@: In-network Aggregation
for Multi-tenant Learning

Chonlam Lao*, Yanfang Le*, Kshiteej Mahajan, Yixi Chen,
Wenfei Wu, Aditya Akella, Michael Swift

Tsinghua University University of Wisconsin-Madison

* = co-primary ‘authors

Distributed Training (PS Architecture)

Parameter Servers (PS)

PS1

Workers
a, b, a, b, CE! b, d, b, Gradients

Workerl Worker2 Worker3 Worker4

Distributed Training (PS Architecture)

Parameter Servers (PS)

PS1

Workers
a, b, a, b, CE! b, d, b, Gradients

Workerl Worker2 Worker3 Worker4

Distributed Training (PS Architecture)

Parameter Servers (PS) a’ = a,+a,+az+a,

PS1

Workers
a, b, a, b, CE! b, a, b, Gradients

Workerl Worker2 Worker3 Worker4

Distributed Training (PS Architecture)

Parameter Servers (PS) a’ = a,+a,+az+a,

PS1

Worker
bl

Gradients

Workerl Worker2 Worker3 Worker4

Distributed Training (PS Architecture)

Parameter Servers (PS) a’ = a,+a,+az+a,

[
: Network can be bottleneck for Distributed Training :

\ __________ | | I S S T . T I S S T T I e S T b .
Worker
b1 bz b3 b4 Gradients

Workerl Worker2 Worker3 Worker4

Trend of In-network Computation

* Programmable switch offers in-transit packet processing and in-
network state

Packet
Egress

Packet

Ingress Traffic
- Manager -

Trend of In-network Computation

* Programmable switch offers in-transit packet processing and in-
network state

Packet
Egress

Packet

Ingress Register Register Traffic . Register Register
. Manager

Trend of In-network Computation

* Programmable switch offers in-transit packet processing and in-
network state

Packet
Egress

Packet

Ingress Register Register Traffic . Register Register
. Manager

* Reduce training time by moving gradient aggregation into the
network

State-of-the-art In-network Aggregation

* SwitchML (Sapio et al. NSDI'21)

* Target single-rack settings

State-of-the-art In-network Aggregation

. . , Job 1 Job 2
* SWItChML (Saplo et al‘ NSDI 21) Worker 1 Worker 2 Worker 1 Worker 2
* Target single-rack settings
* Support multiple jobs by static L A Switch T
partitioning of switch resources — Em——

. | Register(s) Register(s)

--

State-of-the-art In-network Aggregation

Job 1 Job 2

. .)
° SWItChML (Saplo et al‘ NSDI 21) Worker 1 Worker 2 Worker 1 Worker 2
* Target single-rack settings
* Support multiple jobs by static L A Switch T
partitioning of switch resources — Em——
« Short comings I

State-of-the-art In-network Aggregation

. . . , Job 1 Job 2
SWItChML (Saplo et al' NSDI 21) Worker 1 Worker 2 Worker 1 Worker 2
* Target single-rack settings
* Support multiple jobs by static S 1; """""" switch 1; """"" 3
partitioning of switch resources { R1R2 - R3 } { — 1
* Short comings | — | —
* |Inefficiently use the switch resources 40
D 35FAAAAMM - A A KAA & A Ak
& 30}
=250 |
3 201 e e i e b f i
5150 F ot e e b b
3 10L- L b Lo b
E (] FOS SURURUIURROS UUNY NRURRRRRUNE OURY RURRURRITSY UOUN SUURURDUOUUON IOUS USURRRIRIOY OO
N ; 1 1 1
0 250 500 750 1000 1250

Time(ms)
4

State-of-the-art In-network Aggregation

.] Job1 Job 2
* SWItChML (Saplo et al' NSDI’Z]') [Worker1 Worker 2 } [Worker1 Worker 2 }
* Target single-rack settings
* Support multiple jobs by static i 1; """""" Sswitch 1; """"" 1
partitioning of switch resources { R1R2 - R3 } { — 1
* Short comings i
* |Inefficiently use the switch resources 40

o 5 5 5
c S R) R € VD€ TN (5 B S
=0 D 1 1 (U 1
0 250 500 750 1000 1250

Time(ms)

4

State-of-the-art In-network Aggregation

.] Job1 Job 2
* SWItChML (Saplo et al' NSDI’Z]') [Worker1 Worker 2 } [Worker1 Worker 2 }
* Target single-rack settings
* Support multiple jobs by static i 1; """""" Sswitch 1; """"" 1
partitioning of switch resources { R1R2 - R3 } { — 1
* Short comings i
* |Inefficiently use the switch resources 40

* Does not consider multi-rack setting

o 5 5 5
c S R) R € VD€ TN (5 B S
=0 D 1 1 { 1
0 250 500 750 1000 1250

Time(ms)

4

State-of-the-art In-network Aggregation

)] , Job 1 Job 2
]
SWItChML (Saplo et al‘ NSDI 21) Worker 1 Worker 2 Worker 1 Worker 2
* Target single-rack settings
* Support multiple jobs by static ST Sswitch YT
partitioning of switch resources : B —
. ' | Register(s Register(s |
* Short comings i —
* |nefficiently use the switch resources
* Does not consider multi-rack setting
BERT-Large Training Times on GPUs
Time System Number of Nodes Number of V100 GPUs
47 min DGX SuperPOD | 92 x DGX-2H 1,472

67 min DGX SuperPOD 64 x DGX-2H 1,024

Key Goal

Speed up multiple DT jobs in a cluster while
maximizing the benefits from in-network
multi-switch aggregation

Outline

e Multi-tenant
e Multi-rack

* Additional challenges
* Reliability
* Congestion control
* Improve floating point computation

e Fvaluation

Multi-tenant: dynamic allocation

--

Multi-tenant: dynamic allocation

* Objective: maximize switch resource utilization
* Key idea: dynamic allocation in per-packet level

--

L LN J() o
[I Il Il]% J% % %[I I Il)
[I I J(| [I I I I I]

Multi-tenant: dynamic allocation

* Objective: maximize switch resource utilization
* Key idea: dynamic allocation in per-packet level

Aggregator

o
A S S) S G S G S S B A
((% | ((
() (|] ())

Multi-tenant: dynamic allocation

* Objective: maximize switch resource utilization

* Key idea: dynamic allocation in per-packet level
 Randomly hash gradient packets to whole memory

Aggregator

o
N D S) S G S S S S B e
((% | [((
(J (| J (J(J
Switch

Multi-tenant: dynamic allocation

* Objective: maximize switch resource utilization

* Key idea: dynamic allocation in per-packet level
 Randomly hash gradient packets to whole memory

Aggregator
" Job2) -

°
Worker 1 :"‘ l ll "](][][]['][' """"] [""""] ["""" : """"""" “l
L [I | [| [l [| |)
Worker 2 o [[([[)l '
L] [[)i [J(J(
__ Switch
Workern | Tt
[Job 2 | ps }
7

Multi-tenant: dynamic allocation

* Objective: maximize switch resource utilization

* Key idea: dynamic allocation in per-packet level
 Randomly hash gradient packets to whole memory

Aggregator
" Job2) -

o
Worker 1 :"‘ l ll "](][][]["""] ' [""""] [""""] """" : """"""" . ‘I
] S S S — —— =) |
Worker 2 i~ [[[[[I .
- i |
__ Switch
Workern
[Jobz ps}
7

Multi-tenant: dynamic allocation

* Objective: maximize switch resource utilization

* Key idea: dynamic allocation in per-packet level
 Randomly hash gradient packets to whole memory

Aggregator
" Job2) -

o
Worker 1 :"‘ l ll "](][][][][' """"] [""""] ["""" : """"""" “l
o [I) (((l l | |]
Worker 2 i~ () (((((J('
N [(I)
___ Switch
Workern | Tt
[Jobz ps}
7

Multi-tenant: dynamic allocation

* Objective: maximize switch resource utilization

* Key idea: dynamic allocation in per-packet level
 Randomly hash gradient packets to whole memory

Aggregator
" Job2) -

°

Worker 1 :"‘ l ll "](][][][]["""] [""""] ["""" : """"""" “l

o [[| [| [| l [
Worker 2 5 ;_ [) [[[[[)l '

— |) [[).) J(J(

e I O Switch _
Worker n j
[Job 2 | ps }
7

Multi-tenant: dynamic allocation

* Objective: maximize switch resource utilization

* Key idea: dynamic allocation in per-packet level
 Randomly hash gradient packets to whole memory

Aggregator
" Job2) -

°
Worker 1 :"‘ l ll "](][][][]["""] [""""] ["""" : """"""" “l
o [I | [| [l l | |]
Worker 2 : ;_ () ([[([)l '
— i) [[|) J(J(
| Switch

Multi-tenant: dynamic allocation

* Objective: maximize switch resource utilization

* Key idea: dynamic allocation in per-packet level
 Randomly hash gradient packets to whole memory

7 Job2)
Worker1 7T = | — T T) === o s resesespssess ey
C) & X J I |) D
Worker 2 [R S S S S S S
(N s S S S 0 G S .
_______________________ Switch
Workern
N J

Multi-tenant: dynamic allocation

* Objective: maximize switch resource utilization

* Key idea: dynamic allocation in per-packet level
 Randomly hash gradient packets to whole memory

" Job2)

Worker 1

Worker 2

Worker n

Multi-tenant: dynamic allocation

* Objective: maximize switch resource utilization

* Key idea: dynamic allocation in per-packet level
 Randomly hash gradient packets to whole memory

" Job2)

Worker 1

Worker 2

Worker n

Multi-tenant: dynamic allocation

* Objective: maximize switch resource utilization

* Key idea: dynamic allocation in per-packet level
 Randomly hash gradient packets to whole memory

" Job2)

Worker 1 ¥~

Worker 2 €—

Worker n <

Challenge 1: Heavy Contention

Job 3
(-
7 Job2)

Worker 1

Worker 2

Challenge 1: Heavy Contention
Best-effort

Job 3
(-
7 Job2)

Worker 1

Worker 2

Challenge 1: Heavy Contention
Best-effort

Job 3
(-
7 Job2)

Worker 1

Worker 2

Challenge 1: Heavy Contention
Best-effort

Job 3
(-
7 Job2)

Worker 1

Worker 2

Challenge 1: Heavy Contention
Best-effort

Job 3
[
7 Job2)

Worker 1

Worker 2

Challenge 1: Heavy Contention
Best-effort

Job 3
[
7 Job2)

Worker 1

Worker 2

Challenge 1: Heavy Contention
Best-effort

Job 3

s

7 Job2)

Worker 1 +—

Worker 2 <

10

Challenge 2: Incomplete Aggregation

Job 3
[
7 Job2)

Worker 1

Worker 2

Challenge 2: Incomplete Aggregation

Job 3
[
7 Job2)

Worker 1 a1

Worker 2

Challenge 2: Incomplete Aggregation

Job 3
[
7 Job2)

Worker 1 a1

Worker 2

Challenge 2: Incomplete Aggregation

Job 3
[
7 Job2)

Worker 1 a1

Worker 2

Challenge 2: Incomplete Aggregation

Job 3
[
7 Job2)

Worker 1

Worker 2 aZ

Challenge 2: Incomplete Aggregation

Job 3
[
7 Job2)

Worker 1

Worker 2 aZ

Challenge 2: Incomplete Aggregation

Job 3
[
7 Job2)

Worker 1

Worker 2

Challenge 2: Incomplete Aggregation

Job 3
[
7 Job2)

Worker 1 =] b

Worker2 < C

Challenge 2: Incomplete Aggregation

Job 3
{---

Job2)

Worker 1

Worker 2

Challenge 2: Incomplete Aggregation

Job 3
{---

Job2

Worker 1 a1

Worker 2 aZ
a..
a,

Inter-Rack Aggregation

* Aggregation at every layer of network topology
* Nondeterministic routing, i.e., ECMP

Inter-Rack Aggregation

* Aggregation at every layer of network topology
* Nondeterministic routing, i.e., ECMP

e Support two-level aggregation at ToR switches
 Workers and PS(es) locate in different racks

Datacenter Network

14

Inter-Rack Aggregation

* Aggregation at every layer of network topology
* Nondeterministic routing, i.e., ECMP

e Support two-level aggregation at ToR switches
 Workers and PS(es) locate in different racks

Datacenter Network

14

Inter-Rack Aggregation

* Aggregation at every layer of network topology
* Nondeterministic routing, i.e., ECMP

e Support two-level aggregation at ToR switches
 Workers and PS(es) locate in different racks

Datacenter Network

14

Inter-Rack Aggregation

* Aggregation at every layer of network topology
* Nondeterministic routing, i.e., ECMP

e Support two-level aggregation at ToR switches
 Workers and PS(es) locate in different racks

Datacenter Network

al’+a2’
+a5+ab6

14

Inter-Rack Aggregation

* Aggregation at every layer of network topology
* Nondeterministic routing, i.e., ECMP

e Support two-level aggregation at ToR switches
 Workers and PS(es) locate in different racks
* Scale up to 1024 workers

Datacenter Network

al’+a2’
+a5+ab6

14

Additional Challenges

Additional Challenges

* Rethink reliability
* Recovery from packet loss
* Ensure exact once aggregation
* Memory leak: aggregators are reserved forever, but not used

Additional Challenges

* Rethink reliability
* Recovery from packet loss
* Ensure exact once aggregation
* Memory leak: aggregators are reserved forever, but not used

e Rethink congestion control
* N flows merged into one flow communication
* Drop congestion signal, i.e., ECN

Additional Challenges

* Rethink reliability
* Recovery from packet loss
* Ensure exact once aggregation
* Memory leak: aggregators are reserved forever, but not used

* Rethink congestion control

* N flows merged into one flow communication
* Drop congestion signal, i.e., ECN

* Improve the floating point computation

e Convert gradients to 32-bit integer at workers by a scaling factor
* Aggregation overflow at switch

ATP Implementation and Evaluation

* Implementation
* Replace the networking stack of BytePS at the end host

* Use P4 to implement the in-network aggregation service at Barefoot Tofino
switch

e Fvaluation

* Setup: 9 servers, each with one GPU, one 100G NIC

e Baseline: (BytePS + TCP, BytePS+ RDMA) x (Nto1, NtoN), SwitchML,
Horovod+RDMA, Horovod+TCP

* Metrics: Training Throughput, Time-to-Accuracy

 Workloads: AlexNet, VGG11, VGG16, VGG19, ResNet50, ResNet101, and
ResNet152

Single Job Performance

= Horovod TCP 1 BytePS NtoN RDMA N1 Horovod RDMA
[1 BytePS NtoN TCP

H
o
o

N l- ATP [BytePS Ntol TCP 1 SwitchML

N
o
o

Training Throughput
(image/sec)

o

Single Job Performance

= Horovod TCP [BytePS NtoN RDMA N1 Horovod RDMA
[1 BytePS NtoN TCP

AN
o
o

Q B ATP =4 BytePS Nto1 TCP E1 SwitchML
N

N
o
o

Training Throughput
(image/sec)

II ATP is comparable to, and outperforms the state-of-the-art approaches. |

I ATP gets larger performance gains on network-intensive workloads (VGG) |
\ than the computation-intensive workloads (ResNet). '

Multiple Jobs: dynamic (ATP) vs static

* 3VGG16 Jobs

e Static approach evenly
distributes aggregators to jobs

* PTA: the number of the
aggregators to make each job to
achieve the peak aggregation
throughput

Multiple Jobs: dynamic (ATP) vs static

200

[+ Dynamic —— Static]

* 3VGG16 Jobs

e Static approach evenly
distributes aggregators to jobs

* PTA: the number of the
aggregators to make each job to
achieve the peak aggregation

01— | | | | |
throughput 100% 85% 75% 60% 45% 33%
Percent of Peak Throughput Aggregators

—h
o)
o

o)
o

Training Throughput
(image/sec)
3

18

Multiple Jobs: dynamic (ATP) vs static

200

[+ Dynamic —— Static]

* 3VGG16 Jobs

e Static approach evenly
distributes aggregators to jobs

* PTA: the number of the
aggregators to make each job to
achieve the peak aggregation

01— | | | | |
throughput 100% 85% 75% 60% 45% 33%
Percent of Peak Throughput Aggregators

—h
o)
o

o)
o

Training Throughput
(image/sec)
3

18

Multiple Jobs: dynamic (ATP) vs static

5 200
o
* 3VGG16 Jobs -gn»g 150, .
e Static approach evenly SIR%
distributes aggregators to jobs ;& g 100
©
* PTA: the number of the £ E o] _ _
aggregators to make each jobto £ ™ [+ Dynamic —— Sta’[IC]
achieve the peak aggregation ,'_3

01— | | | | |
throughput 100% 85% 75% 60% 45% 33%
Percent of Peak Throughput Aggregators

18

Multiple Jobs: dynamic (ATP) vs static

s

[+ Dynamic —— Static]

* 3VGG16 Jobs

e Static approach evenly
distributes aggregators to jobs

* PTA: the number of the
aggregators to make each job to
achieve the peak aggregation ol | | | | |
throughput 100% 85% 75% 60% 45% 33%

Percent of Peak Throughput Aggregators

—h
o)
o

o)
o

Training Throughput
(image/sec)
3

| When switch memory is sufficient, ATP’s dynamic = static |
| When switch memory is insufficient, ATP’s dynamic > static *

Multiple Jobs: dynamic (ATP) vs static

200

-
o
* 3VGG16 Jobs -go»g 150. —
e Static approach evenly ow
, B e O T 0 - Y e €) 1Y 2 o U —

I More evaluations about packet loss recovery overhead, time-to-accuracy,

I congestion control in various scenarios.

\ e =
throughput 100% 85% 75% 60% 45% 33%

Percent of Peak Throughput Aggregators

| When switch memory is sufficient, ATP’s dynamic = static |
I When switch memory is insufficient, ATP’s dynamic > static !

18

@ Summary

* A network service that supports best-effort, dynamic in-network
aggregation aimed at multi-rack, multi-tenant

* Co-design end-host and switch logic
* Reliability
* Congestion control
* Dealing with floating point

Opensource: https://github.com/in-ATP/ATP

19

https://github.com/in-ATP/ATP

Thank You!

Opensource: https://github.com/in-ATP/ATP

@: In-network Aggregation
for Multi-tenant Learning

Chonlam Lao*, Yanfang Le*, Kshiteej Mahajan, Yixi Chen,
Wenfei Wu, Aditya Akella, Michael Swift

Tsinghua University University of Wisconsin-Madison

* = co-primary‘authors

https://github.com/in-ATP/ATP

