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Abstract

Network management is becoming increasingly automated,

and automation depends on detailed, explicit representations

of data about the state of a network and about an operator’s

intent for its networks. In particular, we must explicitly repre-

sent the desired and actual topology of a network. Almost all

other network-management data either derives from its topol-

ogy, constrains how to use a topology, or associates resources

(e.g., addresses) with specific places in a topology.

MALT, a Multi-Abstraction-Layer Topology representa-

tion, supports virtually all network management phases:

design, deployment, configuration, operation, measurement,

and analysis. MALT provides interoperability across our

network-management software, and its support for abstrac-

tion allows us to explicitly tie low-level network elements to

high-level design intent. MALT supports a declarative style,

simplifying what-if analysis and testbed support.

We also describe the software base that supports effi-

cient use of MALT, as well as numerous, sometimes painful

lessons we have learned about curating the taxonomy for a

comprehensive, and evolving, representation for topology.

1 Introduction

As our networks get bigger and more complex, we must au-

tomate all phases of network management. Automation de-

pends on precise and accurate representations of the desired

and actual network. While network management requires

many categories of data, the most central is a representa-

tion of desired or actual network topology. Almost all other

network-management data either derives from topology, or

provides policy for how we want to create and use the topol-

ogy, or associates resources (such as IP addresses or hard-

ware inventory) with specific places in a topology.

At Google, we have learned the value of driving our

network management processes, from capacity planning

through network design, deployment, configuration, opera-

tion, and measurement, using a common standard represen-

tation of topology – a “model.” Such a representation needs

to address multiple problems, including:

• Some management processes, e.g., capacity planning,

need to operate on abstractions, such as the amount of

future capacity between two cities (before we know

how that capacity is implemented). Other processes, e.g.,

configuration for routers, or fault localization, must op-

erate on low-level details (fibers, switches, interfaces,

SDN controllers, racks, connectors, etc.). Still other pro-

cesses, e.g., risk analysis, must reason about dependen-

cies between abstract and physical concepts. Therefore,

we must represent multiple levels of abstraction, and

the relationships between them.

• In our experience, it is impossible for an unchanging

schema to successfully represent a constantly-changing

network, especially with frequent technical innovations.

Therefore, the representation must support extensibility

and evolution as first-class features.

• We must support constant change to our network, with

many concurrent changes happening at once. We must

also support “what-if” analyses of options for future

topologies. While humans often prefer an imperative

style (“add this”, “move that”, “change that”), we have

found that using versioned sequences of declarative

models removes a lot of complexity created by imper-

ative operations. For example, with a declarative model

we can validate the consistency of an entire network be-

fore committing a change.

• Different parts of our network follow different design

and operational styles, managed by different teams. By

sharding our models on carefully-chosen boundaries,

we enable these teams to use their preferred styles with-

out excessive interference. Sharding also improves con-

currency. At the same time, these shards do overlap, and

we prefer, when possible, to use tools that work across

our entire network, so a uniform representation en-

sures interoperability.

This paper describes MALT (for Multi-Abstraction-Layer

Topology), the representation we have developed for network
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topology, the software and processes we have built around

it, and the lessons we have learned. MALT’s primary goal is

to provide a single representation suitable for almost all use-

cases related to network topology. Our path from “we need

a uniform topology representation; how hard could that be?”

to our current ecosystem has exposed that creating a coherent

set of design decisions, and getting this to work at scale, was

much harder than we expected1.

The main contributions of this paper vs. prior work are to

explain the value of a multi-abstraction-layer representation

that supports the full lifecycle of a network, and to expose

some pitfalls that await designers of similar representations.

2 Uses for MALT

We model our global WAN [10], cloud-scale datacenter [20],

and office-campus networks using MALT, including both

Software-Defined Network (SDN) and traditional network

designs. Over 100 teams in Google and hundreds of engi-

neers and operators use MALT regularly; we now require

most systems working with network topology to use MALT.

Our uses have expanded over the past five years, and con-

tinue to expand to new phases of network lifecycles, and to

new network types. A common theme across these uses is

that they enable automation of diverse and interacting man-

agement processes, through a uniform representation of the

intent for, and structure of, our current and future network.

Broadly, our primary uses for MALT have been in three

areas: operating our user-facing WAN; WAN capacity plan-

ning and design; and datacenter fabric design and operation.

Operational management of user-facing WAN: We use

MALT when configuring network elements, managing the

control plane of an in-service network, and monitoring the

network for failures and other behaviors. We represent the

network’s “as-built” state in a MALT model in which all

entities related to device management, including routers, in-

terfaces, links, Points of Presence (POPs), etc, are visible

to management workflows, which only operate by updat-

ing this model, and never by directly updating devices. An

API supports specific, well-defined update operations on this

model; all updates are validated before being used to gener-

ate the corresponding device configurations. Operations in-

clude adding devices or links, or changing device (entity) at-

tributes to control monitoring and alerting.

WAN capacity planning and design: We must explore

many options for evolving network capacity to meet pre-

dicted demands. MALT’s support for multiple layers of ab-

straction, including layer-1 elements (e.g., fiber cables and

transponders) and layer-3 elements (routers, line cards, etc.),

allows simulation of each option against specific failure mod-

els, so that we can jointly optimize failure resilience and net-

1While many enterprise networks are smaller than Google’s, we believe

that MALT’s approach would also be beneficial at much smaller scales.

work cost.

Consider an example where our demand forecast suggests

adding capacity between two POPs. We construct candidate

MALT models for each possible option for long-haul fiber

spans, optical line system elements, and available router ports

in those POPs. Then we compare options for incremental

cost, lead times for hardware or fibers, and availability. We

commit to one option, which becomes the planned MALT

model, used to generate a detailed design and bill of materi-

als which is consumed by deployment teams.

Topology design for datacenter fabrics: Web-scale dat-

acenter fabrics are far too large for us to directly manage

each individual device. Our fabrics are structured as abstract

blocks of switches [20]. We use MALT to describe the fab-

ric in terms of these abstract blocks, their sizes, and policies

governing how they should be interconnected. This abstrac-

tion makes it possible to reason about the topology. Once the

complete high-level design is determined, the abstract topol-

ogy is transformed mechanically into a fully concretized fab-

ric model, also represented in MALT, from which device con-

figurations and other management artifacts can be generated.

We maintain both the abstract and concrete representations

in MALT, to enable correlation between a given device and

the abstract entity that generated it.

While we have many uses for MALT, our network manage-

ment processes often use data that is not about topology, and

for which we use other abstract or concrete representations;

§ 8 discusses what we exclude from MALT.

2.1 Motivations for MALT

The use cases above illustrate three motivations for MALT:

• Support for the full lifecycle of a network: As de-

scribed above, we use MALT models for capacity plan-

ning, reliability analysis, high-level and detailed design,

deployment planning and auditing, and as one kind of in-

put to the generation of device and SDN-controller con-

figuration. MALT also supports our monitoring, band-

width management, and some debugging operations. We

regularly find new uses, often without having to make

major schema changes.

• Uniformity: Prior to adopting MALT, we had many sys-

tems that maintained representations of network topol-

ogy for their own uses. These systems often have to

exchange topology data. Without a single, uniform rep-

resentation, this leads not only to O(N2) translations,

but also the potential for data loss or ambiguity, both

of which make real automation nearly impossible. Uni-

formity also allows hundreds of software engineers to

write interoperable systems without massive coordina-

tion overheads (which also tend to grow as N2).

• Multiple levels of abstraction: Many design, operation,

repair, and analysis processes require a clear understand-

ing of the relationships between high-level design intent

404    17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



and low-level realizations. For example, when we ana-

lyze a WAN plan to understand whether it will meet its

availability SLO [1], we need to know the physical loca-

tions of the underlying fibers – e.g., whether two fibers

run across the same bridge or under the same cornfield.

MALT allows us to explicitly represent these abstrac-

tion relationships (see §3.3), which allows software to

operate on data, rather than relying on inference.

2.2 Support for the entire network lifecycle

We present some illustrations of how we could use MALT

models for various points in the lifecycle of our networks.

Consider a WAN with 10gbps capacity between London

and Paris, which want to increase to 20gbps. Such increments

often take months, so we start by creating a model 1© (see

Fig. 1) of our WAN for (say) 6 months from now, with this

capacity set to 20gbps. We then look for available subma-

rine and terrestrial cable capacity that collectively provides

an additional 10gbps between the two cities. There might be

several possible cable paths, so we can create “what-if” 2©

models for each option, and then analyze each option with

respect to costs, lead-times, and historical failure probabili-

ties, before committing to a “plan of record” (POR) model

3© for the WAN connectivity.

Figure 1: Multiple MALT models for WAN planning

Then we must choose endpoint equipment (routers, opti-

cal line systems, etc.) and either ensure we have enough free

ports on existing equipment, or order new systems; again,

we often explore multiple options (different vendors, differ-

ent router configurations, etc.) before choosing a final POR

model 4© that covers both WAN links and terminating equip-

ment. (This also includes ensuring that routers can physically

fit into available racks, and that we have enough power and

cooling.)

Figure 2: Multiple MALT models for a capacity expansion

Now consider a datacenter capacity expansion (see Fig. 2).

Because we expand live networks [23], we must split up the

physical changes into multiple steps, to maintain capacity

headroom – e.g., an 8-step procedure should reduce capac-

ity by at most 12.5% per step. For each step, we generate an

intermediate model 5©, which we subject to an an automated

“drain-impact analysis” just before executing the step. This

analysis uses two additional models: the current link utiliza-

tions 6© to estimate near-term future demands, and a model

representing failed links 7© to account for their impact on

available capacity.2

Once a step is ready, we trigger the human operations to

carry it out. Humans are fallible, and so is hardware, so be-

fore “un-draining” the new links, we audit the work, via both

automated and manual checks. In some cases, we might de-

cide that an error (e.g., using the wrong patch-panel port) is

harmless, but to avoid further confusion, we update a model

8© of the “as-built” network, so that future changes will not

conflict with reality.

After the new hardware is deployed, we must update router

configurations. Rather than having humans do that, we auto-

generate all such “config” from MALT models and other

meta-information [12]. We also use these models to auto-

generate configurations for our SDN control plane.

While many of the processes in Figs. 1 and 2 operate on

the entire graph of a WAN or datacenter network, others use a

query API (§ 6). For example, the wire-list generator (Fig. 2)

can query to extract just a set of switch ports and their loca-

tions, while ignoring most of a model.

Automation: We asserted a goal of ubiquitous automation.

In fact, we have not yet automated every step shown in Fig. 1,

2In practice, we merge 6© and 7© into a single input, also critical to our

Bandwidth Enforcer system for online WAN-bandwidth allocation [13].
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but most of Fig. 2 now uses MALT-based automation. Full

automation requires disciplined, hard work; MALT’s goal is

to enable that work, not to make it happen by magic.

2.3 Antecedents to MALT

Our efforts to model network topology started with various

independently-developed, non-interoperable representations

– not through a conscious decision, but because each of mul-

tiple teams realized they needed topology modeling. E.g., we

had one way to represent datacenter and B4 WAN [10] net-

work designs (Fig. 2, 5©), and an entirely different representa-

tion, to support bandwidth allocation [13], for link status and

utilization (Fig. 2, 6©+ 7©); the necessary format conversion

was hard to maintain. Other teams maintained database-style

records for each WAN router, but resorted to spreadsheets

or diagrams to represent WAN topology, without machine-

readable abstractions tying capacity intent (Fig. 1, 1©) to spe-

cific links (Fig. 1, 4©).

The lack of abstraction and interoperability between these

formats created significant complexity for our operations and

software. While MALT has not entirely eliminated that com-

plexity, it gives us a clear path.

3 The MALT representation

We chose to use an “entity-relationship model” representa-

tion for MALT. (In § 5.3 we explain why we chose not

to expose a relational database). In an entity-relationship

model, entities represent “things,” which have have “kinds”

(types), names, and attributes, Entities are connected via re-

lationships, which (in MALT) have kinds, but neither names

nor attributes. MALT uses a somewhat simplified form of the

classic entity-relationship model [4].

Our current schema has O(250) entity-kinds, including

(among many other things) data-plane elements, such as

packet switches, switch ports, links between ports, etc.;

control-plane elements, such as SDN controller applica-

tions, switch-stack “control points” (local control planes),

machines for SDN controllers, etc. “Sheet-metal-plane” el-

ements, such as racks, chassis, and line-cards. Designing, cu-

rating, and evolving this taxonomy has been challenging; we

discuss our experiences in § 9.

We have a set of about 20 relationship-kinds, including

“contains” (e.g., a line card contains a packet-switch chip),

“controls” (e.g., an SDN controller application controls a

switch’s local control plane), and “originates” (e.g., a link

originates at one port, and terminates at another).

By convention, we name entity-kinds such as

EK_PACKET_SWITCH and EK_RACK, and relationship-kinds

such as RK_CONTAINS and RK_ORIGINATES.

For each entity-kind, we define a set of attributes. Some

entity-kinds have lots of attributes, some have only a few.

Typical attributes include:

• the “state” of an entity: is it planned? deployed? con-

figured? operational? faulty? under repair? etc. (We de-

fined a uniform “state machine,” although adopting this

standard ubiquitously has been challenging.)

• the index of an entity within its parent (e.g., “this is

linecard #3 within the containing chassis”).

• IP addresses and VLAN IDs assigned to interfaces – use-

ful when generating device configuration.

• the maximum capacity (bits per second) for elements

such as ports and links – useful for capacity-planning

and traffic engineering.

but attributes can be rather arcane, such as one meaning “dur-

ing the transition from IPv4 to IPv6, this network requires

hosts, rather than switches, to perform 6to4 decapsulation.”

A complete MALT “model” consists of a set of entities

and a set of relationships between those entities. A model

also includes some metadata, such as the provenance of the

model (what software created it, when, and from what inputs)

and its profile(s) (§3.5).

Fig. 3 shows a trivial example of a MALT entity-

relationship (E-R) graph, depicting a connection between

two routers. Each router contains one L3 interface and an L2

“port” for that interface. The interfaces are connected by a

pair of unidirectional L3 “logical packet links” that each tra-

verses, in this case, a single L2 “physical packet link.” (Link

entities in MALT are always unidirectional, which means

that they usually come in pairs.)

Figure 3: Trivial MALT entity-relationship graph

Note that the E-R graph is not isomorphic to the network

graph – links in the network are represented as nodes (enti-

ties) in MALT’s E-R graph.

Appendix A provides a more detailed example, showing

how we model a datacenter network.

3.1 Entity-IDs

MALT entities have entity-IDs composed of an entity-

kind and an entity-name. E.g., in Fig. 3, one router

has an entity-ID of EK_DEVICE/X and one link’s ID is

EK_PHYSICAL_PACKET_LINK/X:1-Y:1. Entity-IDs must be

globally unique, with respect to an implicit namespace that
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(by default) covers all of Google, and within a single “snap-

shot” view of our modeling data (we will clarify this concept

in § 4).

While we typically use human-sensible names for entities,

this is not necessary for automated systems (although it sim-

plifies debugging!). We have learned (from rather bitter expe-

rience) to ruthlessly ban any code that parses an entity-name

to extract any meaning; instead, the attributes defined for an

entity-kind should encode anything that could be extracted

from a name. (§11.4 discusses why using names in entity-

IDs might not have been the best decision.)

3.2 Allowed relationships

The complete MALT schema consists of a set of entity-kinds

(with attributes), a set of relationship-kinds, and a set of al-

lowed relationships. For example, we allow a packet-switch

to contain a port, but not vice-versa. These rules constrain

producers, but this is good, because it means that model-

consuming code need not handle arbitrary relationships.

Relationships can be directed or bidirectional, and 1:1,

1:many, many:1, or (rarely) many:many. We currently allow

about 700 relationships between pairs of entity-kinds; this is

a small subset of the millions that could be constructed, but

we only allow those that support sensible abstractions (a sim-

ple form of static validation).

3.3 Multiple levels of abstraction

While MALT’s primitive entity-kinds, including those listed

above but also others, are sufficient to describe a wide vari-

ety of networks, one of the motivations for MALT was that

it should allow us to represent multiple levels of abstraction

and the relationships between them. Some use cases, for ex-

ample, involve refining highly-abstracted designs into more

concrete ones, but we also may need to reverse an abstraction,

and ask (for example) “what abstract thing does this concrete

thing belong to?”.

We typically create abstraction via hierarchical groupings,

such as entity-kinds for:

• logical switches: sets of primitive switches, intercon-

nected (e.g., as a “superblock” in a Jupiter [20] network)

so that they provide the illusion of one larger switch with

more ports than any single switch.

• trunk links: parallel sets of links that provide more

bandwidth than a single physical link.

• control domains: sets of elements controlled by one

replica-group of SDN controllers.

• Geographic elements: a hierarchy of, e.g., cities, build-

ings, and spaces within buildings.

• Dependencies: sets of entities that could fail together

(due to SPOFs, or to sharing a power source) or that

must be kept diverse, to avoid accidental SPOFs.

For a WAN, the layering can be quite deep, starting with

highly-abstracted city-to-city links, through several levels of

trunking to individual L2 links, and through four or five lev-

els of optical-transport-network hierarchy [22, fig. 12].

We also have relationship-kinds that help with abstraction:

• RK_CONTAINS for hierarchical containment.

• RK_AGGREGATES to indicate, for example, which single-

ton links are aggregated into a trunk link, or which

packet switches are aggregated into a logical switch.

• RK_TRAVERSES: e.g., an end-to-end MAC (L2) link is

constructed from the ordered traversal of a series of L1

links connected by splices and patch panels.

Figure 4: Layered abstrac-

tions in WAN planning

Fig. 4 shows how we

can use multiple layers in

WAN planning. The top layer

shows two WAN tunnels (as

in B4 [10]) between POPs B

and C, including one via A;

the middle layer shows how

these tunnels map onto L3

router adjacencies; the bot-

tom layer shows how the L1

fiber path for the B −C L3

adjacency runs through POP

A. This means that the A−B

fiber path has become a sin-

gle point of failure (SPOF) Because MALT includes all of

these abstractions (abstract flows, IP adjacencies, fiber paths)

in the same model, with explicit relationships between them,

we can easily map this SPOF back to the tunnels it affects.

3.4 Machine- and human-readable formats

Since MALT is designed to support automation, we normally

represent models in a binary format compatible with RPC

interfaces. However, developers occasionally need to view

(and less often, edit) models or individual components, so

we can convert between binary and a textual format. We also

have a “shorthand” format for concise text-based representa-

tion; this is especially useful for creating test cases.

3.5 Profiles

While we have just one “global” MALT schema, which pro-

vides uniformity across all of our networks, we have found it

useful to introduce profiles, which restrict how the schema is

used. We use profiles for purposes including:

• To specialize the schema for certain network types. For

example, the profile for a data-center network might as-

sert that the uplinks from aggregation switches are al-

ways connected to the downlinks from spine switches,

while the profile for an office-campus network might as-

sert that there is always a firewall between the public

Internet and the campus network.

• To support evolution, via profile versioning. As we dis-

cuss in §10, we are continually evolving both the global
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schema and our profiles, which sometimes means chang-

ing the way we represent a concept; we need to en-

sure that model-producers and model-consumers agree

on which representation is in use.

• To decouple the release cycles of complex graphs of

software systems, so that model producers can move for-

ward without forcing all model consumers to migrate at

the same time.

A profile is, in effect, a contract between a producer and a

consumer. We defined a machine-readable profile specifica-

tion, which allows us to mechanically check that a model ac-

tually meets one more or profiles (as asserted, by the pro-

ducer, in the model’s metadata).

A profile is identified by its name (e.g., “Jupiter”), a major

version number, and a minor version number. If we make an

incompatible change, such as inserting a new structural layer

that turns a one-hop relationship path into a two-hop path, we

need to increment the major version.

If two profile-IDs differ only in their minor-version num-

bers, this implies backward-compatibility: a model with

the higher minor-version can be read safely by a con-

sumer already tested against the lower version. The converse

does not apply; models with an out-of-date minor version

might be missing information that recent consumers expect.

(§10 discusses how hard it has been to define “backwards-

compatible” in the face of certain coding practices.)

Machine-checkable profiles can express constraints nar-

rower than the entire schema; for example, we can require

that certain relationships are present (or not present), or that

certain attributes have values within a constrained range.

However, our current profile-specification language is not ex-

pressive enough to represent certain global policies, such as

“no IP address may be assigned to two different interfaces”

— we validate that using other means.

4 Division into multiple shards

One might imagine a single model for Google’s entire collec-

tion of networks, but we actually divide this data into thou-

sands of MALT model “shards,” for many reasons:

• Separation of ownership: Many teams contribute to

the design and operation of our networks; things are

much simpler when we shard models, so that each shard

has a single owner. Such sharding clarifies responsi-

bility, and can avoid the need for complex consistency-

maintenance protocols.

• Distinct profiles: Different parts of our overall network

conform to different profiles (§3.5); sharding allows us

to cleanly associate a profile with the data that it covers.

• Profile evolution: We cannot change all software instan-

taneously when introducing a new profile version; in-

stead, we support old versions for a phase-out period.

This means that we must represent the same informa-

tion using multiple profiles, stored as per-version shards.

(§10 covers evolution in detail.)

• Performance: A single model of our entire network

would be too large to fit in the memory of a single server.

Also, while many applications extract small sub-models

from storage via query RPCs, some do need to retrieve

larger subsets; using a “Get” RPC to retrieve one or a

few shards is a lot more efficient. (However, if we use

too many shards, that leads to per-shard overhead; we

try to strike a good balance.)

• Protection and fault domains: All software has bugs,

and we must defend against security breaches; sharding

allows us to limit the damage from a faulty program, and

it allows us to set ACLs that restrict users to the shards

they actually need. (For example, someone operating on

a edge router in Paris does not need access to a datacen-

ter switch in Rome.)

• Lifecycle stages: We use several sets of shards to rep-

resent distinct points in the lifecycle of a network: e.g.,

planning, deployment, and operation.

• Alternative universes: We need to represent not just

a single timeline, but alternative future designs for our

networks – e.g., to analyze multiple options for purchas-

ing WAN connectivity or multiple orderings for capac-

ity augments. We especially need to create isolated uni-

verses for testing software and operational procedures.

Model sharding requires some support from the query

mechanism; §6.2 describes our “multi-shard query” (MSQ)

API. It also sometimes requires the same entity to appear in

multiple shards (so that no shard has dangling relationships);

to avoid violating our uniqueness rule for entity-IDs, we add

“linkage” metadata to these repeated entities. Linkage allows

us to unambiguously resolve these repeated entities.

Note that, as discussed in §5, each update to a shard creates

a new “instance” or version. This is another dimension in

which we have many shards.

Given our heavy use of sharding and instances, we need a

way to specify a version-consistent snapshot that spans mul-

tiple shards; §5.2 describes the “model set” abstraction that

supports this.

5 MALT storage

While one might consider treating MALT as a database

schema, we instead choose to think of a set of MALT enti-

ties and relationships (i.e., a shard) as a named value. One

can think of a MALT shard as a file; in fact, we can store a

shard as a file, either in binary or in a human-readable format.

We prefer to store shards in a purpose-built repository,

MALTshop, that provides several important features:

• It is logically centralized, with a single UNIX-like

namespace for shards, so we know where to look for

any shard (past, present, or future). MALTshop main-

tains statistics and logs, making it easy to discover who

is using the shards and what features are in use.
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• It has a distributed, highly-available implementation.

• It provides a basic Get/Put/Patch API, but most model-

reading code employs its Query API (see §6).

• Shards are versioned; each update (via a whole-shard

Put or diff-based Patch API) creates a new, immutable

instance, which is permanently bound to a sequence

number (but can be mutably bound to a named label).

Small updates are efficiently implemented via copy-on-

write, so the cost of creating and maintaining many ver-

sions of a large shard can be relatively low.

• The repository supports ACLs on shards, which pro-

vides the basis for security mechanisms. We have not

found a need to bear the burden of ACLs on individual

entities; those could be layered above MALTshop in an

application-specific service, if necessary.

5.1 MALTshop implementation details

MALTshop stores its state in Spanner, a reliable, consistent,

distributed SQL database [6], which handles many of the

harder problems. The SQL schema has tables for shards, in-

stances, entities, and relationships; an entity’s attributes are

stored as a SQL blob. Updates to the MALT schema do not

require changes to the SQL schema.

While our initial SQL schema supported a simple imple-

mentation of MALTshop, as usage increased we realized that

the schema did not always support good performance, and

read-modify-write operations made it tricky to avoid corrup-

tion when a server failed. We are now migrating to a new

SQL schema that should improve performance and data in-

tegrity; the details are too complex to describe in this paper.

Because the SQL schema is entirely hidden from all applica-

tions, this migration is transparent to all users.

MALTshop uses several kinds of cache, including a client-

side cache library that currently supports only “Get” oper-

ations, but ultimately should reduce many RPC round-trips,

and a server-side cache that greatly reduces the cost of com-

puting diffs between two recent instances of a shard (an op-

eration some of our applications use heavily).

MALTshop, due to Spanner’s scalability, itself scales well.

We currently store thousands of shards, each with many ver-

sions; the largest shards have millions of entities and millions

of relationships. Occasionally MALTshop serves thousands

of queries per second, but usually the load is lower.

5.2 Model sets

Because we shard our models extensively, and each shard

may have many instances (versions), operations that span

multiple shards need a way to specify a consistent snapshot,

which we support with a “model set" abstraction. When a

model-generator creates a set of shard instances, it also ob-

tains a new “model set ID" (MSID), and uses a metadata ser-

vice to register a binding between the MSID, some attributes,

and its constituent shard instances. We therefore usually pass

an MSID between systems, rather than lists of instance IDs.

The metadata service allows applications to find the latest

MSID, or to look up an MSID based on various attributes.

5.3 Discussion: dataflow rather than database

Given our ability to efficiently store (and thus share) im-

mutable versions of MALT shards, it is convenient to think of

a single shard instance as a value – a snapshot of a database,

rather than a mutable instance of a database. While these val-

ues can be quite large, and in many cases an application is

only interested in a small subset of a shard, this approach

allows us to construct many network management pipelines

as dataflow graphs, where streams of MALT shard instances

flow between stateless functional operators.

We use these dataflow graphs primarily for planning, de-

sign, and analysis applications – systems that operate the ex-

isting network do use MALT imperatively (see §11.2). Also,

once the planning process must trigger actions with expen-

sive effects (e.g., ordering or installing hardware), we must

use imperative operations – isolated to separate shards.

Why not just represent a network topology as a relational

database, as is done in many other systems (for example,

COOLAID [5])? Some of our previous systems were indeed

implemented as RDBMSs, with SQL queries. In our experi-

ence, an RDBMS worked nicely for simple use cases, but:

• an RDBMS by itself does not provide clear patterns

for new types of abstractions or their graph-type rela-

tionships (aggregation, hierarchy, etc.). When we used

an RDBMS, we effectively imposed an implicit entity-

relationship schema; why not just make that explicit?

• a first-class abstraction of individual shards makes it

much simpler to express per-shard profiles, versioning,

labels, access controls, and retention policies. It also

make it easier to reason about how these shards flow

from one system to another – for what-if analysis and

isolated software testing, or to parallelize datacenter-

expansion projects (as in Fig. 2).

• layering our MALT schema over an SQL schema makes

it simpler to do “soft deprecation” of entities, relation-

ships, and attributes, without having to impose those

changes on older shard instances or their users.

• layering MALT over SQL makes it easy for us to change

the SQL schema, for better performance, without requir-

ing any client changes.

• we can also provide the MALTshop API (albeit with lim-

ited performance) on top of a simple file system, which

is useful for disaster-recovery scenarios when Spanner

might be down or unreachable.

None of these are impossible in SQL (manifestly, since

MALTshop expresses all of these with an underlying SQL

schema), but by hiding the SQL schema from clients via

MALT’s abstractions, we make our clients far less brittle.

Overall, we have found the dataflow approach far easier to

reason about, and in some cases, more efficient. In a few
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real-time applications (e.g., SDN controllers), we do express

a network’s topology in a private, purpose-built, in-memory

database (with update-in-place).

Other graph-processing systems likewise have avoided

RDBMSs, for reasons such as articulated by Hunger et al. [9]

and for Pregel [16].

6 Querying MALT models

While our model-producing software tends to generate an en-

tire shard in one operation, our model-consuming software

generally does not operate on all entities in a shard, but rather

only on small subsets. In this respect, our software differs

from traditional graph-processing algorithms [16]. (There

are exceptions: systems for drain-impact analysis, or WAN

cost optimization, do look at entire networks.)

Model consumers extract subsets that meet some predi-

cate via a query language, which walks an entity-relationship

graph to extract a chosen subset model. Typical queries

might be of the form “find all of the top-of-rack switches

in datacenter X”, “find the switches managed by SDN con-

troller Y”, “find all the cable strands that share connector C”,

or “given port P1 on switch S1, find the corresponding port

P2 on switch S2 such that P1 is connected to P2.”

Designing a query language for MALT has been surpris-

ingly hard; we are on our second language (and we also toyed

with the idea of using a Datalog-style language). Our first

query language was sufficient, but it was often hard for users

to understand how to express a correct and efficient query.

Our second language is easier to use, because it operates on

paths through the E-R graph, rather than sets of entities; paths

are the more natural abstraction.

Sometimes it is difficult or impossible to use a single query

to return exactly the right subset; this leads to a pattern

where the application issues a remote query to retrieve a

larger-than-desired sub-model, and then applies a local (in-

memory) query to further refine the results. In some cases,

it is simpler, or even necessary, to post-process the query re-

sults using a traditional programming language.

Figure 5: Query layering

Sometimes people ask

“if that’s so hard, why not

just use SQL?” MALTshop

effectively compiles MALT

queries to SQL queries, so

on the one hand: sure! but

on the other hand, these SQL

queries are substantially

more complex, and also

deeply depend on the under-

lying SQL schema, which

we do not want to expose

to applications (because we

have already had to revise it several times.) We also want to

use the same language for both MALTshop and efficiently

querying in-memory shards, as shown in Fig. 5; SQL would

not support that.

In our current language, a query is expressed as a sequence

of commands. Each command operates on a “frontier” of ac-

tive “nodes,” which (approximately) are references to enti-

ties. Query commands can move the nodes around the input

model3 along relationship edges. As each active node moves

around the input model, the query execution engine keeps

track of the path it took.

The output is one or more result models, optionally anno-

tated with labels, which includes all active nodes at the end

of the query, plus the full path they took (relationships and

stepped-over entities) to get to their final position. Some com-

mands remove (“prune”) active nodes; these also generally

remove, from the result, earlier entities that the node previ-

ously visited, if not also visited by another path.

Queries always start with a find command, which looks

at all entities in the input model, subject to constraints such

as an entity-kind and/or some attribute values; e.g.:

find EK_PACKET_SWITCH/tor17

to start the query at a packet switch named “tor17”, or

find EK_VLAN { id: 13 }

to start the query at all VLANs with a VLAN-ID of 13.

Queries often involve following relationships, e.g.:

find EK_PACKET_SWITCH/tor17

until RK_CONTAINS EK_PORT

to return all of the ports contained in that switch.

The language includes many other commands; we lack

space to describe the full language.

Query implementation: Queries traverse relationships

in a model, marking paths to keep or prune. For complex

queries, this may require many iterations through the model.

Queries can be executed locally in-memory, or remotely

by MALTshop. For locally-indexed models, these itera-

tions are inexpensive. However, MALTshop has to translate

queries into repeated calls to its SQL database. To make this

efficient, the query engine requests SQL data in batches.

6.1 “Canned queries”

Queries that are simple to state in English may turn into long

sequences of commands. These have proved challenging to

write, for many of our users. They can also be fragile with

respect to profile changes; when complex, profile-dependent

queries are scattered across code owned by many developers,

profile change inevitably leads to bugs. Therefore, we have

a library of “canned queries.” When a profile owner creates

a new profile version, that engineer is also responsible for

creating (and testing!) a new version of any canned query af-

fected by that change. This gives the responsibility for man-

aging complex queries to the experts on the underlying rep-

resentations.

3That is, change the binding between an active node and an entity.
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We define canned queries as needed. For example, one

canned query might return all of the L2 links between a given

pair of switches; another might return the rack where a given

line card is located (useful when trying to repair that card).

6.2 Multi-shard queries

As described in §4, we split the representation of our entire

network into many sets of shards. However, some applica-

tions would like to form queries that span shard boundaries.

Also, we want the freedom to revise our sharding plan (we

have done this several times), and we do not want model-

consuming code to depend on that plan. Therefore, most ap-

plications that query MALTshop actually use a multi-shard

query (MSQ) API, which allows a query to specify a set

of shard pathnames (using wildcards), rather than a single

shard; MALTshop then executes the query against a view

composed of those shards.

MSQ is efficient, because MaltShop’s underlying SQL

schema has an index that identifies entities appearing in mul-

tiple shards, and limits the queries to only those shards. Per-

forming MSQ in-memory is not feasible, due to the size and

time it takes to load and index all the shards.

The introduction of MSQ significantly simplified many

applications. For example, prior to MSQ, code looking for

“peer ports” at the boundaries between datacenter and WAN

networks had to issue separate queries in multiple shards, us-

ing the output of the first query to compose the second one.

Also, the code had to know which specific shards to query.

Code using MSQ does this in one query, and knows much

less about shard boundaries.

7 Software infrastructure

In addition to MALTshop (§5) we have developed a library

to provide common functions for MALT developers, and ad-

ditional software to help us use and manage MALT models.

7.1 Model-generation systems

We do not want humans to create detailed models via di-

rect editing; this would be tedious and unreliable. Instead,

humans generate highly-abstracted representations (typically

via GUIs or text editing) that become input to model-

generation software that produces concrete models. We

sometimes do this in multiple steps, where the MALT output

from one step becomes the input to future steps. At each step,

the models become more detailed, based on late-bound de-

sign decisions and/or more-specialized profile-specific code.

We have been migrating to a “declarative dataflow” ap-

proach to model generation (as in Figs. 1 and 2), away from

early systems that used imperative inputs (“add this switch”)

and that packaged all model-generation steps into one exe-

cution. Imperative, non-modular systems (not surprisingly)

turned out to be hard to maintain, evolve, and test.

At each step in such a dataflow graph, we can apply our au-

tomatic profile-checker (§3.5) to detect some software bugs

or incomplete inputs.

7.2 Model-visualization systems

While MALT is designed to support automation, humans of-

ten need to look at models. We have visualization systems to

support two distinct use cases:

• Network visualization: Network operators, capacity

planners, and customers want to visualize their network

topologies, without knowing how these are represented

in MALT. Our network visualizer GUI displays network

nodes and the links between them, with statistics and

other attributes, and lets a user zoom between abstrac-

tion levels. MALT’s inherent support for multiple levels

of abstraction made this tool easier to write.4

• Model visualization: Developers of MALT software

and models want to visualize the structure of their mod-

els, rather than of the network. Our MALTviewer allows

them to navigate through entity-relationship graphs,

with integral support for the MALT query language.

We considered developing a GUI-based tool to create and

edit MALT models, but so far, creating models by expansion

of concise, high-level intent (as in §7.1) has sufficed.

8 What does not belong in MALT?

While MALT is central to our network management sys-

tems, we do not believe it should be extended beyond ex-

pressing topology. People have sought to add other kinds of

network-management data (sometimes just to exploit MALT-

shop rather than investing in another storage system), but

these typically do not fit well into an entity-relationship

schema. Other categories deserve more-appropriate represen-

tations, including:

• Generated configuration for devices and SDN con-

trollers; our config generators read MALT models, but

their output data belongs in OpenConfig YANG mod-

els [18]. We built a “ConfigStore” service more suited

to this use case than MALTshop is, because access pat-

terns (especially queries) to “config” are quite different.

• Policies for how to use the network topology, such as

BGP policies. We believe these are most accessible to

the operators who manage these policies when they

are expressed using a configuration representation, such

as OpenConfig or a vendor-specific one. We allowed

some early users of MALT to embed BGP policies in

the schema, but that proved to be awkward and com-

plex. (Alternatively, Propane [2] is a domain-specific

language for expressing BGP policy.)

4A similar tool allows us to visualize the network overlaid onto a geo-

graphic map; this is especially useful for planning WAN and campus links

that must avoid single points of failure. However, this tool still gets its data

from a predecessor to MALT.
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• Abstracted forwarding tables (AFTs) that represent

the observed FIBs in our network; these are useful for

applications such as Traffic Engineering and our Band-

width Enforcer system [13], and for techniques such as

Header Space Analysis [11]. AFTs are similar to Open-

Flow [17] rules, and might be suitable for representing

ACLs, although today we use a DSL for ACLs.

• Allocated resources, such as IP addresses, Autonomous

System Numbers (ASNs), and ports on switches and

patch panels. Since we must not allocate any one of

these resources to multiple “owners,” these are best rep-

resented in a database that supports modify-in-place op-

erations, exactly what we would rather not do for declar-

ative topology models.

• Inventory, including support for SOX compliance and

other finance-related applications. Often these records

exist before we have a topology to place them in.

• Monitoring data from SNMP and similar systems.

MALT is not efficient at representing time-series data,

and Google already has robust, massively-scalable sys-

tems for monitoring and alerting, so while we do distill

some data from monitoring pipelines to correlate it with

topology, as in Fig. 1, we do not use MALT as the pri-

mary representation for this data.

We tie these representations together using foreign keys, in-

cluding MALT entity-IDs (e.g., an AFT is tied to a particular

MALT “control point”).

It can be tricky to define a bright line between “topology”

(appropriate to represent in MALT) and non-topology data.

Partly this is driven by a need to store some information

in two places, for efficiency and availability – for example,

we allocate blocks of IP addresses from an IP-address DB,

and then record these blocks in MALT models as attributes

of subnetwork entities. However, when we debate “does this

data belong in MALT?” the usual reason for the complexity

of the debate is that we had not quite got our taxonomy right;

relatively few cases have been truly hard calls.

9 Schema design principles and processes

The MALT schema must allow us to represent a broad va-

riety of network designs completely and consistently; code

with special cases for different structures is likely to be unre-

liable and hard to maintain. Schema design turned out to be

harder than we expected; we have learned several principles

that were not obvious to us at the start. We could not create

good abstractions a priori for a complex, evolving set of net-

works, but had to test and refine our abstractions against our

experience with many real-life use cases5.

One meta-lesson was that we needed to establish a for-

mal MALT Review Board (MRB), composed of experienced

5And as we learned these lessons and have evolved our schema, we have

also learned just how hard evolution itself can be; see §10.

schema designers, who could take a company-wide and long-

term view of proposed changes. Prior to establishing the

MRB, the schema accreted many ad hoc, inconsistent, or du-

plicative features. Using a multi-person board, rather than a

single owner, to review schema changes also allows us to par-

allelize the work, and to maintain consistency as employees

come and go. We also have a written “style guide,” both as

advice to engineers proposing schema changes, and to guide

new MRB members. However, our weekly MRB meeting

constantly finds new issues to debate at length.

9.1 Orthogonality

We value uniformity: we want our tools to process models for

many different kinds (and generations) of networks, without

lots of special cases. Sometimes this is straightforward; the

MRB often prevents proposals attempting to create a new

entity-kind (EK) for an existing concept, or a narrower-than-

necessary proposal for a new concept.

We also value simplicity; initially we thought this meant

that we should be conservative in creating EKs. However, we

learned that overloading one entity-kind with concepts that

are not similar enough leads to the use of subtypes (expressed

as attributes), which creates complexity in model-consuming

code and in the formulation of queries.

We developed two tests to define “similar enough?”:

• Do the various use cases share the same relationship

structure, or would one expect different relationships

based on the subtype? If the latter, we prefer to use a

distinct (“orthogonal”) EK for each use case, rather than

having a kitchen sink of relationships for an EK.

• Do the use cases mostly share the same entity attributes,

or are there several mostly-disjoint subsets of the at-

tributes, based on subtype? If the latter, we prefer mul-

tiple EKs. (Subtyping violates the “prefer composition

over inheritance” principle.)

These are not rigid rules. Sometimes we must guess about

future use cases, or just make an arbitrary decision.

An example of why we need these rules: we initially de-

fined EK_PORT to refer to singleton ports, trunk ports, VLAN

ports, and patch-panel ports. This “simple” structure leads

to models where a VLAN EK_PORT can contain a trunk

EK_PORT which can contain multiple singleton EK_PORTs

– and queries on ports have a lot of complexity to distin-

guish which subtype they care about. We ended up with over

60 possible relationships involving EK_PORT, and about the

same number of attributes, most of which are never used to-

gether (which makes it hard to check whether a model pro-

ducer has properly populated the attributes and relationships

required for specific use cases).6

Entity attributes often use enumerated types. We learned

to value multiple, orthogonal attributes over the superficially-

6We have only partially fixed this mess, because lots of existing code

uses EK_PORT, but without explicitly indicating for which use case.
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simpler goal of “fewer attributes.” For example, initially

“Vendor ID” was an implicit proxy for “switch stack oper-

ating system.” We had to break that out as a separate “OS”

attribute, rather than creating enum values representing the

cross-product of vendor-ID and several other features.

9.2 Separation of aspects

We initially modeled a router as a single EK_DEVICE en-

tity. Since routers have lots of substructures, we used lots

of attributes to define their various aspects. However, we

now model these distinct aspects as explicit entities, sepa-

rating data-plane aspects, control-plane aspects, and physical

(“sheet-metal-plane”) aspects. So, for example, we model a

simple packet switch with this relationship structure:

EK_CHASSIS RK_CONTAINS EK_PACKET_SWITCH

EK_CHASSIS RK_CONTAINS EK_CONTROL_POINT

EK_CONTROL_POINT RK_CONTROLS EK_PACKET_SWITCH

This allows model consumers (and their queries) to focus

on specific subgraphs: for example, systems that analyze

network performance or utilization focus on the data plane

subgraph (EK_PACKET_SWITCH, EK_INTERFACE, EK_*_LINK,

etc.), while systems involved in hardware installation focus

on the physical subgraph (EK_RACK, EK_CHASSIS, etc.) Ulti-

mately, this allows most systems to work correctly no matter

how we re-organize control-plane, data-plane, and physical-

plane structures. (Especially in space-limited testbeds, we of-

ten need to use non-standard packaging, which required lot of

special cases in software before we separated these aspects.)

Somewhat similarly, we also use separate entity-kinds to

represent the abstract intent and the concrete realization of

a complex structure, such as a Clos network. In our model-

generation pipeline, we use the “intent” entities in the in-

puts to a step that generates the concrete entities; the out-

put includes the inputs, tied to the concrete entities via

RK_REALIZED_BY relationships, so that the intent is visible

to consumers of the concrete models.

10 Profile evolution

We must continually change our MALT schema, both to han-

dle new kinds of network designs, and to rethink how we

have represented things in the past (taxonomy is hard; we

have made a lot of mistakes). Additions are fairly easy, but

other changes create a lot of pain for software maintainers,

and the risk of misinterpretation.

While we expected the schema evolution, the challenges

that created were much larger than we initially expected. Be-

cause many systems interact via models, and models persist

(often for years), we have had to create processes and soft-

ware tools to ensure compatibility. Also, networking con-

cepts can evolve faster within one company than in the public

Internet – and faster than our ability to rapidly upgrade our

software base, or educate software engineers.

We developed several mechanisms to cope with evolution:

• Stability rules, to avoid schema changes that create un-

necessary churn (but these can lead to accretion of the

equivalent of “dead code” in the schema).

• Profiles and profile versions, as discussed in §3.5. Be-

fore we had profiles, evolution was especially painful,

because there was no explicit way for a consumer to

know which of several possible interpretations to place

on a model.

Because profiles are versioned, our model-generators

can simultaneously produce shards for the same net-

work design in several versions; this allows us to update

producers and consumers independently.

• Feature flags, which specify explicitly which individual

features are enabled (or disabled) in models produced

for a given profile version, so that consumer code can

condition its behavior on the presence or absence of spe-

cific features, rather than complex logic based on ver-

sion numbers. For example, a feature-flag might indicate

that a given profile version supports IPv6 address pre-

fixes; these might have been previously allowed in the

MALT schema, but not generated in the models until a

given profile version.

• Profile-version deprecation policies, which allow us to

(gently) force consumers to migrate off of old versions,

so the producers do not have to support them forever.

• Canned queries, described in §6.1, which insulate the

less-complex model consumers from profile-specific de-

tails. (Not all consumers can fully rely on canned

queries for insulation, and model producers might have

to be migrated for each profile.)

As mentioned in §3.5, if two profiles differ only in their

minor-version number, code for the lower version should be

able to consume models of the higher version. Unfortunately,

it has been tricky to define rules for “backwards compati-

bility,” especially in the face of some fragile coding prac-

tices. For example, code often does a switch statement on

an enumeration attribute. Not all code properly handles a

newly-defined enum value; some code crashes, and other

code blithely treats the new value as equivalent to an older

value, leading to silent failures. We have thus gradually be-

come more cautious about allowing profile changes without

incrementing the major version, but such increments often

lead to tedious “requalification” of software.

These mechanisms also make it easier to change our shard

boundaries: canned queries hide the boundaries from most

users; for others, we use a profile-version change to signal a

sharding change.

Overall, these techniques are helpful, but not sufficient, to

avoid the pain of profile evolution; we continually look for

new approaches.

Other systems have had to grapple with evolution, with

varying success. For example, the QUIC protocol designers

made version-negotiation a fundamental aspect of the pro-
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tocol design, and then relied on it to rapidly iterate through

many versions [14].

11 Lessons and challenges

After using and evolving MALT for several years, we have

come to appreciate both the benefits of this approach, and

some of its challenges.

11.1 Benefits and challenges of adoption

Prior to MALT, we had many non-interoperable topology rep-

resentations, including multiple formal ones, many spread-

sheets, drawings, and sometimes just folklore. Convergence

on a single, well-curated, machine-focused representation

has yielded benefits including far simpler interoperability be-

tween systems, dramatic reduction in some code complexity

(and complete elimination of a few code bases), and a moti-

vation to invest in improved data quality.

However, converting from older representations, espe-

cially the few that were already the basis for islands

of automation, has been painful. (Parts of our network-

management world that had no prior formal representation

have often been easier to migrate to MALT, because they

have little existing code to worry about.)

Things that make representation conversion difficult in-

clude differences in model structure (e.g., tabular vs. entity-

relationship); differences in the handling of defaults; differ-

ences in rules for constructing names; and (quite frequently)

incomplete or inaccurate documentation on the semantics of

the old representation. We also discovered that, since older

representations tended to be weakly validated (at best), and

existing consumer code was tolerant of missing or inaccurate

data, we kept running into data we could not understand (or

wrongly thought we did).

We learned, as MALT supported an increase in data-driven

automation, that a good representation cannot save us from

dirty data. If the data is missing or wrong, automation fails

in depressing ways.

We observed an interesting pattern: operators typically

start by focusing on operating the “built” system, and see no

need for formal representation of the entire lifecycle (as in

Figs. 1 and 2). Then, as the network gets larger and more

complex, they gradually realize they must be involved in

planning and design phases, so that the network is actually

operable and well-documented. This pattern reinforces the

value of a uniform, multi-abstraction-layer representation.

Similarly, network test engineers initially believe they can

manage their small, idiosyncratic testbeds informally. But

they learn that end-to-end network deployment and manage-

ment processes in a testbed needs to work exactly as they

do in production (or else you have not actually tested every-

thing), which motivates formal modeling even for testbeds.

A side benefit is that they waste less time doing manual work

for which automated, MALT-based tooling exists. (However,

testbeds are often weird, which adds complexity to model-

generation tools.)

11.2 Designing via a declarative approach

Our prior network-design systems were mostly imperative,

with complex APIs of the form “add these links” or “remove

this switch.” Humans naturally think imperatively, but these

APIs became an impediment to modular composition, due to

their complexity. They also made it difficult to create isolated

universes for what-if analysis and testing.

MALT supports (but does not require) a declarative design

process, in which each stage process tells the next stage what

it wants, not how to get it. APIs become simpler; all concep-

tual complexity is now explicit in the models. To create a

testbed or what-if model, we can simply create a copy of an

existing model, modify it, and then run the normal pipeline.

Our network-design world is not fully declarative: since

humans still create the top-level design intent, our UIs sup-

port some imperative operations. In cases where operators

want to make minor, rapid changes, we primarily use MALT

imperatively.

11.3 The dangers of string parsing

We are trying to stamp out string-parsing, because parsers

(and regular expressions) embody assumptions about how

strings encode information. When we later must change a

format (e.g., to allow longer fields), we have found it hard

to search code for all of the relevant parsers (coders have

many creative ways to parse strings), so we discover many

of these only when something breaks at run-time. Instead,

we have learned to discourage string-encoded data, and to

provide explicit attributes and/or relationship. (E.g., if an en-

tity is named “router.paris.33” then it needs a relationship to

the entity for “paris” and an index_in_parent attribute.)

11.4 Human-readable names vs. UUIDs

§3.1 describes how MALT entity-IDs are (entity-kind, entity-

name) tuples. This eased the initial adoption of MALT, be-

cause our existing code and operator procedures all used

human-sensible names. In hindsight, we should have used

opaque universally unique identifiers (UUIDs) as primary

keys, and kept the display name as an attribute. With name-

based entity-IDs, renaming becomes hard, because we have

to track down all references to an entity-name, including

those in external systems.

Name-based IDs can be especially tricky when creating

designs for abstract components, which need IDs, before we

know their ultimate names, which are often late-bound. We

currently ameliorate that problem by a “placeholder" mecha-

nism that lets us rebind references to entities, but names held

in non-MALT systems still lead to problems. UUIDs intro-

duce their own challenges, which we lack space to describe.
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12 Related work

Many large enterprises face similar network-management

challenges, so prior papers have described systems related

to MALT, but almost none have focused specifically on the

challenges of a multi-layer abstraction and how to evolve it.

Propane/AT [3] does describe ways to model abstract groups

of switches and their adjacencies, but not how to include finer

levels of detail. Most other work uses the term “topology”

only to refer to IP or routing-session adjacencies.

COOLAID [5] used a declarative-language approach

based on Datalog. COOLAID focused on reasoning about

configuration management of an existing network, rather

than topology design or abstract intent. (Their emphasis on

reasoning is complementary to MALT.)

Facebook’s Robotron [21] followed a “configuration-as-

code” paradigm, rather than a declarative representation; this

appears to limit its use to a single administrative domain,

and to complicate its use for what-if analyses. Robotron does

not handle multi-step or concurrent design changes [21, §8].

Robotron supports “high-level design intent”; it is unclear if

this extends to abstractions for capacity planning.

Alibaba’s NetCraft [15] manages “the life cycle of net-

work configuration, including the generation, update, transi-

tion and diagnosis of [configuration],” using a multi-layer

graph, but apparently not abstractions that support network

planning or design. One layer represents a BGP mesh (con-

trasted to Propane [2] which represents BGP policy).

Google’s Zero-Touch Networking (ZTN) [12] provides an

automation framework which utilizes both MALT and Open-

Config [18] as interoperable data representations.

MALT’s design was inspired by UML [19] and the

DMTF “Common Information Model” standard, which uses

an object-relationship representation of “managed elements.”

UML focuses mostly on modeling systems, not on network

topologies. DTMF includes a layer-3 interface profile [7], but

also seems to have little coverage of network topology per se.

(OpenConfig might well subsume this aspect of DTMF.)

SmartFrog [8] was a framework for automated manage-

ment of configuration for multi-component software systems.

While it differs from MALT in numerous ways, SmartFrog’s

templates are similar to MALT’s entity-kinds, and SmartFrog

also addressed lifecycle issues.

13 Conclusions and future work

Our experience has shown that, while it was challenging

to design both MALT’s representation and an ecosystem

that supports its widespread use, we have gained great value

from a declarative, multi-layered approach to representing

network topology. MALT supports the full lifecycle of our

networks, allowing us to make knowledge explicit in our

models, rather than hidden in code.

Others wishing to learn from our experience might want

to consider these challenges that surprised us:

• Shared schemas need curation: a representation

whose goal is to create interoperability between dis-

parate teams and processes cannot be evolved by unco-

ordinated accretion; curation by a centralized team (the

MRB § 9) has a hard but necessary job.

• Support for evolution: we added explicit support for

schema evolution, and explicit profiles, later than we

should have (§ 10).

• Simplicity 6= fewer concepts: Our initial attempts to

limit the number of concepts (entity-kinds) led to com-

plexity via overloading; in retrospect, orthogonality via

many simple concepts brings simplicity (§ 9.1).

• Query language: Our three-layered approach (canned

queries at the top, a powerful query language in the mid-

dle, and a well-hidden SQL layer at the bottom) seems

to create the right balance between expressive power vs.

ease of use, but we struggled to find that balance (§ 6).

• Migration: Migrating users from previous representa-

tions created considerable pain, some of which could

have been avoided if we had learned our other lessons

much sooner.

We also had some positive surprises:

• Support for lots of models: all of our previous systems

maintained just one model or database. MALTshop’s

ability to give near-arbitrary names to models, and to use

immutable versions, enabled many use cases we had not

initially considered, and enabled sharding (§ 5).

• Extension to other domains: Because our software

base (§7) is largely agnostic to the MALT schema itself,

it could support multiple domains with distinct schemas.

We plan to explore modeling network-like domains,

such as liquid cooling and power distribution.

Future work: We believe MALT can be extended to cover

several other kinds of networks; this remains future work.

These include cloud networks, and especially “hybrid” net-

works that include both cloud and “on-premises” enterprise

networks. (MALTshop would need to support multiple, iso-

lated namespaces for shards and for entities.) MALT could

also be extended to explicitly model Software-as-a-Service

connectivity.

MALT might support wireless networks, with some re-

design. The features that make wireless networks “interest-

ing,” such as mobile nodes, hidden terminals, and dynamic

channel fading, will challenge some implicit assumptions we

made for MALT.
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A Example of MALT modeling

We use the Jupiter datacenter fabric design [20] to illustrate

MALT modeling with a fine-grained, although incomplete

and very simplified, example. In general, we use one shard

(§ 4) for each such fabric.

Figure 6: Overall structure of Jupiter (after [20])

Figs. 6–8 provide a summary of Jupiter’s components: a

fabric is made up of aggregation blocks connected to each

other via a set of spine blocks. An aggregation block is a set

of middle blocks, each of which is a Clos fabric made up of

many switch chips. (Each spine block is also one Clos fab-

ric.) Aggregation blocks connect to ToR switches. (A spe-

cial kind of aggregation block, a border router, has the same

Figure 7: Jupiter aggregation block (after [20])

Figure 8: Jupiter middle block (after [20])

structure but connects to WAN links rather than to ToR up-

links.)

As described in [20] and shown in Fig. 8, we package four

switch chips on one “Centauri” chassis. A ToR is one such

chassis; a middle block is four chassis; we package multiple

chassis into each rack.

Thus, a Jupiter has several hierarchies: a “data plane” hi-

erarchy of packet switch chips and larger switch-like abstrac-

tions; a “sheet metal plane” hierarchy of racks, chassis, and

chips; and a “control plane” hierarchy.

We can model the top-level data-plane hierarchy for a

small Jupiter called “ju1” as (using our shorthand syntax):

EK_JUPITER/ju1 RK_CONTAINS EK_AGG_BLOCK/ju1.a1

EK_JUPITER/ju1 RK_CONTAINS EK_AGG_BLOCK/ju1.a2

EK_JUPITER/ju1 RK_CONTAINS EK_AGG_BLOCK/ju1.a3

EK_JUPITER/ju1 RK_CONTAINS EK_AGG_BLOCK/ju1.a4

EK_JUPITER/ju1 RK_CONTAINS EK_SPINE_BLOCK/ju1.s1

...

EK_JUPITER/ju1 RK_CONTAINS EK_SPINE_BLOCK/ju1.s4

EK_AGG_BLOCK/ju1.a1 RK_CONTAINS EK_TOR/ju1.a1.t1

...

EK_AGG_BLOCK/ju1.a1 RK_CONTAINS EK_TOR/ju1.a1.t32

An aggregation block abstractly contains multiple middle

blocks:

EK_AGG_BLOCK/ju1.a1 RK_CONTAINS

EK_MIDDLE_BLOCK/ju1.a1.m1

...

EK_AGG_BLOCK/ju1.a1 RK_CONTAINS

EK_MIDDLE_BLOCK/ju1.a1.m8

A middle block is a “logical switch” abstractly containing

multiple switch chips:

EK_MIDDLE_BLOCK/ju1.a1.m1 RK_CONTAINS

EK_PACKET_SWITCH/ju1.a1.m1.c1

...

EK_MIDDLE_BLOCK/ju1.a1 RK_CONTAINS

EK_PACKET_SWITCH/ju1.a1.m1.c16

Chips within middle blocks are connected, so we also have

to indicate the 8 ports on each switch chip:
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EK_PACKET_SWITCH/ju1.a1.m1.c16 RK_CONTAINS

EK_PORT/ju1.a1.m1.c16.p1

...

EK_PACKET_SWITCH/ju1.a1.m1.c16 RK_CONTAINS

EK_PORT/ju1.a1.m1.c16.p16

and then the 64 bidirectional L3 links between the ports in

the upper and lower layers of the block – just one of which

would become (note that links in MALT are unidirectional):

EK_PORT/ju1.a1.m1.c1.p9 RK_ORIGINATES

EK_LOGICAL_PACKET_LINK/ju1.a1.m1.l1f

EK_PORT/ju1.a1.m1.c9.p1 RK_TERMINATES

EK_LOGICAL_PACKET_LINK/ju1.a1.m1.l1f

EK_PORT/ju1.a1.m1.c9.p1 RK_ORIGINATES

EK_LOGICAL_PACKET_LINK/ju1.a1.m1.l1r

EK_PORT/ju1.a1.m1.c1.p9 RK_TERMINATES

EK_LOGICAL_PACKET_LINK/ju1.a1.m1.l1r

Fig. 3 shows how L3 links traverse L2 links, which in turn

might traverse multiple fibers, patch panels, etc. (not shown).

We similarly need to represent the internal connections in

each spine block (just as in a middle block) and the connec-

tions between middle-block ports and spine-block ports, and

those between middle-block ports and ToR ports. (Note that

middle blocks in an aggregation block are not directly con-

nected to each other.)

There are clearly a lot of links in a Jupiter network. There-

fore, we use automated tools to design the cables that bundle

these links. Those tools need to know the spatial locations

of the ports to which these links connect; therefore, MALT

also allows us to represent the physical containment hierar-

chy: each rack contains 16 chassis, which each contains 4

packet switches, which each contains 16 ports.

EK_RACK/ju1.a1.m1 RK_CONTAINS EK_CHASSIS/ju1.a1.m1.chass1

...

EK_RACK/ju1.a1.m1 RK_CONTAINS EK_CHASSIS/ju1.a1.m1.chass16

EK_CHASSIS/ju1.a1.m1.chass1 RK_CONTAINS

EK_PACKET_SWITCH/ju1.a1.m1.c1

...

EK_CHASSIS/ju1.a1.m1.chass1 RK_CONTAINS

EK_PACKET_SWITCH/ju1.a1.m1.c4

EK_PACKET_SWITCH/ju1.a1.m1.c16 RK_CONTAINS

EK_PORT/ju1.a1.m1.c16.p1

... (as above)

Jupiter is a software-defined network, so we also repre-

sent the network control plane and its connectivity – infor-

mation required to automatically generate configuration for

packet switches and for controllers. We start by abstracting

the switch-local CPU as a “control point” for the switch –

what SDN controllers will communicate with:

EK_CHASSIS/ju1.a1.m1.chass1 RK_CONTAINS

EK_CONTROL_POINT/ju1.a1.m1.chass1

EK_CONTROL_POINT/ju1.a1.m1.chass1 RK_CONTAINS

EK_INTERFACE/ju1.a1.m1.chass1.if1

EK_INTERFACE/ju1.a1.m1.chass1.if1 RK_TRAVERSES

EK_PORT/ju1.a1.m1.chass1.port1

EK_PORT/ju1.a1.m1.chass1.port1 RK_ORIGINATES

EK_LOGICAL_PACKET_LINK/...

Note that MALT allows us to give two different entities the

same name, as long as they have different entity-kinds – here,

the control point has the same name as its containing chassis.

Since a Centauri chassis has one CPU for 4 switch chips,

we model this as:

EK_CONTROL_POINT/ju1.a1.m1.chass1 RK_CONTROLS

EK_PACKET_SWITCH/ju1.a1.m1.c1

...

EK_CONTROL_POINT/ju1.a1.m1.chass1 RK_CONTROLS

EK_PACKET_SWITCH/ju1.a1.m1.c4

We can then represent the relationships between a set

of SDN switches and their controllers via indirection: all

switches with the same set of controller replicas are grouped

into a “control domain” (we generally have one control do-

main per aggregation block, to provide fault tolerance):

EK_CONTROL_DOMAIN/ju1.dom1 RK_CONTAINS

EK_CONTROL_POINT/ju1.a1.m1.chass1

...

EK_CONTROL_DOMAIN/ju1.dom16 RK_CONTAINS

EK_CONTROL_POINT/ju1.a16.m8.chass1

This indirection allows us to represent a pool of controller

replicas responsible for all switches in a control domain:

EK_CONTROLLER/ju1.controller1.1 RK_CONTROLS

EK_CONTROL_DOMAIN/ju1.dom1

...

EK_CONTROLLER/ju1.controller1.4 RK_CONTROLS

EK_CONTROL_DOMAIN/ju1.dom1

We can also represent – omitted here due to lack of space

– that controllers run on a pool of dedicated server machines,

how these machines are arranged in racks, are connected to

the network, etc.

Attributes: So far, this appendix has only described en-

tities and relationships. Each entity has a set of attributes;

space only permits us to show a few (simplified) examples.

A specific port might include these attributes:

port_attr: <

device_port_name: "port-1/24"

openflow: <

of_port_number: 24

>

port_role: PR_SINGLETON

port_attributes: <

physical_capacity_bps: 40000000000

>

>

while a specific L3 interface might include these:

interface_attr: <

address: <

ipv4: <

address: "10.1.2.3"

prefixlen: 32

>

ipv6: <

address: "1111:2222:3333:4444::"

prefixlen: 64

>

>

>
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