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Distributed Training (PS Architecture)

Parameter Servers (PS) a’ = a,+a,+az+a,

[
: Network can be bottleneck for Distributed Training :
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Trend of In-network Computation

* Programmable switch offers in-transit packet processing and in-
network state
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* Reduce training time by moving gradient aggregation into the
network
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State-of-the-art In-network Aggregation

) ] , Job 1 Job 2
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BERT-Large Training Times on GPUs
Time System Number of Nodes Number of V100 GPUs
47 min DGX SuperPOD | 92 x DGX-2H 1,472

67 min DGX SuperPOD 64 x DGX-2H 1,024



Key Goal

Speed up multiple DT jobs in a cluster while
maximizing the benefits from in-network
multi-switch aggregation



Outline

e Multi-tenant
e Multi-rack

* Additional challenges
* Reliability
* Congestion control
* Improve floating point computation

e Fvaluation
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Inter-Rack Aggregation

* Aggregation at every layer of network topology
* Nondeterministic routing, i.e., ECMP

e Support two-level aggregation at ToR switches
 Workers and PS(es) locate in different racks
* Scale up to 1024 workers

Datacenter Network
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Additional Challenges

* Rethink reliability
* Recovery from packet loss
* Ensure exact once aggregation
* Memory leak: aggregators are reserved forever, but not used

* Rethink congestion control

* N flows merged into one flow communication
* Drop congestion signal, i.e., ECN

* Improve the floating point computation

e Convert gradients to 32-bit integer at workers by a scaling factor
* Aggregation overflow at switch



ATP Implementation and Evaluation

* Implementation
* Replace the networking stack of BytePS at the end host

* Use P4 to implement the in-network aggregation service at Barefoot Tofino
switch

e Fvaluation

* Setup: 9 servers, each with one GPU, one 100G NIC

e Baseline: ( BytePS + TCP, BytePS+ RDMA ) x (Nto1, NtoN ), SwitchML,
Horovod+RDMA, Horovod+TCP

* Metrics: Training Throughput, Time-to-Accuracy

 Workloads: AlexNet, VGG11, VGG16, VGG19, ResNet50, ResNet101, and
ResNet152
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II ATP is comparable to, and outperforms the state-of-the-art approaches. |

I ATP gets larger performance gains on network-intensive workloads (VGG) |
\ than the computation-intensive workloads (ResNet). '
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Multiple Jobs: dynamic (ATP) vs static
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I More evaluations about packet loss recovery overhead, time-to-accuracy,

I congestion control in various scenarios.
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I When switch memory is insufficient, ATP’s dynamic > static !
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@ Summary

* A network service that supports best-effort, dynamic in-network
aggregation aimed at multi-rack, multi-tenant

* Co-design end-host and switch logic
* Reliability
* Congestion control
* Dealing with floating point

Opensource: https://github.com/in-ATP/ATP
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Thank You!

Opensource: https://github.com/in-ATP/ATP
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