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Abstract
The emergence of dense, byte-addressable nonvolatile main

memories (NVMMs) allows application developers to com-
bine storage and memory into a single layer. With NVMMs,
servers can equip terabytes of memory that survive power
outages, and all of this persistent capacity can be managed
through a specialized NVMM file system. NVMMs appear
to mesh perfectly with another popular technology, remote
direct memory access (RDMA). RDMA gives a client direct
access to memory on a remote machine and mediates this
access through a memory region abstraction that handles the
necessary translations and permissions.

NVMM and RDMA seem eminently compatible: by com-
bining them, we should be able to build network-attached,
byte-addressable, persistent storage. Unfortunately, however,
the systems were not designed to work together. An NVMM-
aware file system manages persistent memory as files,
whereas RDMA uses a different abstraction — memory re-
gions to organize remotely accessible memory. As a result, in
practice, building RDMA-accessible NVMMs requires expen-
sive translation layers resulting from this duplication of effort
that spans permissions, naming, and address translation.

This work introduces two changes to the existing RDMA
protocol: file memory region (FileMR) and range-based ad-
dress translation. These optimizations create an abstraction
that combines memory regions and files: a client can directly
access a file backed by NVMM file system through RDMA,
addressing its contents via file offsets. By eliminating redun-
dant translations, it minimizes the amount of translations done
at the NIC, reduces the load on the NIC’s translation cache
and increases the hit rate by 3.8× - 340× and resulting in
application performance improvement by 1.8× - 2.0×.

1 Introduction

How scalable computer systems store and access data is
changing rapidly, and these changes are in part motivated
by the blurring of lines between traditionally separate system
components. Nonvolatile main memory (NVMM) provides
byte-addressable memory that survives power outages, blur-
ring the line between memory and storage. Similarly, remote
direct memory access (RDMA) allows a client to directly ac-
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cess memory on a remote server, blurring the line between lo-
cal and remote memory. At first glance, by combining NVMM
and RDMA, we could unify storage, memory and network
to provide large, stable, byte-addressable network-attached
memory. Unfortunately, the existing systems used to man-
age these technologies are simultaneously overlapping and
incompatible.

NVMMs merge memory and storage. The technology al-
lows applications to access persistent data using load/store
instructions, avoiding the need for a block-based interface
utilized by traditional storage systems. NVMMs are managed
by an NVMM-aware file system, which mediates access to
the storage media. With an NVMM-aware file system, appli-
cations can map a file into their address space, and then access
it using loads and stores instructions, drastically reducing the
latency for access to persistent data.

RDMA merges local and remote memory. RDMA allows a
client to directly access memory on a remote server. Once the
remote server decides to allow incoming access, it registers a
portion of its address space as an RDMA memory region and
sends the client a key to access it. Using the key, the client
can enlist the server’s RDMA network interface (RNIC) to
directly read and write to the server’s memory, bypassing the
CPU. RDMA is popular as it offloads most of the networking
stack onto hardware and provides close-to-hardware abstrac-
tions, exhibiting much better latency compared to TCP/IP
protocol.

Ideally, we could combine NVMM and RDMA into a
unified network-attached persistent memory. Unfortunately,
NVM file systems and the RDMA network protocol were
not designed to work together. As a result, there are many
redundancies, particularly where the systems overlap in mem-
ory. Only RDMA provides network data transfer and only the
NVMM file system provides persistent memory metadata, but
both systems implement protection, address translation, nam-
ing, and allocation across different abstractions: for RDMA,
memory regions, and for NVMM file systems, files. Naively
using RDMA and NVMM file systems together results in a
duplication of effort and inefficient translation layers between
their abstractions. These translation layers are expensive, es-
pecially since RNICs can only store translations for limited
amount of memory while NVM capacity can be extremely
large.

In this paper, we present a new abstraction, called a file
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memory region (FileMR), that combines the best of both
RDMA and NVM file systems to provide fast, network-
attached, file-system managed, persistent memory. It accom-
plishes this goal by offloading most RDMA-required tasks re-
lated to memory management to the NVM file system through
the new memory region type; the file system effectively be-
comes RDMA’s control plane.

With the FileMR abstraction, a client establishes an RDMA
connection backed by files, instead of memory address ranges
(i.e., an RDMA memory region). RDMA reads and writes are
directed to the file through the file system, and addressed by
the file offset. The translation between file offset and physical
memory address is routed through the NVMM file system,
which stores all its files in persistent memory. Access to the
file is mediated via traditional file system protections (e.g.,
access control lists). To further optimize address translation,
we integrate a range-based translation system, which uses ad-
dress ranges (instead of pages) for translation, into the RNIC,
reducing the space needed for translation and resolving the
abstraction mismatch between RDMA and NVMM file sys-
tems.

Our FileMR design with range-based translation provides
a way to seamlessly combine RDMA and NVMM. Compared
to simply layering traditional RDMA memory regions on top
of NVMM, FileMR provides the following benefits:

• It minimizes the amount of translation done at the NIC,
reducing the load on the NIC’s translation cache and
improving hit rate by 3.8× - 340×.

• It simplifies memory protection by using existing file
access control lists instead of RDMA’s ad-hoc memory
keys.

• It simplifies connection management by using persistent
files instead of ephemeral memory region IDs.

• It allows network-accessible memory to be moved or
expanded without revoking permissions or closing a con-
nection, giving the file system the ability to defragment
and append to files.

The rest of this paper is organized as follows. Section 2
describes the necessary background on RDMA and NVMM
file systems. Section 3 describes the design of the FileMR.
Section 4 describes our proposed changes to RDMA stack and
RNICs, and Section 5 introduce two case studies. Section 6
provides experimental results. Section 7 discusses the appli-
cability of the FileMR on real hardware. Section 8 describes
related work, and Section 9 concludes.

2 Background

This section introduces background on both RDMA and
NVMM and describes the motivation for introducing a new

memory abstraction for RDMA, detailing the issue of redun-
dant memory management mechanisms and the reasons exist-
ing systems cannot solve this problem.

2.1 RDMA Networking

RDMA has become a popular networking protocol, especially
for distributed applications [2,20–22,34,36,43,47,55,56,62].
RDMA exposes a machine’s memory to direct access from
the RDMA network interface (RNIC), allowing remote clients
to directly access a machine’s memory without involving the
local CPU.

The RDMA hardware supports a set of operations (called
verbs). One-sided verbs, for instance, “read” and “write”,
directly access remote memory without requiring anything of
the remote CPU, in fact, these verb bypasses the remote CPU
entirely. Two-sided verbs, in contrast, require both machines
to post matching requests, for instance, “send” and “receive”,
which transfer data between registered buffers with addresses
chosen by sender and receiver applications locally.

To establish an RDMA connection, an application registers
one or more memory regions (MRs) that grant the local RNIC
access to part of the local address space. The MR functions
as both a name and a security domain: To give a client access
to a region, the local RNIC supplies the MR’s virtual address,
size and a special 32-bit “rkey”. Rkeys are sent with any
one-sided verb and allow the receiving RNIC to verify the
client has direct access to the region. For two-sided verbs,
a send/recv operation requires both the sender and receiver
to post matching requests, each attached to some local, pre-
registered, memory region, negating the need for rkeys.

To manage outstanding requests, RDMA uses work queues
derived from the virtual interface architecture (VIA) [10]. Af-
ter establishing a connection, an application can initiate an
RDMA verb through its local RNIC by posting work queue en-
tries (WQEs). These entries are written onto a pair of queues
(a queue pair or “QP”); one queue for send/write requests and
one for read/receive requests. Once the entry is written to the
queue pair, the RNIC will execute the RDMA verb and access
the remote machine. Once the verb is completed, the RNIC
will acknowledge the verb’s success by placing a “comple-
tion” in the “completion queue” (CQ). The application can
poll for the completion from the completion queue to receive
notification that the verb completed successfully.

2.2 Nonvolatile Main Memory

Nonvolatile main memory (NVMM) is nonvolatile memory
directly accessible via a load/store interface. NVMM is com-
prised of multiple nonvolatile DIMMs that are attached to
the CPU memory bus and sit alongside traditional DRAM
DIMMs. One or multiple nonvolatile DIMMs can be com-
bined to form a single contiguous physical address space
exposed to the OS [42].
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As NVMM is a persistent media, it requires management
software to provide naming, allocation and protection, and
it is generally managed by a file system. However, unlike
traditional file systems built for slower block devices, NVMM-
aware file systems play a critical role in providing efficient
NVMM access — the DRAM-comparable latency of NVMM
means software overhead can dominate performance. As a
result, NVMM-aware file systems [7,57,59,60] avoid software
overhead along the critical path in two ways:

First, they support the direct access mmap() (DAX-mmap)
capability. DAX-mmap allows applications to map NVMM
files directly into their address spaces and to perform data
accesses via simple loads and stores. This scheme allows
applications to bypass the kernel and file system for most data
accesses, drastically improving performance for file access.

However, NVMM resides within the memory hierarchy,
which can cause complications since caches are not persistent
but can hold data that the application wants to persist. To
persist data, cached writes to NVMM must be followed by
cache-line flush or clean instructions to ensure the data is
actually written back to NVMM, and non-temporal writes can
bypass the CPU caches entirely. A store fence can enforce the
ordering of the writes and guarantee the data will survive a
power failure.

2.3 Managing RDMA and NVMM
Userspace RDMA accesses and NVMM mmapped-DAX ac-
cesses share a critical functionality: they allow direct access
to memory without involving the kernel. Broadly speaking,
we can divide both NVMM file systems and RDMA into a
data plane that accesses the memory and a control plane that
manages the memory exposed to user applications. The data
plane is effectively the same for both: it consists of direct
loads and stores to memory. The control plane, in contrast,
differs drastically between the systems.

For both RDMA and NVMM file systems, the control plane
must provide four services for memory management. First,
it must provide naming to ensure that the application can
find the appropriate region of memory to directly access. Sec-
ondly, it must provide access control, to prevent an application
from accessing data it should not. Thirdly, it must provide a
mechanism to allocate and free resources to expand or shrink
the memory available to the application. Finally, it must per-
form translation between application level names (i.e., virtual
addresses, or memory and file offsets) to physical memory
addresses. In practice, this final requirement means that both
RDMA and NVMM file systems must work closely with the
virtual memory subsystem.

Table 1 summarizes the control plane metadata operations
for RDMA and NVMM. These memory management func-
tionalities are attached to different abstractions in RDMA and
NVMM file systems. For RDMA we use abstractions such as
memory regions and memory windows, and for NVMM file
systems we use files.

Role RDMA / File System FileMR
Naming Both (Redundant) FS Managed
Permissions Both (Redundant) FS Managed
Allocation Both (Redundant) FS Managed
Appending Not Allowed FS Managed
Remapping Not Allowed FS Managed
Defragmentation Not Allowed FS Managed
Translation Both (Incompatible) FS Managed
Persistence FS Only FS Managed
Networking RDMA RDMA
CPU-Bypass RDMA RDMA

Table 1: Control plane roles for RDMA and NVMM. This
table shows the features provided by RDMA and NVMM vs.
FileMR.

2.3.1 Naming

Names provide a hardware-independent way to refer to phys-
ical memory locations. In RDMA applications, the virtual
address of a memory region, along with its “host” machine’s
location (e.g., IP address or GID) serves as a globally (i.e.,
across nodes) meaningful name for regions of physical mem-
ory. These names are transient, since they become invalid
when the application that created them exits, and inflexible
since they prevent an RDMA-exposed page from changing
its virtual to physical address mapping while accessible. To
share a name with a client that wishes to directly access it
via reads and writes, the host gives it the metadata of the MR.
For two-sided verbs (i.e., send/receive) naming is ad-hoc: the
receiver must use an out-of-band channel to decide where to
place the received data.

NVMM-based file systems use filenames to name regions
of physical memory on a host. Since files outlive applica-
tions, the file system manages names independent of applica-
tions and provides more sophisticated management for named
memory regions (i.e., hierarchical directories and text-based
names). To access a file, clients and applications on the host
request access from the file system.

2.3.2 Permissions

Permissions determine what processes have access to what
memory. In RDMA, the RDMA contexts are isolated and
permissions are enforced in two ways. To grant a client direct
read/write access to a memory location, the host shares a
memory region specific “rkey.” The rkey is a 32-bit key that
is attached to all one-sided verbs (such as read and write)
and is verified by the RNIC to ensure the client has access
to the addressed memory region. For every registered region,
the RNIC driver maintains the rkey, along with other RDMA
metadata that provides isolation and protection in hardware-
accessible structures in DRAM.

Permissions are established when the RDMA connection
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between nodes is created, and are granted by the application
code establishing the connection. They do not outlive the
process or survive a system restart. For two-sided verbs pro-
tection is enforced by the receiving application in an ad-hoc
manner: The receiver uses an out-of-band channel to decide
what permissions the sender has.

Access control for NVMM uses the traditional file system
design. Permissions are attached to each file and designated
for both individual users and groups. Unlike RDMA memory
regions and their rkeys, permissions are a property of the
underlying data and survive both process and system restart.

2.3.3 Allocation

RDMA verbs and NVMM files both directly access mem-
ory, so allocation and expansion of available memory is an
important metadata operation.

For NVMM file systems, the file system maintains a list
of free physical pages that can be used to create or extend
files. Creation of a file involves marshalling the appropriate
resources and linking the new pages into the existing file
hierarchy. Similarly, free pages can be linked to or detached
from existing files to grow or shrink the file. Changing the size
of DAX-mmap’d files is easy as well with calls to fallocate
and mremap.

Creating a new RDMA memory region consists of allocat-
ing the required memory resources, pinning their pages, and
generating the rkey. Note that although many RNICs are capa-
ble of handling physical addresses [32], the physical address
of a memory region is often out of the programmer’s control
(it depends, instead, on the implementation of malloc), and
the page is pinned once the region is registered, leading to a
fragmented physical address space.

In addition, changing the mapping of a memory region
is expensive. For example, to increase the memory region
size, the host server needs to deregister the memory region,
reregister a larger region, and send the changes to any inter-
ested clients. The rereg_mr verb combines deregistration and
registration but still carries significant overhead. MPI applica-
tions with public memory pool often use memory windows
to provide dynamic access control on top of a memory region.
This approach does not blend with NVMM file systems since
it still requires static mappings of the underlying memory
region.

Alternatively, programmers can add another memory region
to the connection or protection domain. However, as memory
regions require non-negligible metadata and RDMA does not
support multi-region accesses, this solution adds significant
complexity.

This fixed size limitation also prohibits common file system
operations and optimizations, such as appending to a file,
remapping file content, and defragmentation.

Physical Addr

UserVirt Addr

UserVirt AddrPinDown$

MTT

RNIC

Physical AddrDRAM

Application

OS

MR

File 
Layout

UserVirt AddrFile
Offset

File IO mmap()

NVMM

Application

OSVM Mapping
Pinned

VM Mapping
FS Managed

RDMA Address translation NVMM Address translation

Figure 1: Address translation for RDMA and NVMM.
RDMA (left) uses NIC-side address translation with pinning,
while NVMM (right) allows the file system to maintain the
layout of a file mapped to user address space.

2.3.4 Address Translation

RDMA and NVMM file system address translation mecha-
nisms ensure that their direct accesses hit the correct physical
page.

As shown in Figure 1, RDMA solves the problem of ad-
dress translation by pinning the virtual to physical address,
that is, as long as a memory region is registered, its virtual and
physical addresses cannot change. Once this mapping is fixed,
the RNIC is capable of handling memory regions registered
on virtual address ranges directly: the RNIC translates from
virtual addresses to physical addresses for incoming RDMA
verbs. To do this translation, the NIC maintains a memory
translation table (MTT) that holds parts of the system page
tables.

The MTT flattens the translation entries for the relevant
RDMA accessible pages and can be cached in the RNIC’s on-
board SRAM [54] to accelerate lookups of this mapping. The
pin-down cache is critical for getting good performance out
of RDMA — the pin-down cache is small (a few megabytes),
a miss is expensive, and due to its addressing mechanism,
most RNICs require all pages in a region be the same size. To
circumvent these limitations, researchers have done signifi-
cant work trying to make the most of the cache for addressing
large memories [14, 22, 35, 36, 43, 48, 56, 62]. While com-
plex solutions exist, the most common recommendation is
to reduce the number of translations needed (e.g., addressing
large contiguous memory regions with either huge pages or
physical addresses).

The NVMM file system handles address translation in
two ways, both different from RDMA. For regular reads and
writes, the file system translates file names with offsets to
physical addresses; this translation is done in the kernel dur-
ing the system call. For memory mapped accesses, mmap estab-
lishes a virtual to physical address mapping from userspace
directly to the file’s contents in NVMM, loading the mapping
into the page table. The file system only interferes on the page
fault handling when a translation is missing between the user
and physical addresses (i.e., a soft page fault); the file system
is bypassed on normal data accesses.

The different translation schemes interfere with each other
to create performance problems. If a page is accessible via
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Figure 2: RDMA Write performance over different mem-
ory region sizes. This figure shows the throughput of 8-byte
RDMA writes affected by the pin-down cache misses. Data
measured on Intel Optane DC Persistent Memory with an
Mellanox CX-3 RNIC.

RDMA, it is pinned to a particular physical address, and fur-
thermore, every page within the region must be the same size.
Therefore the file system is unable to update the layout of the
open file (e.g., to defragment or grow the file). As RDMA
impedes defragmentation of files and prohibits mixing page
sizes in RDMA accessible memory, memory regions backed
by files must use many small pages to address large regions,
overwhelming the pin-down cache and decimating RDMA
performance.

Figure 2 shows the impact of pin-down cache misses on
RDMA write throughput. Each work request writes 8 bytes to
a random 8-byte aligned offset. When the memory region size
is 16 MB, using 4 kB achieves 61.1% of the baseline (sending
physical addresses, no TLB or pin-down cache misses) per-
formance compared to 95.2% when using 2 MB hugepages.
When the region size hits 16 GB, even 2 MB pages is not
sufficient — achieving only 61.2% performance.

3 Design

FileMR is a new type of memory region that extends the
existing RDMA protocol to provide file-based abstractions
for NVMM. It requires minor changes to existing RDMA
protocol and does not rely on any specific design of the file
systems. FileMR can coexist with conventional RDMA mem-
ory regions, ensuring backward compatibility.

As shown in Table 1, the FileMR resolves the conflicts
between RDMA and NVMM file systems that cause unneces-
sary restrictions and performance degradation through several
innovations.

• Merged control plane: With an RDMA FileMR, a
client uses a file offset to address memory, instead of
a virtual or physical address. The FileMR also lever-
ages the naming, addressing, and permissions of the file
system to streamline RDMA access.

File System

Application

RDMA Library

File

❶open ❷mr creation

❸bind

RNIC Driver

❹sync

file,offset
data

NVMM

remote
data access

local
data access

metadata
access

offset�>phyaddr
OS

Userspace

Control Path

Data Path

Figure 3: FileMR: Control path and data path. The user
application communicates with the RDMA libraries and file
system in control path, and access local and remote NVMM
directly in datapath.

• Range-based address translation: The FileMR lever-
ages the file system’s efficient, extent-based layout de-
scription mechanism to reduce the amount of states the
NIC must hold. As files are already organized in con-
tinuous extents, we extend this addressing mechanism
to the RNIC, allowing the RNIC’s pin-down cache to
use a space efficient translation scheme to address large
amounts of RDMA accessible memory.

The rest of this section continues as follows. We begin
by describing the assumptions and definitions of FileMR,
followed by the core mechanisms. Then, we describe the
system architecture required to support our new abstraction.

3.1 Assumptions and Definitions

FileMR acts as an efficient and coordinated memory man-
agement layer across the userspace application, the system
software, and the RDMA networking stack. This paper as-
sumes the NVMM is actively managed by system software,
and we describe it as a file system. Note that the concept of a
file system is loosely defined: FileMR can be integrated with
a kernel file system, a userspace file system, or a userspace
NVMM library that accesses raw NVMM (also known as
device-DAX) and provides naming, where a file maps to a
corresponding entity.

This paper assumes NVMM is mapped to application ad-
dress space in its entire lifecycle: As described in Section 2.2,
the most prominent feature of NVMM is to have fine-grained
persistency at a very low cost [63]. The design goal of FileMR
is to enable remote NVMM accesses while retaining the sim-
plicity and efficiency of local NVMM accesses. An alternative
approach is to build holistic systems that manage both storage
(NVMM) and networking (RDMA), these related work will
be discussed in Section 8.2.
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3.2 FileMR

Our new abstraction, the FileMR, is an RDMA memory re-
gion that is also an NVMM file. This allows the RDMA and
NVMM control planes to interoperate smoothly. RDMA ac-
cesses to the FileMR are addressed by file offset, and the
file system manages the underlying file’s access permissions,
naming, and allocation as it would any file. NVMM files are
always backed by physical pages managed by the file system,
so, when using a FileMR, the RDMA subsystem can simply
reuse the translation, permission, and naming information al-
ready available in the file system metadata for the appropriate
checks and addressing.

Figure 3 shows an overview of metadata and data access
with FileMR. For metadata, before creating a FileMR, the
application opens the backing file with the appropriate per-
missions (step 1 ). Next, the application creates the FileMR
(step 2 ) and binds (step 3 ) the region to a file, which com-
pletes the region’s initialization. Binding the FileMR to the
file produces a filekey, analogous to an rkey, that remote clients
can use to access the FileMR. Once the FileMR is created
and bound to a backing file, the file system will keep the file’s
addressing information in sync with the RNIC (step 4 ).

For data access to a remote FileMR and its backing NVMM
file, applications use the FileMR (with the filekey to prove its
permissions) and a file offset. The RNIC translates between
file offsets and physical addresses using translation informa-
tion provided by the file system. In addition to one-sided read
and write verbs to the FileMR, we introduce a new one-sided
append verb that grows the region. When sending the append
verb, the client does not include the remote address, and the
server handles it like an one-sided write with address equal
to current size of FileMR. It then updates the FileMR size
and notifies the file system. As an optimization, to prevent
faulting on every append message, the file system can pre-
allocate translation entries beyond the size of a file. Even
while the backing file is opened and accessible via a FileMR,
local applications can continue to access it using normal file
system calls or mmapped addresses — any change to the file
metadata will be propagated to the RNIC.

3.3 Range-based Address Translation

NVMM file systems try to store file data in large, lin-
ear extents in NVMM. FileMR uses range-based address
translation within the MTT and pin-down cache through
a RangeMTT and range pin-down cache, respectively. This
change is a significant departure from traditional RDMA page-
based addressing. Unlike page-based translations, which trans-
late a virtual to physical address using sets of fixed size pages,
range-based translation (explored and used in CPU-side trans-
lation [5, 11, 23, 38]) maps a variably sized virtual address
range to physical address. Range-based address translation is
useful when addressing large linear memory regions (which
NVMM file systems strive to create) and neatly leverages the
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File System

RNIC Driver
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Figure 4: Overview of FileMR components. Implementing
FileMR requires changes in file system, RDMA stack and
hardware.

preexisting extent-based file organization.
For the FileMR, range-based address translation has two

major benefits: both the space required to store the mapping
and the time to register a mapping scale with the number of
variable-sized extents rather than with the number of fixed
size pages. Registering a page in the MTT and pin-down
cache takes about 5 µs, this process requires locking memory
descriptors and is hard to parallelize. As a result, a single core
can only register memory at 770 MB/s with 4 kB pages. For
NVMMs on the order of terabytes, the result registration time
will be unacceptably long.

3.4 Design Overview
The implementation of the FileMR RDMA extension requires
coordination and changes across several system components:
the file system, the RNIC, the core RDMA stack, and the
application. Figure 4 shows the vanilla RDMA stack (in grey)
along with the necessary changes to adopt FileMR (in green).

To support the FileMR abstraction, the file system is re-
quired to implement the bind() function to associate a
FileMR and a file, and, when necessary, notify the RDMA
stack (and eventually the RNIC’s RangeMTT and pin-down
cache) when the bound file’s metadata changes via callbacks
(see Table 2). These callbacks allow the RNIC to maintain
the correct range-based mappings to physical addresses for
incoming RDMA requests.

Optionally, the file system can also register a set of callback
functions triggered when RNIC cannot find a translation for
an incoming address. This process is similar to on-demand
paging [28, 29] and is required to support our new append
verb, which both modifies the file layout and writes to it.

Supporting the FileMR abstraction also requires changes
to the RNIC hardware. With our proposed RangeMTT, RNIC
hardware and drivers would need to adopt range-based ad-
dressing within both the MTT and pin-down cache. Hardware
range-based addressing schemes [5, 15, 23, 38] can be used to
implement range-based address lookup. In our experiments
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API Description
cm_bind() To notify RNIC of new bound file
cm_init() To initialize RangeMTT entries
cm_update() To update a RangeMTT entry
cm_invalidate() To invalidate a RangeMTT entry
cm_destroy() To destroy a file binding

Table 2: File system to RNIC callbacks for FileMRs. These
callbacks are used by the file system to notify the RDMA
stack and RNIC that file layouts (and consequently address
mappings) have changed.

API Description
bind() Binds an opened file to FileMR
ibv_reg_mr() Creates a FileMR with FILEMR flag
ibv_post_send() Posts append w/ APPEND flag (uverb)
ib_post_send() Posts append w/ APPEND flag (kverb)

Table 3: New/changed RDMA methods. These methods in
the RDMA interface are new or have new flags under the
FileMR system.

we simulate these changes using a software RNIC (see Sec-
tion 4).

The FileMR also adds incremental, backwards compatible
changes to the RDMA interface itself (see Table 3). It adds
a new access flag for memory region creation to identify the
creation of a FileMR. After its creation, the FileMR is marked
as being in an unprovisioned state — the subsequent bind()
call into the file system will allocate the FileMR’s translation
entries in the RangeMTT (via the cm_bind callback from the
file system). The bind() method can be implemented with an
ioctl() (for kernel-level file systems) or a library call (for
user-level file systems). The FileMR also adds the new one-
sided RDMA append verb. Converting existing applications
to use FileMRs is easy as the applications only need to change
its region creation code.

4 Implementation

We implemented the FileMR and RangeMTT for both the
kernel space and userspace RDMA stack in Linux, and our
implementations support the callbacks described in Table 2
and the changed methods in Table 3. The kernel implementa-
tion is based on Linux version 4.18, and userspace implemen-
tation is based on rdma-core (userspace) packages shipped
with Ubuntu 18.04. Table 4 summarizes our implementation
of FileMR with RangeMTT.

For our FileMR implementation on the NIC side, our im-
plementation is based on a software-based RNIC: Software
RDMA over Converged Ethernet (Soft-RoCE) [4,25]. Soft-
RoCE is a software RNIC built on top of ethernet’s layer 2
and layer 3. It fully implements the ROCEv2 specification.
Future research could work to build a FileMR compatible

Item Description
FileMR implementation on RDMA stack

K ibcore Range-based TLB and FileMR kverbs
U libibverbs FileMR verbs in userspace

FileMR support on soft-RoCE
K rxe Device driver and emu. RangeMTT.
U librxe Userspace driver

FileMR support for file system
K nova a NVMM-aware file system

Applications adapting FileMR
U novad Function stubs for remote file accesses
U libpmemlog NVMM log library

Table 4: Summary of FileMR implementation. This table
shows the components modified to implement FileMR. The
first column indicates the change is in kernel space (K) or
userspace (U).

RNIC in real hardware.
To implement our RangeMTT, we followed the design in-

troduced in Redundant Memory Mappings [23]: each FileMR
points to a b-tree that stores offsets and lengths, and we use
the offsets as indices. All RangeMTT entries are page-aligned
addresses, since OS can only manage virtual memory in page
granularity.

Unlike page-aligned RangeMTT, FileMR supports arbi-
trary sizes and allows sub-page files/objects. Each RangeMTT
entry consists of a page address, a length field and necessary
bits. These entries are non-overlapping and can have gaps for
sparse files.

To support the append verb, the FileMR allows translation
entries beyond its size. The append is one-sided but does not
specify remote server addresses in the WR. On the server side,
the RNIC always attempts to DMA to the current size of the
FileMR and increases its size on success. When the translation
is missing, the server can raise an IO page fault when IOMMU
is available and a file system routine will be called to fulfill
the faulty entries. Alternatively, if such support is unavailable,
the server signals the client via a message similar to a receiver
not ready (RNR) error.

Soft-RoCE manages the MTT entries as a flat array of 64-
bit physical addresses with lookup complexity of O(1). We
found similar design is implemented in hardware RNIC driver
such as mlx4. For FileMR with a range pin-down cache miss,
the entry lookup will traverse the registered data structures
with higher time complexity (O(log(n))).

Soft-RoCE does not have a pin-down cache since the map-
pings are in DRAM. To emulate the RangeMTT, we built a
4096-entry 4-way associative cache to emulate the traditional
pin-down cache, and a 4096-entry, 4-way associative range
pin-down cache for FileMR. Each range translation entry con-
sists of a 32 bit page address and a 32-bit length, which allows
a maximal FileMR size of 16 TB (4 kB pages) or 8 PB (2 MB
pages).
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Figure 5: Enabling remote NOVA accesses using FileMR.
Using FileMR, remote file accesses share a similar interface
over RDMA as local NVMM accesses.

We adapted two applications to use FileMR. For a kernel
file system, our implementation is based on NOVA [59], a
full-fledged kernel space NVMM-aware file system with good
performance. We also adapted the FileMR to libpmemlog,
part of pmdk [40], a user-level library that manages local
persistent objects, to build a remotely accessible persistent
log.

5 Case Studies

In this section we demonstrate the utility of our design with
our two case studies. In Section 5.1, we demonstrate how to
use FileMR APIs to enable remote file accesses with consis-
tent addressing for local and remote NVMM. In Section 5.2,
we extend libpmemlog [40], a logging library designed for lo-
cal persistent memory into a remotely accessible log, demon-
strating how FileMR can be applied to userspace libraries.

5.1 Remote File Access in NOVA

In this section, we demonstrate an example usage of our
FileMR by extending a local NVMM file system (NOVA [59]).
By combining the NVMM file system, RDMA, and our new
FileMR abstraction, we can support fast remote file accesses
that entirely bypass the kernel.

NOVA is a log-structured POSIX-compliant local NVMM
file system. In NOVA, each file is organized as a persistent
log of variably sized extents, where the extents reside on
persistent memory. The file data is allocated by the file sys-
tem through per-cpu free lists and maintained as coalescing
entries.

To handle metadata operations on the remote file system,
we added an user-level daemon novad. The daemon opens
the file to establish an FileMR, and receives any metadata

updates (e.g. directory creation) from remote applications and
applies them to the local file system.

On the client side, an application opens the file remotely by
communicating with novad and receiving the filekeys. It can
then send one-sided RDMA verbs to directly access remote
NVMM. At the same time, applications running locally can
still access the file with traditional POSIX IO interface, or
map the file to its address space and issue loads and stores
instructions.

Our combined system can also easily handle data repli-
cation. By using several FileMRs, we can simply duplicate
a verb (with the same or different filekeys depending on
the file system implementation) and send to multiple hosts,
without considering the physical address of the files (so long
as their names are equivalent).

5.2 Remote NVMM Log with libpmemlog

The FileMR abstraction only requires that the backing “file
system” to appropriately implement the bind() method,
RNIC callbacks, and have access to raw NVMM. For in-
stance, a FileMR can be created by an application having
access to the raw NVMM device. In this section, we lever-
age this flexibility and build a remote NVMM log based on
libpmemlog.

We modify the allocator of libpmemlog to use the neces-
sary FileMR callbacks — that is, whenever memory is allo-
cated or freed for the log, the RNIC’s RangeMTT is updated.
The client appends to the log with the new append verb. On
the server side, when the FileMR size is within the mapped
RangeMTT, the RNIC can perform the translation while by-
passing the server application. If not, a range fault occurs
and the library expands the region by allocating and mapping
additional memory.

6 Evaluation

In this section, we evaluate the performance of the FileMR.
First, we measure control plane metrics such as registration
cost, memory utilization of the FileMR, as well as the effi-
ciency of RangeMTT. Then we evaluate application-level data
plane performance from our two case studies and compare
FileMR-based applications with existing systems.

6.1 Experimental Setup

We run our FileMR on servers configured to emulate persis-
tent memory with DRAM. Each node has two Intel Xeon
(Broadwell) CPUs with 10 cores and 256 GB of DRAM,
with 64 GB configured as an emulated NVMM device. We
setup Soft-RoCE on an Intel X710 10GbE NIC connected to
a switch.
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Figure 6: FileMR registration time. This figure shows the
time consumed to register a fixed size memory region. The
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Workload # Files Avg. Size Description
Fileserver 7980 6.82 MB File IOs

Varmail 4511 11.3 kB Random IOs
Redis 2 561 MB Write + Append

SQLite 1 109 MB Write + Sync

Table 5: Workload Characteristics. Description of work-
loads to evaluate registration cost of FileMR and pin-down
cache hit rate.

6.2 Registration Overhead

Allocated Regions We measure the time consumed in
memory region registration using FileMRs versus conven-
tional user-level memory regions backed by NOVA with 4 kB
pages and anonymous buffers with 4 kB and 2 MB pages. This
experiment demonstrates the use case when an application
allocates and maps a file directly, without updating its meta-
data. For FileMR, we also include the time generating range
entries from NOVA logs, which happens when an application
opens the file for the first time.

As shown in Figure 6, registering a large size memory
region consumes a non-trivial amount of time. It takes over
30 seconds to register a 64 GB persistent (File) and volatile
(Alloc-4K) memory region with 4 kB pages. Using hugepages
(Alloc-2M) reduces the registration cost to 20 seconds, while
it only takes 67 ms for FileMR (three orders of magnitude
lower). The FileMR registration time increases modestly as
the region size grows mainly due to the internal fragmentation
of the file system allocator.

For small files, NOVA only creates one or two extents for
the file, while conventional MRs still interacts with the virtual
memory routines of the OS, causing overhead.

Data Fragmentation FileMR benefits from the contiguity
of the file data. The internal fragmentation of a file system
can happen for two reasons: file system aging [19, 45] and
using POSIX IO that changes file layout frequently. To evalu-
ate the FileMR performance in a fragmented file system, we
first warmed up the file system using four IO intensive work-
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Figure 7: FileMR on fragmented files. Compared to tradi-
tional MRs, FileMR saves registration cost and RNIC transla-
tion entries.

loads that issued POSIX IO requests: varmail and fileserver
workloads in filebench [53], Redis [41] and SQLite [46] (us-
ing MobiBench [18]). Once the file system was warmed up
and fragmented, we created memory regions over all files in
NVMM. Table 5 summarizes the workloads.

As shown in Figure 7, running FileMR over the fragmented
file still shows dramatic improvement on region registration
time and memory consumption for MTT entries. Fileserver
demonstrates the case with many files, where FileMR only
creates 0.5% of the entries of traditional memory regions, and
requires only 6.8% of the registration time. For a metadata-
heavy workload (Varmail), FileMR only reduces the number
of entries by 3% (due to the heavy internal fragmentation
and small file size), but it still saves 20% on registration time
because it holds the inode lock, which has less contention.
Redis is a key-value store that persists an append-only file on
the IO path, and flushes the database asynchronously — little
internal fragmentation means that it requires 2% of the space
and time of traditional memory regions. Similarly, SQLite
also uses logging, resulting in little fragmentation, and drastic
space and time savings.

6.3 Translation Cache Effectiveness

The performance degradation of RDMA over large NVMM
is mainly caused by the pin-down cache misses (Figure 2).
Since Soft-RoCE encapsulates RDMA messages in UDP and
accesses all RDMA state in DRAM, we cannot measure the
effectiveness of the cache through end-to-end performance.

Instead, we measure the cache hit ratio of our emulated
pin-down cache and range pin-down cache for FileMR. We
collect the trace of POSIX IO system calls for workloads
described in Table 5, and replay them with one-sided RDMA
verbs to a remote host.

Figure 8 shows the evaluation result. Our emulated range-
based pin-down cache is significantly more efficient (3.8× -
340×) than the page-based pin-down cache. For large allo-
cated files with a few entries, the range-based pin-down cache
shows near 100% hit rate (not shown in figure).
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FileMR can access remote file location without indirection
on datapath.

6.4 Accessing Remote Files

To evaluate the datapath performance, we let a client access
files on a remote server running novad (introduced in Sec-
tion 5.1). The client issues random 1 kB writes using RDMA
write verbs, and we measure the latency between the client
application issuing the verb and the remote RNIC DMAs to
the target memory address (memcopy for Soft-RoCE).

We compared FileMR with both mmapped local accesses
and other distributed systems that provide distributed storage
access. We implemented datapath-only versions of Mojim-
Emu [64], LITE-Emu [56] and Orion-Emu [62] for Soft-
RoCE. All these systems avoid translation overhead by send-
ing physical addresses on the wire. We will further discuss
these systems in Section 8.

In Figure 9, we show the latency breakdown of these sys-
tems. Note that the latencies of all systems are higher than
a typical RDMA NIC, because Soft-RoCE is less efficient
than a real RNIC. Also, we omit the latencies of UDP packet
encapsulation and delivery, which dominate the end-to-end
latency. It only takes 1.5 µs to store and persist 4 kB data
to local NVMM. FileMR has lower latency than other sys-
tems because it eliminates the need for any indirection layer
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Figure 10: Latency breakdown of accessing remote log.
With the append verb, Remote logging with FileMR achieves
similar performance to local one.

(msync() system call for Mojim, shared memory write for
LITE, and POSIX write for Orion).

6.5 Accessing Remote NVMM logs

Finally, we evaluate our introduction of the new append
verb using our remote log implementation introduced in Sec-
tion 5.2. We compare to a baseline libpmemlog on using
local NVMM (bypassing the network), as well as with log-
ging within the HERD RPC RDMA library [21, 22].

Figure 10 shows the latency breakdown of creating a
64 Byte log entry. It takes 5.5 µs to log locally with
libpmemlog. FileMR adds 53% overhead for remote vs. local
logging, while the HERD RPC-based solution adds 192%
overhead.

7 Discussion

The current FileMR implementation relies on software-based
RDMA protocols. In this section, we discuss the potential
benefits and challenges of applying FileMR on hardware and
other deeper changes to the RDMA protocol. We consider
them to be the future work of this paper.

Data Persistence For local NVMM, a store instruction is
persistent once data is evicted from CPU last-level cache (via
cache flush instructions and memory fences). A mechanism
called asynchronous DRAM refresh (ADR) ensures that the
write queue on a memory controller is flushed to nonvolatile
storage in the event of a power failure. There are no similar
mechanisms in the RDMA world since ADR does not extend
to PCIe devices. Making the task even more difficult, modern
NICs are capable of placing data into CPU cache using di-
rect cache access (DCA) [17], conceivably entirely bypassing
NVMM.

The current workaround to ensure RDMA write persistency
is to disable DCA and issue another RDMA read to the last
byte of a pending write [9], forcing the write to complete
and write to NVMM. Alternatively, the sender requests that
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the receiving CPU purposefully flush data it received; either
embedding the flush request in an extra send verb or the
immediate field of a write verb.

A draft standards working document has proposed adding
a commit [50] verb to the RDMA protocol to solve the write
persistency problem. A commit verb lists memory locations
that need to be flushed to persistence. When the remote RNIC
receives a commit verb, it ensures the all listed locations are
persistent before acknowledging completion of the verb.

With the introduction of FileMR, implementing data per-
sistence is simplified since there is no longer need to track
modified locations at the client: the RNIC already maintains
information about the files. A commit verb can simply request
that all updates to a file are persisted, which is analogous to an
fsync system call to a local file, which is usually light-weight.
Even better, since the commit needs little state, a commit flag
can be embedded to the latest write verb, reducing communi-
cation overhead.

Connection Management Several NVMM-based storage
systems [30,43,56,62] store data across nodes, or use a model
similar to distributed shared memory. This model requires es-
tablishing N2 connections for N servers with NVMM. For
user-level applications, the reliable connection transport en-
forces the protection domain within the scope of a process.
Thus a cluster with N servers running p processes will estab-
lish N2 × p2 connections.

Existing works [12, 12, 49] reduces this complexity by
sharing queue pairs [49], multiplexing connections [27] or
dynamically allocating connections [12] to reduce the RDMA
states. These optimizations work well for MPI-based appli-
cations, but it is challenging to implement them for NVMM
applications, especially for applications with fine-grained ac-
cess control. In particular, a file system supports complex
access control schemes, which may disallow sharing and mul-
tiplexing.

With the FileMR, the file permission is checked at the bind
step, and so each server only requires a single connection
to handle all file system requests, drastically reducing the
amount of states required to store on the RNIC.

For NVMM, data replication is essential for reliability and
availability. Existing RDMA-aware systems on distributed
NVMM [6,33,43,62,64] transfer data multiple times to repli-
cate NVMM because of the limitation (unreliable datagrams
and two-sided verbs) of the existing RDMA protocol. The
RDMA payload could be potentially multicasted by the cur-
rent network infrastructure with FileMR, allowing a single
RDMA verb to modify multiple copies of the same file.

Page Fault on NIC Some ethernet and RNICs support
page fault or on-demand paging [28, 29] (ODP). When using
ODP, instead of pinning memory pages, the IOMMU marks
the page as not present in IO virtual addresses. The RNIC
will raise an interrupt to operating system when attempting
DMA to a non-present page. The IO page fault handler then
fills the entry with the mapping.

With ODP, a page fault is very expensive. In our experiment,
it takes 475 µs to fulfill an IO page fault and complete a 8-byte
RDMA write on a Mellanox CX-4 RNIC. In contrast, it only
takes 1.4 µs to complete when the mapping is cached in the
RNIC. In general, prefetching is a common way to mitigate
the cost of frequent page faults. An optimization for ODP
introduces ioctl(advise_mr) to hint prefetching [44], and
recent research uses madvise system call to help prefetching
local NVMM [8].

The design of FileMR is orthogonal to ODP, though it
leverages the append verb. Fortunately, the file system is
situated to provide better locality by prefetching ranges based
on the file access pattern.

8 Related Work

The FileMR abstraction sits at the intersection of work in
address translation, RDMA, and NVMM systems.

8.1 Address Translation
Reducing the cost of address translations has been the focus
of work spanning decades. We here describe some common,
general approaches and how they can be applied to RDMA
and NVMM.

Using Hugepages Using hugepages is the standard way
to reduce address transaction overhead and TLB pressure.
In Linux, applications can explicitly allocate buffers from
libhugetlbfs, which manages and allocates from a pre-
defined page pool. An alternative is to allow the kernel to
manage hugepages transparently using transparent hugepages
(THP) [3, 37] or page swap [61] in the kernel, where the
OS tries to allocate hugepages and merge smaller pages into
hugepages (via compaction or swapping) in the background.

There are three drawbacks of using hugepages with RDMA
and NVMM considered. First of all, applications [21, 30, 36]
that use libraries such as libhugetlbfs will manage mem-
ory directly and bypass the file system. Second, transparent
hugepage will violate the consistency of the MTT entries
on the RNIC. Finally, since the current memory region uses
a flat namespace, only one type of memory region is sup-
ported, which causes fragmentation when using hugepages.
By introducing range-based translation, FileMR reduces the
number of translation table entries significantly, while retain
the support for file system managing the layout of the files.

Access Indirection Several existing works addressed the
issue of accessing flat memory space by introducing an indi-
rection layer for accesses and optimizing the communication
cost.

LITE [56] uses physical memory region and lets all requests
go into the kernel via shared memory. Remote Region [2]
also redirects requests to kernel but consists of a pseudo-
file system and a user library. Hotpot [43] and Mojim [64]
use customized interfaces over memory mapped regions with
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support such as data replication and allocation. Storm [35]
improves RDMA performance by introducing a new software
stack that creates less RDMA states.

With the customized interface, these systems manage the
data structures and RDMA states internally to reduce the state
handled by RNICs. Programming with these interfaces is un-
intuitive, especially when working with an NVMM library
that manages the data through memory-mapped files and han-
dles allocations with its interface. Additionally, maintaining
a physical memory region allows the remote server access
arbitrary physical addresses, including DRAM.

Virtual Memory Contiguity As the size of the physical
memory keeps increasing while the TLB size has grown
slowly, several previous works discuss the contiguity of vir-
tual memory address space. There are proposals on architec-
ture support for coalesced [38], range [23] or segment [5]
based address management, or accessing physical addresses
with necessary permission checks [15]. In this paper, we as-
sume the NIC hardware is capable of handling range-based
entries using one of these mechanisms. Using software-based
transparent page management [1, 61] can also increase the
contiguity of virtual memory.

8.2 RDMA and NVMM
As discussed in the introduction, building systems that lever-
age the direct memory access of RDMA and NVMM is ap-
pealing. Significant work has already been completed.

Large RDMA Regions Creating memory regions over
large memory with a flat namespace has become a popu-
lar choice for building RDMA-aware systems, even for those
without a persistent memory component. Several systems
use this strategy, including key-value stores [21, 34, 36], dis-
tributed memory allocators [2, 36, 55, 56], transactional sys-
tems, RPC protocols [20, 22, 47], and file systems [43, 62].
To better facilitate this use case, optimizations to the RDMA
protocol such as on-demand paging [28, 29], dynamically
connected transport [12], multi-path RDMA [31] have been
purposed.

NIC Design PASTE [16] is a customized NIC designed
for NVMM. It tightly couples the traditional networking
stack with the NVMM file system. It provides a holistic
design which performs naming and persistence in the net-
working stack. FileMR is designed for RDMA networking
with NVMM file system, and supports general purpose verbs.
FlexNIC [24] is a NIC that supports offloading software
routines, such as key-value interface and packet classifica-
tion down to the NIC. Floem [39] provides a programmable
abstraction that describes the offload scheme. In contrary,
FileMR focuses on a specific use case and can be further
extended to support rich semantics.

Distributed File Systems Building distributed file systems
by providing remote access at the file system level should pro-
vide remote access without interface changes. Orion [62] and

Octopus [30] are two distributed NVMM-aware file systems.
Orion is a kernel level file system that incorporates RDMA
functionalities, and uses physical addresses for RDMA ac-
cesses. Octopus is a user level file system using FUSE [26]
interface with hugepages to reduce page table entries. When
using these file systems, all POSIX file accesses are inter-
cepted and transferred with the file system routines.

There are two major issues in building distributed function-
alities in the file system layer: the overhead of calling file
systems routines and the granularity of access. In Linux, issu-
ing system calls are expensive and involve multiple memory
copies. In a DAX file system, the kernel still copies data from
user buffers for security purposes. For mmapped data, the
kernel supports “flushes” only in page granularity. These op-
erations are expensive on large memories because the kernel
needs to identify the dirty pages and persist them via memory
flushes.

Large Memory and Persistent Connection This paper
focuses on a particular way of utilizing RDMA networking:
create memory regions over large, persistent memory with a
flat namespace and maintain them for remote accesses during
the application lifecycle. Alternative mechanisms for manag-
ing accessible RDMA, including using bounce buffers [52],
registering a transient memory region for every access [51],
and using tricks (DMA MR [62], Fast MR [58], FastReg
MR [13]) require physical addresses in kernel space. We do
not consider these solutions because they violate the file sys-
tem’s ability to manage the physical address space.

9 Conclusion

The conflicting systems on metadata management between
NVMM and RDMA causes expensive translation overhead
and prevents the file system from changing its layout. This
work introduces two modifications to the existing RDMA pro-
tocol: the FileMR and range-based translation, thereby pro-
viding an abstraction that combines memory regions and files.
It improves the performance of RDMA-accessible NVMMs
by eliminating extraneous translations, while conferring other
benefits to RDMA including more efficient access permis-
sions and simpler connection management.
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