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Abstract
High performance, strongly consistent applications are be-
ginning to require scalable sub-microsecond clock synchro-
nization. State-of-the-art clock synchronization focuses on
improving accuracy or frequency of synchronization, ignoring
the properties of the local clock: lost of connectivity to the
remote clock means synchronization failure.

Our system, Graham, leverages the fact that the local clock
still keeps time even when connectivity is lost and builds
a failure model using the characteristics of the local clock
and the desired synchronization accuracy. Graham charac-
terizes the local clock using commodity sensors present in
nearly every server and leverages this data to further improve
clock accuracy, increasing the tolerance of Graham to failures.
Graham reduces the clock drift of a commodity server by
up to 2000×, reducing the maximum assumed drift in most
situations from 200ppm to 100ppb.

1 Introduction

The ever increasing performance demands of strongly con-
sistent distributed applications has driven a desire for tightly
synchronized clocks. Instead of communicating over the net-
work, servers can establish an order over messages using a
timestamp from a local clock [7, 18, 30]. Leveraging syn-
chronized clocks has become more pervasive as applications
require tighter latencies that approach the latency of the net-
work itself. However, deploying finely synchronized clocks
at scale remains a significant challenge, often requiring the
use of specialized hardware [20, 22],.

In an ideal system, synchronizing clocks would be a triv-
ial task. Clocks would never drift (lose or gain time) and a
synchronized clock would stay synchronized forever. In real
systems, however, clocks drift, so synchronization needs to be
done frequently to keep clocks in time. Spanner [7], for exam-
ple, assumes 200ppm drift, which translates into 200µs/s, a
second roughly every hour, or a minute every 4 days. This drift
increases clock uncertainty (ε) and limits the performance of

applications leveraging clocks, which must wait out the un-
certainty. State-of-the-art systems today assume high clock
drift and focus on increasing synchronization precision and
frequency, with specialized hardware performing as many as
10K synchronizations per second to achieve sub-microsecond
clock synchronization [17, 20, 22, 28]. Furthermore, systems
assume missed synchronizations result in loss of synchroniza-
tion, resulting in potentially unnecessary shutdowns due to
clock uncertainty exceeding application requirements [20].

The clocks which drive the processor and timestamping
hardware, however, are required to drift far less than these
systems expect: datasheets from several vendors specify a
clock crystal with at least ±20ppm temperature stability [9,
26]. An unstable clock could cause the system to violate the
tight timing requirements required by the processor, memory
and I/O subsystem. Local clocks can be much more stable
than most systems assume. If we know that a system has
lower drift, we can reduce the rate of synchronization, tolerate
synchornization failures, reduce network congestion and the
overhead of processing synchronization messages, as well as
avoid the use of specialized hardware [4].

In this paper, we describe Graham1, a system which mod-
els the stability of the local clock to determine the required
synchronization rate. Graham leverages sensors available in
every commodity server to characterize the clock against an
accurate reference clock, such as GPS, PTP or even NTP.
Graham uses this characterization to build a synchronization
model, which determines how frequently the system must be
synchronized and how many synchronization failures can be
tolerated, and can achieve below 1ppm drift. In the servers we
tested, we were able to achieve 100ppb stability in most cases,
which is over 2000× better than the max drift rate assumed by
Spanner. The guiding principle behind Graham is to improve
the clock in software without adding additional hardware.
This approach is challenging because existing sensors are not
designed to characterize clocks, and are located at varying

1Named after George Graham (1673–1751), a clockmaker who improved
the pendulum clock’s accuracy by compensating for changes in pendulum
length due to temperature.
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distances away from the oscillators that drive system clocks.
To address this challenge, Graham characterizes the system
by observing the effect of temperature fluctuations at various
sensors on clock error between synchronizations.

The contributions of this paper are:

• We debunk the myth that commodity computers have
unstable clocks.

• We describe how to automatically characterize computer
clocks using commodity sensors.

• We show that this characterization can be used to greatly
reduce synchronization rates, resulting in 100ppb stabil-
ity without specialized hardware.

2 Clock Generation and Synchronization

The term clock is often used for several related concepts. In
this paper, we will use clock to mean a counter which is incre-
mented at some frequency and can be used to measure time.
Clocks are driven by clock signals, which oscillate between
low and high logical states. A clock driven by this signal
increments on a clock edge, which is the transition between
two logical states (typically, the rising edge is used). Clock
signals are provided by clock sources, which are typically
quartz crystal oscillators in modern computers. In this sec-
tion, we provide background on how clocks are generated and
synchronized in a typical computer system.

2.1 A typical Linux Intel x86 clock system
Clock systems are architecture and vendor dependent, so we
focus on a typical Intel Linux x86 machine as a model clock
system. An Intel x86 system consists of multiple clocks which
are driven by multiple clock sources. Some of the clocks
accessible to users include the timestamp counter (TSC), real-
time clock (RTC) and the precision time protocol clock (PTP).
Each of these clocks run at different frequencies and serves
different purposes, and which clock software ultimately can
access has been shown to vary [23].

For the purposes of this paper, we center on the
TSC, the clock typically accessed by applications via
clock_gettime(2). This clock is driven by a clock signal
known as BCLK (typically 100MHz). The BCLK is driven by a
phase-locked loop (PLL) which multiplies the frequency of a
quartz crystal (48MHz on C620 ICC [9]). The BCLK is an im-
portant signal which not only drives the logic in the processor,
but the memory controller and other components, depending
on the processor model. Adjusting the BCLK is often done
when overclocking by changing PLL parameters, but large
adjustments can result in system instability and lockup.

So far, we have described how Linux enables applications
to read a clock. In order to be able to compare one clock to

another, clocks must be synchronized. Most Linux distribu-
tions rely on ntpd [24] or chrony [5] to synchronize local
clocks to a remote server with a reference clock synchronized
to wall clock time (UTC) via a time source such as GPS using
the NTP protocol. The NTP protocol estimates the network
delay between the server to client by dividing the round-trip
delay in half and can achieve on the order of 1ms-100ms
time synchronization error, with error increasing as the delay
becomes more asymmetrical. In addition, since NTP is run
in software, synchronization is subject to software jitter such
as scheduling and interrupt handling which prevents NTP
accuracy below 0.5ms, even in ideal conditions.

To achieve sub-microsecond accuracy, PTP (IEEE 1588)
reduces software jitter [10]. First, instead of acting as a ser-
vice where clients request the time, a PTP server continuously
broadcasts the current time at periodic intervals. Clients esti-
mate the network delay by sending a special message to the
server to compute the round trip time and dividing that time
in half. Finally, PTP introduces a new hardware clock located
on the network card itself. This clock is driven by a different
quartz crystal at the network card, usually corresponding to
the frequency needed to drive the card’s transceivers (25MHz
for 10Gb Ethernet). The network card can capture the syn-
chronization packets as they arrive to synchronize the PTP
clock to the server, eliminating the inaccuracy introduced
by software jitter. In Linux, phc2sys synchronizes the TSC
clock to the PTP clock.

The accuracy of PTP is dependent on accurate delay esti-
mation. Recognizing this limitation, Huygens [14] and Tick
Tock [6] use coded probes and support vector machines to fil-
ter out queued packets from round trip delay estimation. Some
commercial PTP implementations use packet delay variation
(PDV) filters [27], and compensate for known latencies in the
receive and transmit paths.

Because of clock drift, synchronization frequency is also
important. While most of the latency sensitive paths of PTP
are in hardware, it is still software driven, limiting the fre-
quency of PTP synchronization, especially when filters are
used that necessarily discard some synchronization data. This
can be problematic if clock synchronization requirements are
tight and clock drift is high. For instance, Huygens has a de-
fault sync interval of 2 seconds. A clock with 200ppm (0.02%)
of drift will accumulate up to 400µs of drift between missed
synchronizations. If there is a single transient synchronization
failure resulting in a 4 second interval, up to 800µs of drift
would accumulate, which would be problematic if an appli-
cation required sub-microsecond clock accuracy. To increase
synchronization frequency, most solutions require specialized
hardware. For example, DTP modifies the Ethernet physical
layer to exchange messages at the frequency of microseconds
while reducing network delay nondeterminism [17]. Sundial
leverages specialized hardware that synchronizes every 100µs
and performs fast failure detection to notify software to re-
cover by finding a backup clock [20].
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2.2 Holdover Time
Notably, current state-of-the-art systems do not attempt to
characterize the holdover time of the clock, which refers to
the amount of time a clock can remain accurate without a
synchronization. For instance, Spanner and Sundial both as-
sume a static 200ppm maximum drift. If the maximum time
uncertainty bound (ε) is 1µs, then a clock with 200ppm drift
(200µs/s) will only be able to holdover the clock for 5ms
without synchronization before potentially exceeding ε. The
formula for holdover time can be given as:

th =
ε

d f
(1)

Where th is the holdover time, ε is the maximum time un-
certainty, and d f is the clock drift. 200ppm, however, is very
conservative: most quartz crystals used for computer systems
are specified on the order of 100ppm of error, and only when
operated under extreme operating conditions. In the next sec-
tion, we describe how we can characterize oscillator error,
and use this characterization to increase the holdover time.

2.3 Characterizing Oscillator Error
Oscillators provide the clock signals that ultimately drive the
clocks used in computer systems, and are the source of most
clock error. The most common oscillator in use in nearly all
computers today is a quartz crystal, which uses the pizeoelec-
tric properties of quartz to produce a clock signal at a given
frequency.

Quartz is cut to resonate at a given frequency, however, as
the cut is a mechanical process, tolerances in the cut process
may result in a resonant frequency which is slightly offset
from the advertised frequency, known as the frequency toler-
ance. Since any error in the cut is usually fixed, this tolerance
results in a fixed offset from the advertised frequency. In typi-
cal computer crystals, this error is usually in the 50ppm range.
Lower tolerances require more accurate (e.g., fine laser) cuts
and are significantly more expensive.

Quartz crystals also age over time as mechanical devices
which are constantly vibrating, slowly deviating from their ad-
vertised frequency. This error is usually small (5ppm/year) [1],
and also results in a slight frequency offset.

So far, we have described sources of quartz crystal oscilla-
tor error which are relatively constant. As physical devices,
the frequency of quartz crystals are also affected by envi-
ronmental changes. The most prominent factor is tempera-
ture [36], which can result in a significant change in frequency
over the crystal’s operating temperature range. While tem-
perature can induce variations in the frequency of the crystal,
the temperature-frequency response of crystals are quite de-
terministic: in fact, some crystal manufacturers produce the
response curve on the crystal datasheet. Typical crystals pro-
duce anywhere from a 30ppm-100ppm change in frequency
over their operating temperature ranges [1].

Table 1: Frequency Error in Standard Quartz Oscillators

Name Typical Range Typical

Tolerance ±50 ppm -
Aging ±5 ppm/year -

Temperature ±1 ppm/◦C ±15 ppm (25-40◦C)
Voltage ±1 ppm/V ±0.1 ppm (±2% 3.3V)
Load ±0.1 ppm/pF ±0.1 ppm (±10% 15pF)

Acceleration 0.1 ppb/G 0 @ Rest
Time Dilation 0.1 ppq/m 0 @ Sea Level

In addition to temperature, a variety of other environmental
factors will affect the frequency of the oscillator. However,
these factors contribute a relatively small amount of frequency
error compared to temperature. Changes in supply voltage
usually result in a 0.1ppm-5ppb change in frequency. An-
other factor is variation in the load capacitance: in order for
the crystal to resonate at the expected frequency, the cor-
rect amount of capacitance is required. Since the capacitors
used to provide the load capacitance also have tolerances,
the capacitance can vary depending on the properties of the
capacitors used. Typically, load capacitance error is specified
at 0.1ppm-5ppb [29, 33]. The frequency of quartz crystals
are also sensitive to acceleration, depending on the axis it is
applied to. For ordinary quartz crystals, this is typically in
the range of 0.1-10ppb/G [29, 33]. For a 500G shock, such as
that specified in MIL-STD-883H, representative of a device
dropping to the floor, frequency error could be as high as
1ppm [19, 33]. Note that the recommendation for operational
vibration and shock limits in datacenters is less than 5G [16]
which is well below 500G. Finally, crystals are even sensi-
tive to relativity: a crystal closer to the gravitational field of
the earth will have a lower frequency than a crystal further
away, such as on a mountain or in space. This error is around
0.1ppq/m from sea level, or ≈ 0.9ppt at the top of Mount
Everest or ≈ 3ppb from geostationary orbit [33].

These sources of error are a result of the physical properties
of quartz, and the data collected in Table 1 are collected from
the datasheets of various quartz oscillators used in servers [1,
19, 29, 33, 36].

2.4 Debunking the Myth of Unstable Clocks

As we have seen, most of the frequency error in a quartz os-
cillator is either relatively static or dependent on temperature.
Voltage and load only contribute a small amount of error and
should be within small tolerances (otherwise, other parts of
the system may begin failing). Servers in most datacenters
are stationary, so the effects of acceleration and time dilation
should be constant.

Static error can be easily corrected if it can be learned: if
we learn that our crystal resonates at 32.769 KHz instead of
32.768 KHz, we simply need to adjust our accounting of time,
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perhaps by using 32769 as a divider instead of 215. If our
synchronization error is minimal and we keep the temperature
constant, we can learn this value over several synchronization
passes. NTPd and chrony both try to learn the static drift using
the driftfile.

Most state-of-the-art systems, however, combine static and
dynamic error in their uncertainty calculations, resulting in
the assumption of an unstable clock. For instance, Sundial
assumes that the clock error of their oscillator is 100ppm, but
this number includes the static tolerance error from the cut,
which is easily learned. Moreover, even if they had chosen
a ±100ppm temperature tolerance crystal, this shift would
be over the entire operating range, as in a shift from -30◦C
to 85◦C. An overheating server moving from 60◦C to 80◦C
would experience only about 20ppm change in drift from
temperature, an order of magnitude less than the conservative
200ppm error used in spanner.

In practice, most crystals used to generate processor clocks
have temperature tolerances in the range of ±20ppm. In-
tel Chipset Integrated Clock Controllers (ICC), for example,
specify "Total of crystal cut accuracy, frequency variations
due to temperature, parasitics, load capacitance variations is
recommended to be less than 90ppm" [9], and external clock
generators such as the common CK420BQ used in Intel sys-
tems specify a cut tolerance of ±20ppm and a temperature
tolerance of ±20ppm over the entire operating range [26]. If
we can filter out the static error, we will be left with 20ppm
temperature error. Then this clock will have a 1 µs holdover
time of 50ms, a 10× improvement over the 200ppm assump-
tion.

2.5 Software Temperature Compensation

Once we have corrected the static frequency error, temperature
remains as the dominant source of frequency error. This effect
is well known, and software compensation techniques are de-
scribed in the literature [13, 15, 25]. In computers, chrony
can correct for temperature errors given the temperature-
frequency relationship and a temperature sensor. In wireless
networks, where minimizing clock error is critical, environ-
ment and temperature aware compensation are used [34, 35].

While temperature-frequency curves are sometimes pub-
lished on the datasheet of a crystal, using them to correct
errors on a commodity computer system requires knowing
the crystal used. This can be difficult even for an expert given
the small markings on most crystal packages. Moreover, the
crystal used can be different even across the same model
of motherboards, since manufacturers may substitute func-
tionally equivalent parts due to cost or supply-chain reasons.
Unless the system was purpose built with temperature cor-
rection in mind, temperature sensors are likely located some
distance away from the crystal. Therefore, selecting the right
temperature sensor may be a challenge. However, correcting
for temperature error can effectively reduce the frequency

error of the crystal to less than 1ppm, resulting in a 1 µs
holdover time of 1s, a 200 × improvement over Spanner’s
assumption.

2.6 Other Oscillators
Many applications outside of general-purpose computing,
such as wireless require low frequency error over a wide
temperature range. The temperature compensated crystal os-
cillator (TCXO) consists of quartz crystal with a temperature
compensation circuit and reduces the effect of temperature
to ≈±1ppm of error. The oven compensated crystal oscilla-
tor (OCXO) takes temperature control one step further and
places the crystal in a miniature oven which keeps the crys-
tal at a constant temperature, reducing temperature effects to
≈ ±1ppb. This oven can be doubled (DOCXO) to achieve
≈±0.1ppb of temperature error. Atomic oscillators, which
work based on electron transitions, can provide even more
stability: rubidium oscillators provide up to 0.0002ppb/s. The
cost of these oscillators is often cited as prohibitive, but can
be quite inexpensive, relative to specialized hardware. For
instance a 48MHz TCXO at 0.5ppm suitable for driving an
Intel ICC costs around USD $2 [11], and a 25MHz OCXO
at 10ppb suitable for driving a CK420BQ clock synthesizer
costs around USD $70 [2].

While replacing the oscillators in computer systems might
be an option in new, future hardware, it is an invasive and
expensive procedure for existing hardware. The focus of Gra-
ham is to democratize accurate clocks using only existing
hardware. Using software techniques, we can achieve low
error without adding additional hardware.

3 Clocks and Sensors In Servers

In order to understand how temperature sensors can be used
to estimate clock error in commodity systems, we studied
the sensor and time configuration of a variety of platforms.
One unexpected challenge was the difficulty of accurately
measuring clock error.

Clocks. The Linux pulse-per-second (PPS) [21] facility pro-
vides a mechanism for delivering an accurate reference time.
PPS devices are devices that accurately emit a low-jitter pulse
every second. A PPS driver calls the pps_event API when-
ever the pulse is received, and the kernel records the times-
tamp associated with that pulse. Typically, this pulse is a
signal that causes an interrupt, and the PPS API is called by
an interrupt service routine (ISR). However, even when using
very low jitter PPS devices, such as the ublox ZED-F9T [32]
GPS timing module that advertises ±4 ns jitter, we saw jit-
ter over 10µs. As we diagnosed the problem, we saw several
sources of jitter throughout the hardware and software stack
which made it difficult for our driver to call pps_event in a
timely manner after the pulse interrupt is raised.
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Our initial approach was to use GPS dongles with PPS sup-
port over USB2, which are inexpensive (USD ≈$10), readily
available, and usable on nearly every server. The GPS device
presents itself as a serial device, and the PPS interrupt is en-
capsulated as a message over the USB bus. We saw that the
polling message-driven nature of USB resulted in high jitter:
not only was there a ≈100µs delay (which is easily corrected
for), but also ±10µs of jitter that made it difficult to accurately
time the pulse. Our next attempt involved using a FPGA to
deliver an interrupt over PCIe, since PCIe slots are readily
available in most commodity servers. However, while PCIe
offered less jitter PCIe interrupts are also message signaled
and also saw as much as ±5µs of jitter dependent on device
traffic and serial transceiver jitter.

We needed a low-latency interrupt pin to accurately capture
the PPS signal. We ended up resorting to using the legacy
serial port, which exposes interrupts pins on the device carrier
detect (DCD) and clear to send (CTS) lines. Unlike PCIe and
USB, these legacy ports drive an interrupt pin on the low-pin
count (LPC) bus and offer much lower jitter, on the order of
1µs. Even with the serial port, we still saw significant “blips”
in our PPS signal. To reduce those blips, we made several
changes: first, we pinned the serial port interrupt to a single
core, disabled power management, disabled all watchdogs,
installed a “lowlatency” kernel, turned on interrupt threading
and set the serial interrupt priority to realtime. While these
changes reduced the number of blips, there was still periodic
noise present which made time daemons such as chrony detect
as much as 10ppm of drift change over a second. This drift
only disappeared when we forced the C-state of the machine
to C0, disabling idling. This surprised us: the CPU advertised
FEATURE_NONSTOP_TSC, so the TSC should not be affected
by C-States. We realized that the most likely scenario was
that when idling was enabled, the CPU would take a non-
deterministic amount of time to wake up from sleep and fire
the ISR that eventually causes pps_event to be recorded.

To deal with this scenario, we took advantage of the two
time pulse outputs of the ZED-F9T module and connected the
second time pulse to the CTS serial line. We configured the
second time pulse with a 400ns delay from the first one, and
modified the kernel PPS serial line discipline driver to only
record the second pulse if is 400ns ± 100ns from the first
pulse. While this caused some pulses to disappear, it greatly
reduced the jitter we observed. To compensate for lost time
pulses, we changed the time pulse frequency from 1Hz to
3Hz. Removing this software jitter enabled us to see that the
clock was actually fairly stable over long periods of time, only
deviating by about .5ppm per hour, as seen in Figure 1. We
suspected most of this deviation was due to the rising ambient
temperature.

2To expose the PPS signal, we used a common FT232H USB-to-RS232
converter and connected the PPS line to the DCD signal expected by the PPS
serial line discipline driver.

(a) Frequency Error Without Dual Time Pulse, all C-states enabled.

(b) Frequency Error with Dual Time Pulse

Figure 1: Software Frequency Error. Interrupts and system
activity give the illusion clock error.

Table 2: Systems Evaluated and Temperature Sensors

Name Type Crystal Location Sensors

Server 2S 1U Rack Near Chipset 50
Workstation Desktop Chipset 8

Pi 4 SoC Under SoC 1
Pi 3 SoC Under SoC 1

Sensors. Modern computer systems are littered with sen-
sors for environmental conditions. The original use of these
sensors were to monitor alarm conditions: for example, to
shut off the system if there are abnormally high temperatures
that would cause instability, or if a voltage regulator mal-
functions. A more recent use of temperature sensors is for
thermal throttling, which reduces the frequency of a processor
or GPU based on the temperature. The goal of Graham is to
reuse these temperature sensors for the purpose of performing
software-based temperature compensation.

Using these temperature sensors can be challenging be-
cause their location relative to the clock crystal is not consis-
tent. While crystals are usually located near the clock gen-
erator, the clock generator can be located in a number of
locations, which might not be at all near a temperature sensor.
Systems also have a varying number of sensors, as shown
in Table 2. The server platform we evaluated, for example,

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation    457



Figure 2: Server Platform Temperature Map. The server
platform contains over 50 sensors with approximate positions
labeled.

has nearly 50 sensors (Figure 2). However, even though the
platform provides the position of these sensors, it is still of
little help to determine which sensor is closest to the crystal.
As an additional challenge, not all temperatures offer the same
precision. For instance, some of the sensors in the server plat-
form only reported ±10◦C changes, likely because they were
designed only for use as an alarm. Finally, the response time
of the sensors may vary depending on various environmental
factors. For instance, a sensor located near the large copper
ground plane of the motherboard may respond slower to rising
temperatures than a sensor located on a the thinner PCB of
a DIMM. An ideal sensor has high precision and responds
quickly to changes in the same way as the crystal.

Establishing the Ground Truth. Armed with an accu-
rate timing signal and a number of candidate sensors, our
next goal is to attempt to establish the “ground truth”, or
the temperature-clock error response curve. If we can deter-
mine the clock error given a certain temperature, then we can
correct the clock even in the absence of the accurate timing
signal.

Nearly all quartz crystals used in computers today are AT-
cut crystals. Their frequency relationship with temperature
can be described by a 3rd order equation [3, 8, 12, 36]:

∆ fT = k0 + k1T + k2T 2 + k3T 3 (2)

where ∆ fT is the crystal frequency error due to temperature,
T is the crystal temperature and ki are coefficients of the fre-
quency versus temperature curve. To find the relationship of
the clock frequency versus temperature we need to solve for
the ki parameters using synchronization messages from a ref-
erence clock. Unfortunately, since the sensor data is noisy, we
may need to obtain many temperature points to “average out”
the sensor error. This required designing an experiment which
required many passes, and was difficult to perform on a server
platform. As a result, we performed most of our ground truth
tests on the Raspberry Pi (Pi 3/Pi 4) SoC systems, though we

Figure 3: Temperatures and Polynomial Fit. Even though
there is variation in the measured delay, a polynomial fit curve
can still be plotted against it.

show our full implementation of Graham in action on desktop
and server platforms in Section 5. While the Raspberry Pi is
an ARM-based SoC, it runs Linux like the x86 system and
has a clock driven by a quartz crystal on the underside of the
SoC PCB.

The Pi, as a bare SoC system, allowed us to easily subject
it to various temperatures. The Pi includes a temperature mon-
itor which measures the core SoC temperature. We provided
an accurate PPS timing pulse using a uBlox Neo-M8N GPS
module [31] to a Pi GPIO and exposed it to various temper-
atures using either a hair dryer or ice bucket. We used the
difference in timing ticks between PPS signals to calculate
the estimated frequency error of the crystal, and the result is
plotted in Figure 3. The distribution we saw was around ±5
ppm and probably attributable to interrupt delay and sensor
error.

Once we saw that we were able to capture the temperature-
error relationship, we wanted to ensure that the data we were
generating was repeatable, so we collected several traces using
varying temperature patterns, all exercising the same temper-
ature range. Figure 4 shows that the curve we generated was
similar even with different temperature inputs.

Next, we wanted to see if the curves differed across devices.
Figure 5 shows that even across devices of the same model,
curves are significantly different. Even the same crystal model
could be cut slightly differently, resulting in two 25MHz crys-
tals which are for example, 24.997MHz and 25.001MHz that
meet the tolerance requirement, but yield different curves.

Finally, because age can have an effect on the crystals, we
wanted to test if we could observe a change in the curve with
age. In Figure 6, we ran two tests with a 7 month time differ-
ence, obtaining two slightly different curves, as expected. The
1ppm offset we obtained roughly matches the aging expected
by a regular quartz crystal during this time period.

Now that we have obtained the ground truth using an accu-
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Figure 4: Repeatability of the Curve. We measured several
traces using different temperature patterns (Test 1-5) by vary-
ing the use of ice and the hair dryer and we obtained similar
temperature curves.

rate PPS signal, we use this knowledge to guide us in scaling
our solution to many devices. Since each device will have its
own unique curve, it became clear to us that we needed to
design a way to automatically learn the curve of each device.

4 Graham Design

The overall approach of Graham is to learn the temperature-
clock error relationship by fitting curves as new data points
are learned. Unlike the experiments we designed when trying
to learn the ground truth, we cannot expect to be able to point
a hair dryer or dump a production server in ice. In addition,
since a truly scalable solution should not require a precise
PPS timing signal, we need to ensure that we can perform
this learning with traditional synchronization protocols such
as NTP or PTP. As a result, Graham must fit these curves
over time on incomplete and noisy data. Once we determine
that the we have observed enough data points, we can use the
derived curve to correct the time error. To fit this data on a
curve, we begin by formalizing the variables and equations
required to solve for the time error.

4.1 Formulating the problem

We previously described the relationship of the crystal error
with temperature as a cubic polynomial in Equation 2. How-
ever, we cannot directly measure the frequency of the crystal
to obtain the error. Instead, we can obtain two timestamps
from the clock using a known time interval and calculate the
difference to see how much it deviates from the expected
difference.

Figure 5: Curves Across Devices. We observed that different
devices, even of the same model had varying curves.

Figure 6: Aging of Devices. As a device ages, the curve can
change due to crystal aging effects.

For example, a clock crystal may have an ideal frequency
( f0) of 32.768KHz. We would expect two timestamps taken
exactly 1 second apart to have a difference of 1 (∆tsi). But
if we actually observe 1.5 seconds (∆tso), then we know the
actual frequency is 49.152KHz ( f1), or 1.5× f0. If we subtract
the two frequencies, we obtain 16.384KHz of frequency error
(∆ f ). We can express this as an equation:

∆ f ∆tsi = ∆tso −∆tsi (3)

in which ∆ f is the relative frequency error. If we assume
most of the frequency error is from temperature, we can re-
place ∆ fT in Equation 2 with ∆ f . Then we obtain:

(k0 + k1T + k2T 2 + k3T 3)∆tsi = ∆tso −∆tsi (4)

Eq. 4 is a linear equation with 4 unknowns – k0, k1, k2
and k3. Timestamp interval ∆tso can be obtained from the
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system’s local clock and the timestamp interval ∆tsi can be
obtained from synchronization messages. If we receive N syn-
chronization messages then we can build N linear equations
as follows:

AK = B (5)

in which A, K and B are matrices equal to:

K =


k0
k1
k2
k3

 , A =


1 T1 T 2

1 T 3
1

1 T2 T 2
2 T 3

2
... ... ... ...
1 TN T 2

N T 3
N

 (6)

B =


∆tso,1 −∆tsi,1
∆tso,2 −∆tsi,2

...
∆tso,N −∆ti,N

 (7)

in which TN , ∆tsi,N and ∆to,N are respective parameters
for the Nth synchronization message and equation. Gra-
ham solves Eq. 5 using linear least square methods.

So far, we assumed that the temperature is constant for
the duration of ∆tso. If the synchronization messages are
infrequent, as in the case of a protocol such as NTP, the tem-
perature can change during this period. To solve this problem,
Graham records temperatures during this period and when it
receives a synchronization message, it aggregates the effects
of temperatures. Assume there are n intervals in which we
record temperatures during a period. The equation for the jth

time interval is:

∆ f j∆tsi, j = ∆to, j −∆ti, j (8)

∆to =
n

∑
j

∆to, j (9)

∆ti =
n

∑
j

∆ti, j (10)

n

∑
j

∆ f j∆ti, j =
n

∑
j

∆to, j −
n

∑
j

∆ti, j (11)

Using Eq. 2, 9 and 10, we get:

(12)
k0

n

∑
j

∆tsi, j + k1

n

∑
j

Tj∆tsi, j + k2

n

∑
j

T 2
j ∆tsi, j

+ k3

n

∑
j

T 3
j ∆tsi, j = ∆tso − ∆tsi

where Tj is the temperature at the jth time interval. Note
that, ∆tsi, j is an unknown parameter. We can be approximated
it by α∆tso, j in which α = ∆ti

∆to
.

(13)

k0

n

∑
j

∆tso, j + k1

n

∑
j

Tj∆tso, j

+ k2

n

∑
j

T 2
j ∆tso, j + k3

n

∑
j

T 3
j ∆tso, j =

∆tso − ∆tsi

α

Similar to Eq. 4, Eq. 13 is a linear equation with 4 un-
knowns and we can solve it using similar linear least square
methods.

4.2 Implementation
We implemented a prototype daemon in C which solves for
the equations by using temperature sensors exposed through
sysfs or a network management interface such as SNMP. We
record temperatures with 1◦C precision at a configurable fre-
quency, which defaults to 1Hz. For synchronization data, we
modified chrony to collect the ∆tso and ∆tsi necessary from
synchronization messages over NTP.

Graham keeps a FIFO queue of equations with known size
for each temperature, bounding the number of equations that
need to be solved. Graham assumes an operating temperature
range of 40-80◦C and does not start applying corrections
until the curve errors are within 20ppm. Graham constantly
collects temperature data to learn the curve before corrections
are applied.

4.3 Addressing practical issues
In 4.1, we assumed an ideal case in which all the known pa-
rameters to solve for the clock frequency versus temperature
are accurate. However, that is not the case in practical systems.
We outline these inaccuracies and non-idealities and explain
how we can address them.

4.3.1 Timestamp Error

There are two main sources of timing error in the system:
Error in ∆to,i. Since the temperature changes happen in the

timescale of seconds, even several milliseconds error in the
observed ∆to,i values will have a limited effect on the result.

Error in (∆ti −∆to). This value is the combination of 3
parameters: crystal frequency error (∆ f ), jitter in timestamps
and network asymmetry from the time server to our system.
Graham is interested in only ∆ f , but the last two parameters
are error (δterr) and add noise to our measurements.

∆to −∆ti = ∆ f ∆ti +δterr (14)

Note that δterr is only dependent on the type of timestamp-
ing (software and hardware) and the method of the synchro-
nization (NTP, PTP, PPS and ...). The error in curve estimation
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is determined by δterr
∆ti

. Therefore, as we increase ∆ti, the first
term in Eq. 14 increases while the second term is constant
and we can increase the curve estimation accuracy. Moreover,
δterr can be modeled as a random variable with zero mean.
As we increase the number of equations, we can average out
the δterr and in turn the lower the estimation error. By having
a high enough number of equations and building equations
for longer durations we can increase the curve estimation
accuracy.

4.3.2 Temperature Sensor Challenges

Leveraging already existing temperature sensors requires ad-
dressing several challenges:

Accuracy. Temperature sensor accuracy has limited effect
on correction performance since both learning the relationship
of the clock frequency versus temperature and applying the
correction is done using the same temperature sensor.

Precision. Low precision means that temperature measure-
ment readings have a random variability. Having a higher
number of equations will average out these random errors.
This means that as the temperature sensor’s statistical mea-
surement variance increase we need higher number of equa-
tions.

Responsiveness. A temperature sensor which does not
respond to temperature in the same way the crystal does
will limit the effectiveness and potentially contribute to error.
This responsiveness of a sensor can be measured by check-
ing the temperature error curve. In a system with multiple
temperature-error curves, we select the sensor which mini-
mizes the frequency error during learning runs.

4.3.3 Computation Accuracy

The computed curve is only accurate for the temperature
ranges that the system has experienced. For example, if Gra-
ham only has equations for temperatures from 50◦C to 80◦C,
the curve is accurate in that range and close to boundaries of
that range. As we go far from this boundary the accuracy of
the curve decreases. One of the main reasons for this is that
the temperature-error curve is cubic, but the typical operating
range of the server is only within a small convex region of the
curve. Two of the roots are likely at the extreme temperature
ranges, and one root is likely in the extreme negative (below
freezing region).

To exercise a variety of temperature ranges without using a
heater or ice, we load the CPU and allow the system to cool
off.

5 Evaluation

Our evaluation of Graham is motivated by the following:

• How effective is learning over a noisy synchronization
channel such as NTP? (§5.2)

(a) After 40 Eq (≈12h) (b) After 80 Eq (≈24h)

(c) After 120 Eq (≈36h) (d) After 160 Eq (≈48h)

Figure 7: NTP Learning. While learning over NTP takes
longer, the curve converges towards the same curve produced
by faster, more accurate synchronization sources.

• What is the holdover time Graham can achieve, and how
many synchronization failures can it tolerate? (§5.3)

• Can Graham compensate for rapid changes in tempera-
ture, as in with a HVAC failure?(§5.4)

Test Platforms. The primary system requirement to be able
to apply Grahamis the presence of a temperature sensor which
is present in nearly all modern computer systems. We evalu-
ated Graham on several platforms, as shown in Table 2. For
the Pi tests, we used a ublox M8N [31] GPS receiver with a
time pulse accuracy of ±60ns (99%). The M8N module does
not specify jitter, but we observed ±20ns jitter using a RIGOL
MSO5074 oscilloscope. For the x86-based platforms, we used
a ublox ZED-F9T [32] GPS module which specifies a time
pulse accuracy of ±5ns (1σ), and a jitter of ±4ns. In our tests,
we are mainly concerned about jitter, as the timing accuracy
specifies the accuracy of the timing pulse to GPS time, and
these GPS modules have their own TCXO oscillator.

5.1 Learning over PPS

We obtained baseline curves with Graham using PPS. With
PPS, we generate 1 new equation per second, corresponding
to the frequency of the synchronization signal. As shown
in Figure 8, even though the temperature data we used to
generate each curve was quite different, the curves are almost
the same. While the curves look similar, the constants for each
curve varies. This is because there are many cubic equations
which can fit the small convex portion of the curve that we
observe within the operating temperature range.
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Figure 8: PPS Curves and Input Data. Curves learned over
each experiment have a similar shape despite having variable
input data.

(a) NTP vs PPS Temperature
Error Curves (b) NTP vs PPS Error

Figure 9: NTP Performance Compared to PPS. The learned
curves for NTP are within 0.5ppm of the PPS curves for most
of the operating range.

5.2 Learning over NTP

To evaluate learning over NTP, we used chrony to obtain
NTP synchronization data for Graham against public NTP
servers over a standard home cable broadband connection,
with a ping latency to the NTP server between 30–40ms. This
resulted in synchronization accuracy in the ms range. In order
to compensate for this, we needed to use high ∆tso. For NTP,
we use ∆tso = 1000s, which results in one equation every
1000s as opposed to 1 equation per second with PPS. Note
that ∆tso is independent of the synchronization periods and
intervals used by chrony, which has its own algorithm for
NTP synchronization frequency.

Figure 7 shows the 160 equations we collected over the
course of a 48 hour run. This resulted in a curve within
±0.5ppm of the curve generated using PPS signals, as shown
in Figure 9. We suspect that the error of the curve is not con-
stant because of lack of data points at temperature extremes

for both sets of data.

5.3 Holdover
Once we have learned the temperature-error relationship, we
wanted to evaluate how well Graham’s time frequency correc-
tion would perform in the absence of synchronization mes-
sages. To test the accuracy of the frequency correction, we
recorded the accurate PPS time pulse, but did not provide
it to Graham. We measured the accuracy of Graham’s time
correction versus the real time. We then exposed the system
to a new temperature trace.

Pi Experiments. Figure 10 shows a trace of one of these
experiments on the Pi 3. In this particular experiment we
exposed the system to both ambient air effects of the 8 hour
time period as well as artificial cooling (ice) and heating (hair
dryer). The red vertical line shows the rapid growth of time
error if Graham did not perform any compensation. At 620s,
this well exceeds 5000µs of drift, which corresponds to the
the 8ppm of temperature drift Graham is trying to correct for.
On the other hand, Graham’s corrections perform very well,
never exceeding 1500µs of error over the course of the entire 8
hour run, even though the temperature is shifting significantly.
For most of the test, the slope never exceeds 100ns/s of error,
which means the clock is performing as well as one with only
100ppb of error, a 200× improvement over the performance of
the 20ppm crystal, performing nearly as well as a high quality
TCXO or some OCXOs. We can calculate the holdover time
using the slope from Equation 15, given a maximum time
uncertainty (ε). If ε=1µs, then the holdover time during the
100ns/s region is:

th =
1µs

100ns/s
(15)

or th = 10s. In other words, the corrected clock will not
exceed 1 µs of error for at least 10 seconds without any addi-
tional synchronization. This would enable more infrequent
synchronizations, or enable the system to tolerate the very
real potential of missed synchronization messages. In one
part of the graph, we experience a 330ns/s slope, when the
temperature exceeds 85◦C. We speculate that this slope is
because the training temperature data we used had very few
points at or above this temperature. 330ppb still is very good:
we obtain a 1µs holdover time of 3 seconds, which still allows
for lower frequency synchronizations.

Server Experiments. We also evaluated the holdover time
on desktop and server x86 systems. These systems are much
more complex and contain multiple sensors and fans, so Gra-
ham needs to determine which sensor works best, given a
variety of factors. There are also multiple components which
can generate heat load, which vary from system to system.
Notably, the many fans in the server made it more difficult to
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(a) Time drift (b) Temperature

Figure 10: Holdover. The uncompensated temperature drift
quickly increases while Graham is able to maintain the time
with minimal drift. The slope of each part of the graph corre-
sponds to the frequency error performance: s1 = 50, s2 = 80,
s3 = 330, s4 = 100, s5 = 30, s6 = 15 ns/s.

(a) Server drift (b) Server sensors

Figure 11: Warming Server Holdover. With a server sitting
in a garage on a hot summer day, Graham is able to maintain
0.1ppm of error.

create rapid changes in temperature. To get a picture of the
server sensor’s performance, we performed a 24 hour learning
run exposing the server to various temperatures while heating
it from the fan intake and letting it cool via ambient cooling,
and running stress-ng in various modes to create load on
the system. We then exposed the server to a new temperature
curve.

Figure 11 shows the holdover graph for the server during
one of our first tests, which is just ambient warming of the
server in a garage on a hot summer day. We selected the 5 best
performing sensors. Surprisingly, even though we thought
the “chipset_zone sensor” would perform the best, “dimm1”
actually produced the best correction curve. We wanted to
ensure that this would be the case even in a loaded system, so
we performed a memory test using stress-ng to see if heat
from a memory load would affect our learned result. Figure 12
shows the holdover curves from that run, with the memory
test running at time 0. The DIMM 1 sensor still remained one
of the top performing sensors, producing less than 200µs of
drift over the first 2000 seconds of the run, or 0.1ppm error.
Many of the other sensors perform well too, likely because
they experience similar patterns of temperature changes. The
impact of the load, however, can be seen across Figure 11 and
Figure 12: while the ambient temperature works well without
a load, its performance is worse when a load is present. In all
our runs with the server workload, we never observed more

(a) Server drift (b) Server sensors

Figure 12: Memory Load Holdover. The DIMM sensor re-
mains the best sensor, even when the server is under memory
load.

than a 0.2ppm error with Graham.

Desktop Experiments. Finally, we evaluated Graham on
a typical desktop machine. Unlike the server, which is fully
instrumented with sensors throughout, the desktop machine
we used only had a few sensors exposed by default, just on the
CPU die and the DIMMs. However, during our experiments,
we made an error to include the output of the fan sensors (in
RPM) as training data. Surprisingly, the fan sensors worked
well even though they were not directly measuring the tem-
perature. We suspect that the speed of the fan is driven by
a combination of the ambient temperature, (which is not ex-
posed to the user) and dynamic CPU load by the hardware
monitor. However, we ended up using the second core sensor,
which is located closer to the chipset and crystal. This gave
us 0.1ppm error on nearly all experiments.

Figure 13 shows a peculiar experiment on the desktop plat-
form where we failed to expose the server to all temperature
points. In the first 2000 seconds we run a CPU load exper-
iment, which resulted in the a higher than expected error
(0.5ppm vs 0.1ppm). After debugging, we realized this was
because the temperatures we exposed to Graham during test-
ing (Figure 13c) were not learned (Figure 13d). In particular,
the testing temperatures were above 70◦C for the first 2000s,
while the learning temperatures were below. Still, we thought
this test showed that even without learning temperatures, Gra-
ham can provide some correction to the temperature error.

5.4 Rapid Changes
One of the often cited sources of timing instability in com-
puter systems is a thermal shock event, such as an HVAC
failure. To evaluate Graham’s performance in dealing with
a rapid thermal shock, we used the Pi system and pointed a
hair dryer directly at it, attempting to raise the temperature
rapidly to the maximum operating temperature. As with the
holdover tests, we turned off synchronization and only relied
on Graham’s temperature-based frequency error correction.

Figure 14 shows the time drift after correction by Gra-
ham (left) which results from the rapidly rising slope in tem-
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(a) Desktop Drift (b) Desktop Sensors

(c) Testing Temperatures (d) Learning Temperatures

Figure 13: Desktop Holdover with Missing Points. Even
with missing points, Graham is able to make corrections to
keep error within 0.5ppm.

perature (right) from the hair dryer. Using the hairdryer, we
were able to produce a 2◦C/s slope, which cools at about
0.2◦C/s. While we feel that such fast heating is unlikely to
happen, it may be representative of an HVAC failure, and
is an indication of the robustness of Graham’s temperature
correction: the time drift never exceeds more than 10µs over
the initial 25 second slope, a drift of only -0.4ppm. Once the
temperature slope decreases, Graham is able to maintain the
time without exceeding the initial 10µs of error. Without Gra-
ham, the system accumulates nearly 1ms of error during this
time period (bottom).

6 Discussion

Our evaluation has shown that Graham can maintain clock
frequency error below 1ppm using commodity sensors in a
variety of conditions. Graham is only one part of the solution,
however – while Graham can maintain a long holdover time,
the synchronization maintained will only be as good as the
initial synchronization.

Graham works in synergy with other synchronization mech-
anisms, such as Huygens [14], PTP [10] and FaRMv2 [28] to
maintain synchronization. Our experiments with NTP show
that Graham can maintain 1µs ε for 10 seconds after loss of
synchronization. As Sundial [20] shows, however, missed syn-
chronizations can occur for a number of reasons. For Huygens,
significant CPU load on the system could occur causing the
SVM processing to be delayed, and in PTP and FaRMv2, syn-
chronization messages could be missed, leading to increased
uncertainty of time. Using our 1µs holdover result for Graham,
we could reduce the standard 1s synchronization frequency
of PTP to 3s and tolerate 2 lost synchornization messages.

(a) Time drift (b) Temperature

(c) Uncorrected

Figure 14: Thermal shock. Even with a hair dryer’s rapid
heat, Graham is able to quickly compensate for errors in time,
never drifting beyond 10µs.

Graham also aims to democratize precise time by enabling
commodity servers, desktops and even SoCs to have access
to stable clocks without adding specialized hardware. One of
the barriers we see in adopting precise time for these devices
is the myth of the unstable clock, which is perpetuated by
the challenge of measuring the drift in the clock in the first
place. Software noise can give the illusion that a clock is
drifting rapidly, even though hardware clocks are relatively
stable. Unfortunately, without specialized hardware, drift is
measured by software itself, further exacerbating the problem.
By characterizing the clock. Graham enables applications
to trust the hardware instead of relying on noisy software
measurements.

In the future, we may consider incorporating multiple sen-
sors to the equations Graham solves for better accuracy. As
more applications require precise time, we expect systems
with TCXOs or OCXOs to come on the market, and expect
that Graham performs favorably against them.

7 Conclusion

It has been long thought that computer clocks are unstable,
and that stability cannot be achieved without frequent syn-
chronizations. We hope that this work dispels that myth and
convinces the reader that much perceived clock instability
is due to software measurement error. By understanding the
sources of clock error, we have built Graham, which can re-
duce local clock error well below 1ppm using commodity
clock sensors. Combined with an accurate synchronization
source, Graham can maintain microsecond clock accuracy
without additional hardware.
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