D: In-network Aggregation for Multi-tenant Learning

Chonlam Lao*, Yanfang Le*, Kshiteej Mahajan, Yixi Chen, Wenfei Wu, Aditya Akella, Michael Swift

Tsinghua University University of Wisconsin-Madison

* = co-primary ¹authors

Trend of In-network Computation

 Programmable switch offers in-transit packet processing and innetwork state

Trend of In-network Computation

 Programmable switch offers in-transit packet processing and innetwork state

Trend of In-network Computation

 Programmable switch offers in-transit packet processing and innetwork state

Reduce training time by moving gradient aggregation into the network

- SwitchML (Sapio et al. NSDI'21)
 - Target single-rack settings

- SwitchML (Sapio et al. NSDI'21)
 - Target single-rack settings
 - Support multiple jobs by static partitioning of switch resources

- SwitchML (Sapio et al. NSDI'21)
 - Target single-rack settings
 - Support multiple jobs by static partitioning of switch resources
- Short comings

- SwitchML (Sapio et al. NSDI'21)
 - Target single-rack settings
 - Support multiple jobs by static partitioning of switch resources
- Short comings
 - Inefficiently use the switch resources

- SwitchML (Sapio et al. NSDI'21)
 - Target single-rack settings
 - Support multiple jobs by static partitioning of switch resources
- Short comings
 - Inefficiently use the switch resources

- SwitchML (Sapio et al. NSDI'21)
 - Target single-rack settings
 - Support multiple jobs by static partitioning of switch resources
- Short comings
 - Inefficiently use the switch resources
 - Does not consider multi-rack setting

- SwitchML (Sapio et al. NSDI'21)
 - Target single-rack settings
 - Support multiple jobs by static partitioning of switch resources
- Short comings
 - Inefficiently use the switch resources
 - Does not consider multi-rack setting

BERT-Large Training Times on GPUs

Time	System	Number of Nodes	Number of V100 GPUs
47 min	DGX SuperPOD	92 x DGX-2H	1,472
67 min	DGX SuperPOD	64 x DGX-2H	1,024

Key Goal

Speed up multiple DT jobs in a cluster while maximizing the benefits from in-network multi-switch aggregation

- Multi-tenant
- Multi-rack
- Additional challenges
 - Reliability
 - Congestion control
 - Improve floating point computation
- Evaluation

- Objective: maximize switch resource utilization
- Key idea: dynamic allocation in per-packet level

- Objective: maximize switch resource utilization
- Key idea: dynamic allocation in per-packet level

- Objective: maximize switch resource utilization
- Key idea: dynamic allocation in per-packet level
 - Randomly hash gradient packets to whole memory

- Objective: maximize switch resource utilization
- Key idea: dynamic allocation in per-packet level
 - Randomly hash gradient packets to whole memory

- Objective: maximize switch resource utilization
- Key idea: dynamic allocation in per-packet level
 - Randomly hash gradient packets to whole memory

- Objective: maximize switch resource utilization
- Key idea: dynamic allocation in per-packet level
 - Randomly hash gradient packets to whole memory

- Objective: maximize switch resource utilization
- Key idea: dynamic allocation in per-packet level
 - Randomly hash gradient packets to whole memory

- Objective: maximize switch resource utilization
- Key idea: dynamic allocation in per-packet level
 - Randomly hash gradient packets to whole memory

- Objective: maximize switch resource utilization
- Key idea: dynamic allocation in per-packet level
 - Randomly hash gradient packets to whole memory

- Objective: maximize switch resource utilization
- Key idea: dynamic allocation in per-packet level
 - Randomly hash gradient packets to whole memory

- Objective: maximize switch resource utilization
- Key idea: dynamic allocation in per-packet level
 - Randomly hash gradient packets to whole memory

- Objective: maximize switch resource utilization
- Key idea: dynamic allocation in per-packet level
 - Randomly hash gradient packets to whole memory

Challenge 1: Heavy Contention

PS

12

13

- Aggregation at every layer of network topology
 - Nondeterministic routing, i.e., ECMP

- Aggregation at every layer of network topology
 - Nondeterministic routing, i.e., ECMP
- Support two-level aggregation at ToR switches
 - Workers and PS(es) locate in different racks

- Aggregation at every layer of network topology
 - Nondeterministic routing, i.e., ECMP
- Support two-level aggregation at ToR switches
 - Workers and PS(es) locate in different racks

- Aggregation at every layer of network topology
 - Nondeterministic routing, i.e., ECMP
- Support two-level aggregation at ToR switches
 - Workers and PS(es) locate in different racks

- Aggregation at every layer of network topology
 - Nondeterministic routing, i.e., ECMP
- Support two-level aggregation at ToR switches
 - Workers and PS(es) locate in different racks

- Aggregation at every layer of network topology
 - Nondeterministic routing, i.e., ECMP
- Support two-level aggregation at ToR switches
 - Workers and PS(es) locate in different racks
 - Scale up to 1024 workers

- Rethink reliability
 - Recovery from packet loss
 - Ensure exact once aggregation
 - Memory leak: aggregators are reserved forever, but not used

- Rethink reliability
 - Recovery from packet loss
 - Ensure exact once aggregation
 - Memory leak: aggregators are reserved forever, but not used
- Rethink congestion control
 - N flows merged into one flow communication
 - Drop congestion signal, i.e., ECN

- Rethink reliability
 - Recovery from packet loss
 - Ensure exact once aggregation
 - Memory leak: aggregators are reserved forever, but not used
- Rethink congestion control
 - N flows merged into one flow communication
 - Drop congestion signal, i.e., ECN
- Improve the floating point computation
 - Convert gradients to 32-bit integer at workers by a scaling factor
 - Aggregation overflow at switch

ATP Implementation and Evaluation

- Implementation
 - Replace the networking stack of BytePS at the end host
 - Use P4 to implement the in-network aggregation service at Barefoot Tofino switch
- Evaluation
 - Setup: 9 servers, each with one GPU, one 100G NIC
 - **Baseline:** (BytePS + TCP, BytePS+ RDMA) x (Nto1, NtoN), SwitchML, Horovod+RDMA, Horovod+TCP
 - **Metrics:** Training Throughput, Time-to-Accuracy
 - Workloads: AlexNet, VGG11, VGG16, VGG19, ResNet50, ResNet101, and ResNet152

Single Job Performance

Single Job Performance

- 3 VGG16 Jobs
- Static approach evenly distributes aggregators to jobs
- PTA: the number of the aggregators to make each job to achieve the peak aggregation throughput

- 3 VGG16 Jobs
- Static approach evenly distributes aggregators to jobs
- PTA: the number of the aggregators to make each job to achieve the peak aggregation throughput

- 3 VGG16 Jobs
- Static approach evenly distributes aggregators to jobs
- PTA: the number of the aggregators to make each job to achieve the peak aggregation throughput

- 3 VGG16 Jobs
- Static approach evenly distributes aggregators to jobs
- PTA: the number of the aggregators to make each job to achieve the peak aggregation throughput

- 3 VGG16 Jobs
- Static approach evenly distributes aggregators to jobs
- PTA: the number of the aggregators to make each job to achieve the peak aggregation throughput

- A network service that supports best-effort, dynamic in-network aggregation aimed at multi-rack, multi-tenant
- Co-design end-host and switch logic
 - Reliability
 - Congestion control
 - Dealing with floating point

Opensource: https://github.com/in-ATP/ATP

Thank You!

Opensource: <u>https://github.com/in-ATP/ATP</u>

for Multi-tenant Learning

Chonlam Lao*, Yanfang Le*, Kshiteej Mahajan, Yixi Chen, Wenfei Wu, Aditya Akella, Michael Swift

Tsinghua University University of Wisconsin-Madison

* = co-primary²⁰authors