is also noted in the pcie-bench paper [34].
The saw-tooth pattern is caused by the packetized structure
of the PCIe protocol. MRRS is 512-byte; therefore, when the
request size is not a multiple of 512, the remaining bytes are
transferred by a small size memory read. Such small-sized
TLPs cause throughput reduction. Sizes of the small TLPs
increase as the request sizes increase, so the throughput also
increases until the request size exceeds the next multiple of
512. Slight reductions of the throughput after multiples of
256-byte are caused by the maximum payload size (MPS),
which is 256-byte, in a similar manner. This result where
the saw-tooth pattern appears as well as the hardware-based
measurement by pcie-bench indicates that LibTLP correctly
implements the packetization of the PCIe protocol.

In addition to the throughput, we measured the latency
for DMA reads. The PCIe specification defines completion
timeout; thus, evaluating the DMA read latency is crucial
for prototyping PCIe devices in software. Figure 9 shows
the result of 10000 DMA reads with 1-byte, 256-byte, and
1024-byte read requests generated by tlpperf. The latency
increases with the request sizes; however, 99% latency is less
than 27 microseconds regardless of the request sizes, and the
maximum latency is 45 microseconds with 1024-byte DMA
reads. These results correspond to the completion timeout
range A (50 us to 10 ms). Therefore, we argue that prototyping

PCIe devices in software with hardware root complexes is
feasible from a latency perspective. According to the pcie-
bench [34], DMA read latency inside a physical host is from
400 to 800 nanoseconds. Consequently, software processing
for the network stack and the tlpperf application on the device
host is dominant in the latency of the NetTLP platform.

We next measured the throughput of DMA writes from
LibTLP. In contrast to DMA reads, DMA writes are posted
transactions; therefore, we cannot measure the latency and
throughput of DMA writes correctly. In this experiment, tlp-
perf calculates throughput when MWr TLPs are written to
sockets. Figure 10 shows this measurement result. In addition
to the DMA read results, DMA writes can also effectively use
multiple cores and queues. In contrast to DMA reads, DMA
writes reach the upper throughput with 256-byte DMA writes
because MPS is 256-byte. Note that this throughput can be
considered as transmitting throughput for UDP sockets of the
Linux network stack.

5.2 NetTLP Adapter to LibTLP
For the second direction, we measured the throughput by gen-
erating PCIe transactions from the pcie-bench on the adapter
host to the psmem running on the device host. Figure 11
shows the DMA read throughput on this direction. The result
also represents the saw-tooth pattern as well as the opposite
direction. Moreover, the thing that pcie-bench works with
the software memory device demonstrates that the NetTLP
platform can prototype one of the PCIe devices in software.
Besides, the maximum throughput is approximately 4.7 Gbps.
We confirmed that pcie-bench used TLP tag values from 0x00
to 0x17; thus, psmem with LibTLP could utilize the 16 cores
in parallel by the tag-based UDP port distribution.

Table 2 shows DMA read latency from the pcie-bench on
the adapter host to the psmem on the device host. We mea-
sured 100000 DMA reads for each request size. As shown,
there are no significant differences by request sizes, unlike the
original pcie-bench evaluation in hardware. This result is be-
cause the software processing on the device host—receiving
and sending UDP packets—is dominant. However, the latency
also meets the completion timeout range A.
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Table 2: DMA Read latency from the pcie-bench to the psmem
(microseconds).

Request size Min Median Max Stddev

256 14.312 17.268 87.456 1.321
512 12.2 18.764 68.552 1.550
1024 12.256 20.06 52.608 1.685
2048 11.612 18.588 68.224 2.385

6 Use Cases

This section demonstrates three use cases of NetTLP. We (1)
observed specific behaviors of a commercial root complex
and peripherals by capturing TLPs, (2) implemented a theo-
retical model of an Ethernet NIC as an actual NIC, and (3)
demonstrate memory introspection for physical machines. All
observations and demonstrations in this section were con-
ducted on the same machines used in the micro-benchmarks.

6.1 Capturing TLPs
As the first demonstration, we observe PCIe transactions of a
commercial root complex, two Ethernet NICs, and two NVMe
SSDs by capturing TLPs. The NetTLP adapter delivers TLPs
over Ethernet links; thus, NetTLP enables us to analyze TLPs
by using powerful IP network software with UNIX commands,
i.e., tcpdump. Besides, the flexibility of PCIe topologies en-
ables us to adapt NetTLP to observe various PCIe transactions
issued and processed by different elements.

6.1.1 Root Complex and PCIe Switch

The first observation is to clarify the behavior of root com-
plex. The PCIe specification does not allow PCIe switches to
modify PCIe packets during switching. However, root com-
plexes are permitted to split a PCIe packet into small PCIe
packets when routing the PCIe packets between PCIe devices.
The specification does not describe detailed mechanisms of
TLP splitting on peer-to-peer device communication by root
complexes. Although TLP splitting may negatively affect
performance, its behavior depends on each root complex im-
plementation, and observing the behavior is difficult. As a
demonstration, we clarify this point by comparing actual TLPs
through a root complex or a PCIe switch captured by NetTLP.

To capture the TLPs, we prepared two NetTLP adapters
under the root complex or the PCIe switch on the machine
used in the micro-benchmark. Figure 12a shows the topol-
ogy for this observation. In the test scenario, a DMA read
application on the device host sent a 512-byte MRd TLP to
psmem through the two NetTLP adapters on the adapter host,
and psmem returned CplD TLPs. Moreover, we switched the
intermediate element from the PCIe switch to the root com-
plex by changing PCIe slots where the NetTLP adapters were
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Figure 12: Two topologies for capturing TLPs. We captured
TLPs by port mirroring on the Ethernet switch.

installed. On this topology, we captured TLPs before and af-
ter passing through the PCIe switch or root complex by port
mirroring on the Ethernet switch.

Figure 13 shows the captured TLPs. The x-axis indicates
timestamps when a capture machine captured the TLPs from
the mirror port. Note that the timestamps were stamped by
NIC hardware so that the accuracy was on the nanosecond
scale. The y-axis indicates TLP tag values of the TLPs. The
TLPs were captured twice: before and behind the PCIe switch
or root complex. The graphs on the upper row and lower row
show the TLPs captured on the links connected to the NetTLP
adapter 1 and adapter 2 depicted in Figure 12a, respectively.

Figure 13a confirms that the PCIe switch does not modify
the TLPs as expected. The DMA read application sent a 512-
byte MRd TLP, and psmem returned two 256-byte CplD TLPs.
By contrast, Figure 13b reveals that the root complex split
a 512-byte MRd TLP into eight 64-byte MRd TLPs with
different TLP tag values when routing the TLPs between the
NetTLP adapters. psmem returned eight 64-byte CplD TLPs,
and the root complex rebuilt two 256-byte CplD TLPs from
the small CplD TLPs. As a result, the DMA read application
received the expected CplD TLPs that are aligned with MPS.

6.1.2 Ethernet NIC and NVMe SSD

Next, we measured and compared TLPs generated by com-
mercial NIC and NVMe devices. Knowledge of how product
devices use TLPs would be a useful guideline for develop-
ing PCIe devices with high performance. General peripheral
devices communicate with the CPU by DMA to the main
memory. To capture the TLPs from the devices, we used mod-
ified netmap drivers [39] for Ethernet NICs and a modified
UNVMe [32] for NVMe SSDs to change the DMA address
from main memory to the BAR4 of the NetTLP adapter. As
a result, NetTLP enables capturing the TLPs sent from the
devices on the Ethernet link connected to the NetTLP adapter.

For observing various behaviors of PCIe devices, we pre-
pared different types and speeds of devices: Intel X520 and
XL710 NICs, and Intel P4600 and Samsung PM1725a NVMe
SSDs. Throughput of the devices are as follows: Intel X520 is
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(a) A 512-byte memory read via the PCIe switch. (b) A 512-byte memory read via the root complex.

Figure 13: Comparison of captured TLPs of DMA read across the PCIe switch or the root complex. The graphs on the lower row
indicate the captured TLPs behind the PCIe switch or the root complex.

(a) NIC X520 (PCIe Gen2 8-lane, 10 Gbps). (b) NVMe P4600 (PCIe Gen3 4-lane, Seq write 1575 MB/s).

(c) NIC XL710 (PCIe Gen3 8-lane, 40 Gbps). (d) NVMe PM1725a (PCIe Gen3 8-lane, Seq write 2600 MB/s).

Figure 14: Comparison of tag field usage of the NIC and NVMe devices.

a 10 Gbps Ethernet NIC, Intel XL710 is a 40 Gbps Ethernet
NIC, the sequential write speed of the Intel P4600 NVMe
device is 1575 MB/s, and the sequential write speed of the
Samsung PM1725 is 2600 MB/s. Figure 12b shows the exper-
imental setup of this observation. In this setup, NIC or NVMe
and the NetTLP adapter were installed in PCIe slots under the
same PCIe switch. The devices sent MRd TLPs for sending
packets or writing data to the NVMe SSDs, and the MRd
TLPs were delivered to psmem. psmem then returned CplD
TLPs with Ethernet frames prepared in advance for the NIC
scenario or zero-filled data for the NVMe scenario. For the
NIC scenario, the NICs sent 32 1500-byte packets, and for the
NVMe scenario, the NVMe SSDs wrote 32-MB data to the
SSDs. Note that the block size of the Intel P4600 is 512 bytes
and that of the Samsung PM1725a is 4096 bytes; therefore,
we adjusted the number of NVMe write commands to write
32-MB data. To capture the TLPs, we used port mirroring
on the Ethernet switch between the NetTLP adapter and the
device host where psmem runs as well as the last experiment.

Figure 14 shows the result of captured TLPs of the NIC and
NVMe devices. The result reveals that each PCIe device uses

the TLP tag differently. X520 and P4600 use tag values from 0
to 15, PM1725a uses values from 0 to 63, and XL710 uses val-
ues from 24 to 249. The PCIe link speeds have been improved
along with generations of PCIe; however, MPS has hardly
improved. As a result, these PCIe devices improve data trans-
fer throughput by sending memory requests continuously by
leveraging TLP tags. The numbers of used tag values increase
along with the desired throughput of the devices. According
to the latency measurement in pcie-bench [34], the latency
of a 512-byte DMA read is approximately 580 nanoseconds.
The calculated throughput from this latency is about 7 Gbps
when not using the tag field. Therefore, exploiting the tag field
well is an important matter to achieve the desired throughput
as this observation revealed.

6.2 Prototyping an Ethernet NIC
To confirm that NetTLP can prototype PCIe devices in soft-
ware, we implemented an Ethernet NIC as a proof-of-concept
on the NetTLP platform. The target NIC we implemented
is simple NIC introduced by pcie-bench [34]. The original
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(b) TLPs for receiving a 98-byte ICMP reply packet.

Figure 15: tcpdump output of captured TLPs of the simple NIC implementation. len indicates length of data payload in DWORD.

simple NIC is a theoretical model of a simplistic Ethernet
NIC, which does not have any performance optimizations
such as DMA batching, for understanding PCIe interactions
and calculating bandwidth. This nonexistent NIC model was
a good target for demonstrating the productivity of NetTLP.
NetTLP enables us to prototype such models of PCIe devices
in software and confirm whether the models actually work
with existent hardware root complexes.

The detailed interactions between a host and a simple NIC
device are described in the model’s implementation [2]. On
the TX side, (1) the host updates a 4-byte TX queue tail
pointer, (2) the device reads a 16-byte TX descriptor on the
host memory, (3) the device reads the packet content and trans-
mits the packet, and (4) the device generates 4-byte interrupt.
On the RX side, (1) the host updates a 4-byte RX queue tail
pointer, (2) the device reads a 16-byte RX descriptor on the
host memory, (3) the device writes a received packet to the
host memory, (4) the device generates 4-byte RX interrupt.

Our simple NIC implementation on the NetTLP platform
performs an actual NIC with a physical root complex on the
adapter host following the model’s PCIe interaction. The im-
plementation consists of two parts: a device driver for the
NetTLP adapter and a software simple NIC device implemen-
tation using LibTLP. The device driver based on the basic
driver treats the NetTLP adapter as an Ethernet NIC as well
as usual drivers for hardware NICs. The software simple NIC
creates a tap interface on the device host and uses the tap
interface as its Ethernet port. The Ethernet frames transmitted
to the NetTLP adapter are transferred to the device host as
TLPs over the PCIe links and Ethernet links, and the Ethernet
frames are transmitted to the tap interface. The software sim-
ple NIC implementation is about 400 lines of C codes, and it
actually performs an Ethernet NIC.

TLPs of the simple NIC generated by the root complex
and LibTLP can be observed on the Ethernet link. Figure 15a
shows TLPs captured by the modified tcpdump when sending
an ICMP echo packet through the simple NIC. The driver
writes a TX queue pointer on the BAR4 of the NetTLP adapter

(1st TLP), the simple NIC reads the TX descriptor and the
packet content on 0x3bb26800 (2nd to 5th TLPs), and the
simple NIC generates interrupt to 0xfee1a000 pointed by the
MSI-X table after sending the packet to the tap interface (6th
TLP). On the RX side shown in Figure 15b, the interaction
starts from writing the received ICMP reply packet to the
host memory (1st TLP) because the driver told the RX buffer
to the simple NIC before receiving new packets. Afterward,
the simple NIC updates the RX descriptor (2nd TLP) and
generates an interrupt (3rd TLP). After the host consumes the
received packet, the driver sends the buffer back to the simple
NIC by updating the RX queue tail pointer (4th TLP), and the
simple NIC reads the RX descriptor (5th and 6th TLPs). In
this manner, the NetTLP enables implementing PCIe devices
in software with hardware root complexes. Moreover, the
interactions can be observed by the IP networking technique.

6.3 Physical Memory Introspection

The NetTLP provides flexible programmability for TLP inter-
actions between hardware and software. This characteristic
offers adaption of NetTLP to other use cases, for example,
memory introspection. Methods for monitoring and inject-
ing data on memory have been investigated for both physi-
cal [3,12,29,41,46] and virtual [17,49] environments. NetTLP
also provides accesses to host memory via PCIe, which is sim-
ilar to previous studies. However, the NetTLP adapter is a
channel to manipulate the host memory remotely; therefore,
researchers can implement their introspection and detection
methods on top of LibTLP and IP network stack without im-
plementing dedicated hardware or virtual machine monitors.

As the third use case, we demonstrate the possibility of
adopting NetTLP into remote memory introspection through
two naive applications. The first application is process-list
command similar to an example of LibVMI [27]. The process-
list collects process information on the Linux host equipped
with a NetTLP adapter. Figure 16a shows an example usage
of the process-list. When the process-list is executed, it finds
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(b) codedump to obtain the code area of a specified process.

Figure 16: Two example applications for physical memory introspection by NetTLP. Both applications are executed on the device
host and read the physical memory of the adapter host.

an address of task_struct representing the first process
from the specified System.map of the adapter host. Next, the
process-list starts to walk through task_struct structures of
the adapter host using dma_read().

Next, let us focus on a single process. codedump obtains a
binary of a running process from the adapter host. Figure 16b
shows an example usage of this command. The codedump
finds task_struct for the specified process ID by using the
same methods of the process-list and obtains mm_struct rep-
resenting the virtual memory of the process. The codedump
then converts process-specific addresses for the code area
into corresponding physical addresses by walking through the
page table. Lastly, the dumped code area by DMA reads from
LibTLP can be treated as a usual binary object file that can
even be reassembled by objdump command. In these man-
ners, researchers and developers can easily implement their
memory introspection methods on the NetTLP platform.

7 Related Work

Future Interconnect: Some next-generation interconnect
specifications are designed by extending the functionality of
PCIe. CCIX [13] and CXL [14] introduce cache coherency be-
tween processors and peripherals to their interconnects. CCIX
uses the PCIe data link layer and defines its transaction layer,
and CLX defines CLX extensions on the PCIe data link layer
and transaction layer. OpenCAPI [36] and Gen-Z [18] support
IEEE 802.3 Ethernet and the PCIe physical layer. These in-
terconnects require hardware extensions for both peripherals
and host chipsets. Although such next-generation intercon-
nects introduce new features, they are still packet-based data
communications. NetTLP delivers TLPs over Ethernet by ex-
ploiting the packet-based communications. Thus, we believe
that the NetTLP design can be applied to future interconnects
as long as they adopt the layering model and packet-based
communications.

Difference between NetTLP and RDMA: As with Net-
TLP, Remote DMA (RDMA) protocols also achieve DMA
from distant hosts over Ethernet and IP networks for high
speed interconnect. RoCEv2 encapsulates the Infiniband
header and payload with Ethernet, IP, and UDP headers [8].

iWARP uses Ethernet, IP, and TCP headers [38]. In contrast
to their purposes, NetTLP aims to provide the observability
of PCIe transactions; therefore, it adopts directly encapsu-
lating TLPs in IP and Ethernet. RDMA protocols need to
convert the PCIe protocol into RDMA protocol in RDMA
adapters. Thus, they lack observability of PCIe protocols that
we demonstrated through the use cases.

Device drivers for software PCIe devices: NetTLP has
made PCIe prototyping easier, but it has not contributed to
the productivity of device drivers. Developing device drivers
still requires certain effort. For improving the productivity
of device drivers in the NetTLP platform, there are two ap-
proaches: the first approach is to use frameworks that auto-
matically generate device drivers from templates related to
protocol specifications and device characteristics [42,43]. An-
other approach is to write device drivers in userspace as with
DPDK [20] while using some assists [19].

8 Conclusion

In this paper, we have proposed NetTLP that enables devel-
oping software PCIe devices that can interact with hardware
root complexes. The key technique to achieve the platform
is to separate the PCIe transaction layer into software and
then connect the software transaction layer and the hardware
data link layer by delivering TLPs over Ethernet and IP net-
works. Researchers and developers can prototype their own
PCIe devices in software and observe actual TLPs by the IP
networking techniques such as tcpdump. The use cases in
this paper showed the observation of the TLP-level behaviors
of the root complex and the product NICs and NVMe SSDs,
the 400 LoC software Ethernet NIC implementation interact-
ing with the hardware root complex, and physical memory
introspection. We believe that the high productivity and ob-
servability on the NetTLP platform demonstrated through the
use cases contribute to current and future PCIe development
on both research and industrial communities.
Acknowledgments: We would like to thank the NSDI re-
viewers and our shepherd Andrew Moore for their insightful
feedbacks. This work was supported by JSPS KAKENHI
Grant Number JP18K18043.

152    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



References

[1] NetTLP. https://haeena.dev/nettlp/.

[2] pcie-bench/pcie-model. https://github.com/

pcie-bench/pcie-model.

[3] The LeechCore Physical Memory Acquisition Library.
https://github.com/ufrisk/LeechCore.

[4] Verilator. https://www.veripool.org/wiki/

verilator.

[5] SD Express Cards with PCIe and NVMe Interfaces,
2018.

[6] Intel 82599 10 GbE Controller Datasheet: 3.1.3.2.1
Completion Timeout Period, March, 2016.

[7] PCI Express Base Specification: 2.6.1. Flow Control
Rules, November 10, 2010.

[8] Infiniband Trade Association. Infiniband trade asso-
ciation. RoCEv2. https://cw.infinibandta.org/

document/dl/7781.

[9] Fabrice Bellard. Qemu, a fast and portable dynamic
translator. In Proceedings of the Annual Conference
on USENIX Annual Technical Conference, ATEC ’05,
pages 41–41, Berkeley, CA, USA, 2005. USENIX As-
sociation.

[10] Brad Benton. CCIX, Gen-Z, OpenCAP: Overview
& comparison. https://www.openfabrics.org/

images/eventpresos/2017presentations/213_

CCIXGen-Z_BBenton.pdf, March 2017.

[11] Nathan Binkert, Bradford Beckmann, Gabriel Black,
Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, and et al. The gem5 simulator. SIGARCH
Comput. Archit. News, 39(2):1–7, August 2011.

[12] Brian D. Carrier and Joe Grand. A hardware-based
memory acquisition procedure for digital investigations.
Digit. Investig., 1(1):50–60, February 2004.

[13] CCIX Consortium. Cache Coherent Interconnect for
Accelerators. https://www.ccixconsortium.com.

[14] CXL Consortium. Compute Express Link. https:

//www.computeexpresslink.org.

[15] Scott Feldman. Rocker: switchdev
prototyping vehicle. http://wiki.

netfilter.org/pablo/netdev0.1/papers/

Rocker-switchdev-prototyping-vehicle.pdf.

[16] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael,
Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alka-
lay, Michael Haselman, Logan Adams, Mahdi Ghandi,
Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz,
Lisa Woods, Sitaram Lanka, Steven K. Reinhardt,
Adrian M. Caulfield, Eric S. Chung, and Doug Burger.
A configurable cloud-scale dnn processor for real-time
ai. In Proceedings of the 45th Annual International
Symposium on Computer Architecture, ISCA ’18, pages
1–14, Piscataway, NJ, USA, 2018. IEEE Press.

[17] Tal Garfinkel and Mendel Rosenblum. A virtual ma-
chine introspection based architecture for intrusion de-
tection. In In Proc. Network and Distributed Systems
Security Symposium, pages 191–206, 2003.

[18] Gen-Z Consortium. Gen-Z. https:

//genzconsortium.org/specifications/.

[19] Matthew P. Grosvenor. Uvnic: Rapid prototyping net-
work interface controller device drivers. SIGCOMM
Comput. Commun. Rev., 42(4):307–308, August 2012.

[20] Intel. Intel Data Plane Development Kit. http://www.
intel.com/go/dpdk.

[21] Intel. PCI Express High Performance Reference
Design. https://www.intel.com/content/

www/us/en/programmable/documentation/

nik1412473924913.html.

[22] Intel. Thunderbolt Technology Community. https:

//thunderbolttechnology.net.

[23] Jing Qu. GEM5: PciDevice.py. http://repo.gem5.

org/gem5/file/tip/src/dev/pci/PciDevice.py.

[24] Norman P. Jouppi et al. In-datacenter performance anal-
ysis of a tensor processing unit. In Proceedings of the
44th Annual International Symposium on Computer Ar-
chitecture, ISCA ’17, pages 1–12, New York, NY, USA,
2017. ACM.

[25] Kevin Lee, Vijay Rao, and William Christie
Arnold. Accelerating facebook’s infrastruc-
ture with application-specific hardware. https:

//code.fb.com/data-center-engineering/

accelerating-infrastructure/.

[26] Shengwen Liang, Ying Wang, Youyou Lu, Zhe Yang,
Huawei Li, and Xiaowei Li. Cognitive SSD: A deep
learning engine for in-storage data retrieval. In 2019
USENIX Annual Technical Conference (USENIX ATC
19), pages 395–410, Renton, WA, July 2019. USENIX
Association.

[27] libvmi. Virtual Machine Introspection. http://

libvmi.com/.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    153



[28] Linux. AF_XDP: optimized for high performance
packet processing. https://www.kernel.org/doc/

html/latest/networking/af_xdp.html.

[29] A. Theodore Markettos, Colin Rothwell, Brett F. Gut-
stein, Allison Pearce, Peter G. Neumann, Simon W.
Moore, and Robert N. M. Watson. Thunderclap: Ex-
ploring vulnerabilities in operating system IOMMU pro-
tection via DMA from untrustworthy peripherals. In
26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA,
February 24-27, 2019, 2019.

[30] Mellanox. BlueField SoC. https://www.mellanox.

com/products/bluefield-overview/.

[31] Mentor Graphics. ModelSim. https:

//www.mentorg.co.jp/products/fpga/

verification-simulation/modelsim/.

[32] Micron. User space nvme driver. https://github.

com/MicronSSD/unvme.

[33] Netronome. Nfp-4000 flow processor. https://www.

netronome.com/m/documents/PB_NFP-4000.pdf.

[34] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio López-Buedo, and Andrew W.
Moore. Understanding pcie performance for end host
networking. In Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communica-
tion, SIGCOMM ’18, pages 327–341, New York, NY,
USA, 2018. ACM.

[35] NVM Express. scalable, efficient, and industry standard.
https://nvmexpress.org.

[36] OpenCAPI Consortium. OpenCAPI 4.0 transaction
layer specification. https://opencapi.org.

[37] OpenChannelSSD. The LightNVM qemu imple-
mentation, based on NVMe. https://github.com/

OpenChannelSSD/qemu-nvme.

[38] Renato J. Recio, Paul R. Culley, Dave Garcia, Bernard
Metzler, and Jeff Hilland. A Remote Direct Memory Ac-
cess Protocol Specification. RFC 5040, October 2007.

[39] Luigi Rizzo. Netmap: A novel framework for fast packet
i/o. In Proceedings of the 2012 USENIX Conference on
Annual Technical Conference, USENIX ATC’12, pages
9–9, Berkeley, CA, USA, 2012. USENIX Association.

[40] Zhenyuan Ruan, Tong He, and Jason Cong. INSIDER:
Designing in-storage computing system for emerging
high-performance drive. In 2019 USENIX Annual Tech-
nical Conference (USENIX ATC 19), pages 379–394,
Renton, WA, July 2019. USENIX Association.

[41] Joanna Rutkowska. Beyond the cpu: Defeating hard-
ware based ram acquisition. Proceedings of BlackHat
DC, 2007.

[42] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, and Gernot
Heiser. Dingo: Taming device drivers. In Proceed-
ings of the 4th ACM European Conference on Computer
Systems, EuroSys ’09, page 275–288, New York, NY,
USA, 2009. Association for Computing Machinery.

[43] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, Etienne
Le Sueur, and Gernot Heiser. Automatic device driver
synthesis with termite. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Princi-
ples, SOSP ’09, page 73–86, New York, NY, USA, 2009.
Association for Computing Machinery.

[44] Sudharsan Seshadri, Mark Gahagan, Sundaram
Bhaskaran, Trevor Bunker, Arup De, Yanqin Jin,
Yang Liu, and Steven Swanson. Willow: A user-
programmable ssd. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’14, pages 67–80, Berkeley, CA,
USA, 2014. USENIX Association.

[45] Yong Ho Song, Sanghyuk Jung, Sang-Won Lee, and Jin-
Soo Kim. Cosmos openssd: A pcie-based open source
ssd platform. Proc. Flash Memory Summit, 2014.

[46] Chad Spensky, Hongyi Hu, and Kevin Leach. Lo-phi:
Low-observable physical host instrumentation for mal-
ware analysis. In Proceedings of the Network and Dis-
tributed System Security Symposium, 2016.

[47] J. Suzuki, Y. Hidaka, J. Higuchi, T. Yoshikawa, and
A. Iwata. Expressether - ethernet-based virtualization
technology for reconfigurable hardware platform. In
14th IEEE Symposium on High-Performance Intercon-
nects (HOTI’06), pages 45–51, Aug 2006.

[48] Jun Suzuki, Teruyuki Baba, Yoichi Hidaka, Ju-
nichi Higuchi, Nobuharu Kami, Satoshi Uchida,
Masahiko Takahashi, Tomoyoshi Sugawara, and Takashi
Yoshikawa. Adaptive memory system over ethernet. In
Proceedings of the 2Nd USENIX Conference on Hot Top-
ics in Storage and File Systems, HotStorage’10, pages
10–10, Berkeley, CA, USA, 2010. USENIX Association.

[49] Gary Wang, Zachary J. Estrada, Cuong Pham, Zbig-
niew Kalbarczyk, and Ravishankar K. Iyer. Hyper-
visor introspection: A technique for evading passive
virtual machine monitoring. In Proceedings of the
9th USENIX Conference on Offensive Technologies,
WOOT’15, pages 12–12, Berkeley, CA, USA, 2015.
USENIX Association.

154    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



[50] P. Willmann, Hyong-youb Kim, S. Rixner, and V. S. Pai.
An efficient programmable 10 gigabit ethernet network
interface card. In 11th International Symposium on
High-Performance Computer Architecture, pages 96–
107, Feb 2005.

[51] Xilinx. Xilinx kintex-7 fpga kc705 evalua-
tion kit. https://japan.xilinx.com/products/

boards-and-kits/ek-k7-kc705-g.html.

[52] Noa Zilberman, Yury Audzevich, Georgina Kalogeridou,
Neelakandan Manihatty-Bojan, Jingyun Zhang, and An-
drew Moore. Netfpga: Rapid prototyping of networking
devices in open source. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data
Communication, SIGCOMM ’15, pages 363–364, New
York, NY, USA, 2015. ACM.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    155






