
This paper is included in the
Proceedings of the 21st USENIX Symposium on

Networked Systems Design and Implementation.
April 16–18, 2024 • Santa Clara, CA, USA

978-1-939133-39-7

Open access to the Proceedings of the
21st USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Sidekick: In-Network Assistance for Secure
End-to-End Transport Protocols

Gina Yuan, Matthew Sotoudeh, and David K. Zhang, Stanford University;
Michael Welzl, University of Oslo; David Mazières and

Keith Winstein, Stanford University

https://www.usenix.org/conference/nsdi24/presentation/yuan

Sidekick: In-Network Assistance for Secure End-to-End Transport Protocols

Gina Yuan
Stanford University

Matthew Sotoudeh
Stanford University

David K. Zhang
Stanford University

Michael Welzl
University of Oslo

David Mazières
Stanford University

Keith Winstein
Stanford University

Abstract
In response to concerns about protocol ossification and pri-
vacy, post-TCP transport protocols such as QUIC and Web-
RTC include end-to-end encryption and authentication at the
transport layer. This makes their packets opaque to middle-
boxes, freeing the transport protocol to evolve but preventing
some in-network innovations and performance improvements.
This paper describes sidekick protocols: an approach to in-
network assistance for opaque transport protocols where in-
network intermediaries help endpoints by sending information
adjacent to the underlying connection, which remains opaque
and unmodified on the wire.

A key technical challenge is how the sidekick connection
can efficiently refer to ranges of packets of the underlying
connection without the ability to observe cleartext sequence
numbers. We present a mathematical tool called a quACK that
concisely represents a selective acknowledgment of opaque
packets, without access to cleartext sequence numbers.

In real-world and emulation-based evaluations, the sidekick
improved performance in several scenarios: early retransmis-
sion over lossy Wi-Fi paths, proxy acknowledgments to save
energy, and a path-aware congestion-control mechanism we
call PACUBIC that emulates a “split” connection.

1 Introduction
In the Internet’s canonical model, transport is end-to-end and
implemented only in hosts. Traditionally, routers and other
network components forwarded IP datagrams without regard
to their payloads or flow membership [12, 58]; only hosts
thought about connections, reliable delivery, or flow-by-flow
congestion control.

In practice, however, the best behavior for a transport pro-
tocol depends on the particulars of the network path. An
appropriate retransmission or congestion-control scheme for
a heavily-multiplexed wired network wouldn’t be ideal for
paths that include a high-delay satellite link, Wi-Fi with bulk
ACKs and frequent reordering, or a cellular WWAN [25, 42].

By the 1990s, many networks had broken from the canon-
ical model by deploying in-network TCP accelerators, also
known as “performance-enhancing proxies” (PEPs) [26]. TCP
PEPs can split an end-to-end connection into multiple con-
catenated connections [10, 17, 23, 28, 34], buffer and retrans-
mit packets over a lossy link [2, 55], virtualize congestion

control [14, 29, 49], resegment the byte stream, and enable
forward error correction, explicit congestion notification, or
other segment-specific enhancements. Because TCP isn’t en-
crypted or authenticated, PEPs can achieve this transparently,
without the knowledge or cooperation of end hosts. Roughly
20–40% of Internet paths cross at least one TCP PEP [21,30].

While many flows benefit from PEPs, their use carries a
cost: protocol ossification [21, 53]. When a middlebox inserts
itself in a connection and enforces its preconceptions about
the transport protocol, it can thwart the protocol’s evolution,
dropping traffic that uses an upgraded version or new options.
TCP PEPs have hindered or complicated the deployment of
many TCP improvements, such as ECN++, tcpcrypt, TCP
extended options, and multipath TCP [30, 46, 56].

In response to this ossification, and to an increased empha-
sis on privacy and security, post-TCP transport protocols have
been designed to be impervious to meddling middleboxes, by
encrypting and authenticating the transport header. We call
these newer transport protocols “opaque.” The most prevalent
is QUIC [32], found in billions of installed Web browsers and
millions of servers [68]; other opaque transport protocols are
used in WebRTC/SRTP [54], Zoom [69], BitTorrent [4], and
Mosh/SSP [63].

This opacity means that middleboxes can’t interpose them-
selves on a connection or understand the sequence numbers
of packets in transit. This prevents PEPs from providing as-
sistance, reducing—in some situations—the performance of
opaque transport protocols [6, 7, 38, 42, 47]. It’s possible to
co-design protocols and PEPs to preserve security and pri-
vacy while permitting assistance from credentialed middle-
boxes [19, 24, 33, 59], but challenging to do so without tightly
coupling these components, risking ossification and fragility.

In this paper, we propose a method for in-network assis-
tance of opaque transport protocols that tries to resolve this
tension. Our approach leaves the transport protocol unchanged
on the wire: a secure end-to-end connection between hosts,
opaque to middleboxes and free to evolve. No PEPs are cre-
dentialed to decrypt the transport protocol’s headers.

Instead, we propose a second protocol to be spoken on an
adjacent connection between an end host and a PEP. We call
this the sidekick protocol, and its contents are about the pack-
ets of the underlying, or “base,” connection. Sidekick PEPs
assist end hosts by reporting what they’ve observed about the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1813

packets of the opaque base connection, without coupling their
assistance to the details of the base protocol. End hosts use
this information to influence decisions about how and when
to send or resend packets on the base connection, approximat-
ing some of the performance benefits of traditional PEPs. A
similar functional separation was first proposed by [67], but
this paper presents the first concrete realization of the idea
and its nuanced interactions with real transport protocols.

One key technical challenge with this approach is how the
sidekick can efficiently refer to ranges of packets in an opaque
base connection. These packets appear random to the middle-
box, and referring to a range of, e.g., 100 opaque packets in
the presence of loss and reordering is not as simple as saying
“up to 100” when there are cleartext sequence numbers. In
Section 3, we present and evaluate a mathematical tool called
a quACK that concisely represents a selective acknowledg-
ment of opaque, randomly identified packets. The quACK is
based on the insight that we can model the problem as a sys-
tem of power sum polynomial equations if there is a practical
bound on the maximum number of “holes” among the packets
being ACKed. We created an optimized implementation [65],
building on related theoretical work [22, 35, 50].

A second challenge is how the end host should use infor-
mation from a sidekick connection to obtain a performance
benefit for its base connection. Since the performance benefit
comes from changing behavior at the end host rather than the
middlebox, transport protocols need to incorporate this infor-
mation into their existing algorithms for, e.g., loss detection
and retransmission, which have gotten increasingly complex
over time. To explore this, we designed a sidekick protocol
we call Robin, and implemented it in three scenarios:

• A low-latency audio stream over an Internet path that in-
cludes a Wi-Fi path segment (low latency with loss), fol-
lowed by a WAN path segment (higher latency with low
loss). Can the sidekick PEP reduce the de-jitter buffer
delay by triggering earlier retransmissions on loss?

• An upload over the same path. Can an opaque transport
protocol like QUIC, aided by a sidekick PEP at the point
between these two path segments, match the throughput
of TCP over a connection-splitting PEP?

• A battery-powered receiver, downloading data from the
Internet over Wi-Fi. If the Wi-Fi access point sends side-
kick quACKs on behalf of the receiver, can it reduce the
number of times the receiver’s radio needs to wake up to
send an end-to-end ACK?

A third technical challenge is how knowledge about where
loss occurs along a path should influence a congestion-control
scheme. The challenge in any such scheme is how to maxi-
mize the congestion window while sharing the network fairly
with competing flows. We present a path-aware modification
to the CUBIC congestion-control algorithm [27], which we
call PACUBIC, that approximates the congestion-control be-
havior of a PEP-assisted split TCP CUBIC connection while

making its decisions entirely on the host.

Summary of results. Concretely realized, the quACK ex-
presses the equivalent of TCP’s cumulative + selective ACK
over opaque (randomly identified) packets in 48 bytes, tolerat-
ing up to 10 missing packets before the last “selective ACK.”
On a recent x86-64 CPU, it takes 33 ns/packet for a sidekick
PEP to encode a quACK, and 3 µs for an end host to decode
it. These overheads compared well with several alternatives
(Section 3.5).

We implemented Robin in a low-latency media client
based on the WebRTC standard, and an HTTP/3 client us-
ing the Cloudflare implementation of QUIC [13] and the
libcurl [45] implementation of HTTP/3. We evaluated the
three scenarios in real-world and emulation experiments. In
real-world experiments using an unmodified local Wi-Fi net-
work to access our nearest AWS datacenter, the sidekick was
able to trigger early retransmissions to fill in gaps in the audio
of a latency-sensitive audio stream, reducing the receiver’s
de-jitter delay from 2.3 seconds to 204 ms—about a 91%
reduction (Figure 8). The sidekick was also able to improve
the speed of an HTTP/3 (QUIC) upload by about 50%.

In emulation experiments of the “battery-powered receiver”
scenario, the sidekick PEP was able to reduce the need for the
receiver to send ACKs by sending proxy acknowledgments on
its behalf—ACKs the sender used to advance its flow-control
and congestion-control windows. The receiver only needed to
wake up its radio to send occasional end-to-end ACKs, which
the sender used to discard data from its buffer (Figure 4c).

Also in an emulation experiment, we confirmed that PACU-
BIC’s performance approximates a split CUBIC connection
(two TCP CUBIC connections separated by a PEP), respond-
ing to loss events on the different path segments similarly
to how the individual CUBIC flows would (Figure 6). The
results indicate that the sidekick protocol’s gains do not come
at the expense of congestion-control fairness relative to a split
CUBIC connection.

The rest of this paper describes the sidekick’s motivating
scenarios (Section 2), explores the quACK’s design and im-
plementation (Section 3), discusses the concrete sidekick pro-
tocol we built around quACKs (Section 4) and its implementa-
tion in two base protocols (Section 5), and then evaluates the
protocol in real-world and emulation experiments (Section 6).

2 Motivating Scenarios
We focus on three scenarios where end hosts benefit from
in-network assistance. In each one, a proxy server provides
feedback, called a quACK, to an end host: the data sender
(Figure 1). Recall that a quACK is a “cumulative ACK +
selective ACK” over encrypted sequence numbers. The data
sender uses this feedback to influence its behavior on the base
connection, without altering the wire format.

To be clear: the sidekick protocol is not tied to a specific
base protocol nor to how the end hosts use the quACK infor-

1814 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Base connection Sidekick connection

Sidekick

Proxy Server

Packet
Data

Sender
(Client)

End Host End Host

Data
Receiver
(Server)

QuACK

Figure 1: The proxy generates quACKs, in-network acknowl-
edgments, based on the opaque packets it observes in the base
protocol. It quACKs to an end host, the data sender, which
sends or resends packets on the base protocol as a result. Al-
though we only show one side of the connection, the sidekick
could assist either end host of a bidirectional flow.

mation. The base protocol does not need to be reliable, nor
to have unique datagrams—we implemented and evaluated
the same sidekick protocol and the same middlebox behavior
across the different scenarios in this paper.

2.1 Low-Latency Media
Consider a train passenger using on-board Wi-Fi to have a
low-latency audio conversation, using WebRTC/SRTP [54],
with a friend. The end-to-end network path contains a low-
latency, high-loss “near” path segment (the Wi-Fi hop) fol-
lowed by a high-latency, low-loss “far” path segment (the
cellular and wired path over the Internet). The friend probably
suffers from poor connection quality, experiencing drops in
the audio stream or high de-jitter buffer delays from waiting
for retransmitted packets to be played in order (Figure 4a in
emulation, Figure 8a in real world).

In the sidekick approach, a sidekick on the Wi-Fi access
point sends quACKs to the audio application on the user’s
laptop, assisting the base connection’s data sender. The sender
uses quACKs to retransmit packets sooner than they would
have using negative acknowledgments (NACKs) from the
receiver. The end result is similar to the effect of prior PEPs,
such as Snoop [2] and Milliproxy [55], that leverage TCP’s
cleartext sequence numbers to trigger early retransmission on
lossy wireless paths.

2.2 Connection-Splitting PEP Emulation
Consider the same train passenger as before but uploading a
large file over the Internet with a reliable transport protocol.
If the protocol were TCP, the train could deploy a split TCP
PEP at the access point. The split connection allows quick
detection and retransmission of dropped packets on the lossy
Wi-Fi segment, while opening up the congestion window on
the high-latency cellular segment.

However, opaque transport protocols like QUIC can’t ben-
efit from (nor be harmed by) connection-splitting PEPs. With-
out a PEP, QUIC relies on end-to-end mechanisms over the
entire path to detect losses, recover from them, and adjust the

congestion-control behavior. This leads to reduced upload
speeds (Figure 4b in emulation, Figure 8b in real world).

With help from the same sidekick PEP, the QUIC sender
combines information from quACKs and end-to-end ACKs to
emulate the congestion-control behavior of a split TCP con-
nection (Section 4.3.2). The application considers whether
packets are lost on the near or far path segments, and adjusts
the congestion window accordingly while respecting the opac-
ity of the end-to-end base connection. The application also
retransmits the packet as soon as the loss has been detected.

The only guarantee the proxy makes to the sender via the
quACK is that it has received some packets. To respect the
end-to-end reliability contract with the receiver, the sender
does not delete packets that may need to be transmitted until
it receives an ACK, even if the packet has been quACKed.

2.3 ACK Reduction
Now consider a battery-powered device downloading a large
file from the Internet. To reduce how often the receiver’s
radio needs to wake up, saving energy, the base connection
can reduce the frequency of end-to-end ACKs the device
sends. ACK reduction has also been shown to improve perfor-
mance by reducing collisions and contention over half-duplex
links [16, 43]. The ACK frequency can be configured with a
TCP kernel setting or proposed QUIC extension [31].

However, ACK reduction can also degrade throughput [15,
16] (Figure 4c in emulation). The sender receives more de-
layed feedback about loss, and has to carefully pace pack-
ets to avoid bursts in the large delay between ACKs. One
proposal has the PEP acknowledge packets on behalf of the
receiver [36], leveraging cleartext TCP sequence numbers,
but it does not apply to opaque transport protocols.

In this case, a sidekick at the Wi-Fi access point (or a
cellular base station) quACKs to the sender on behalf of the
receiver. The receiver still occasionally wakes up its radio to
send ACKs, but the sender uses the more frequent quACKs
to advance its flow-control and congestion-control windows.

The sender respects the end-to-end reliability contract by
only deleting packets in response to ACKs, but disregards the
receiver’s flow control by using quACKs to advance the flow-
control window. If the sender only used ACKs to advance
the window, it would waste time waiting between ACKs to
send packets with too small a window, and need to pace sent
packets on receiving a large ACK with too large a window.

3 QuACK
As previously illustrated, a sidekick needs to be able to refer
to and efficiently acknowledge a set of opaque packets seen by
a network intermediary. But this problem is technically chal-
lenging for middleboxes without access to cleartext sequence
numbers or the ossification of other fields.

We start by mathematically defining the quACK problem.
We discuss how to select an identifier to refer to a packet,
and analyze strawman solutions to the quACK problem that

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1815

use too much space or computation. Finally, we present an
efficient construction of a quACK based on the insight that we
can model the problem as a system of power sum polynomial
equations when we have a bound on the maximum number of
missing elements, a threshold t. This solution is most similar
to the deterministic solution to the straggler identification
problem [22], and also builds on related theoretical work in set
reconciliation [50], and coding theory and graph theory [35].

3.1 The QuACK Problem
We first describe the quACK problem. A data sender transmits
a multiset1 of elements S (these correspond to packets). At any
given time, a receiver (such as a proxy server) has received a
subset R⊆ S of the sent elements. We would like the receiver
to communicate a small amount of information to the sender,
who then efficiently decodes the missing elements—the set
difference S \R—knowing S. We call this small amount of
information the “quACK”, and the problem is: what is in a
quACK and how do we decode it?

3.2 Packet Identifiers
In a networking context, how exactly do we refer to the ele-
ments in the quACK problem that have been sent or received?
Traditional TCP middleboxes have been able to interpose
their own concise, cumulative acknowledgments using clear-
text sequence numbers, but this is not possible with modern,
secure transport protocols. Even if a connection did expose
an unencrypted numerical field, we would not want to refer
to that field at risk of ossifying that protocol.

Instead, we need a function that deterministically maps a
packet to a random b-byte identifier. The most trivial solution
that applies to all base protocols is to hash the entire payload.
Another option if the payload is already pseudorandom (e.g.,
QUIC) is to take the first b bytes from a fixed offset of that
payload. Although the latter option would rely on those bytes
to remain pseudorandom, it is computationally more efficient
because it does not require reading the entire payload.

Collisions. The main considerations when selecting the
number of bytes, b, in an identifier is the tolerance for colli-
sions compared with the extra data needed to refer to these
packets on the link. The larger b is, the lower the collision
probability but the greater the link overhead.

Define the collision probability to be the probability that
a randomly-chosen b-byte identifier in a list of n packets
maps to more than one packet in that list. If we assume that
identifiers are uniformly distributed, this probability is equal
to 1−(1−1/256b)n−1. When n = 25, using 4 bytes results in
an almost negligible chance of collision while using 2 bytes
results in a 0.04% chance (Table 1).

When handling collisions, a sender who is decoding a
quACK has a list of n packets it is trying to classify as re-
ceived or missing (Section 3.5). Note that collisions are also

1A “multiset” means the same element can be transmitted more than once.

Identifier Bytes 1 2 4 8
Collision Prob. 0.090 0.0004 5.6e-09 ≈0

Table 1: Collision probabilities for n = 25.

known to the sender beforehand. If there is a collision be-
tween a packet that is received and a packet that is missing,
the fate of that identifier is considered indeterminate. In our
scenarios (Section 2), either the protocol can still function
with approximate statistics (e.g., congestion control) or it can
fall back to an end-to-end mechanism (e.g., retransmission).

3.3 Strawman Solutions
A problem that is simple with cumulative and selective ac-
knowledgments of plaintext sequence numbers is deceivingly
challenging for pseudorandom packet identifiers. Consider
the following strawman solutions to the quACK problem:

Strawman 1: Echo every identifier. Strawman 1a, similar
to [41, 44], echoes the identifier of every received packet in a
new UDP packet to the data sender. Decoding is trivial given
the identifiers are unmodified. This strawman adds significant
link overhead in terms of additional packets. Additionally,
since the strawman is not cumulative, losing a quACK means
the end host could falsely consider a packet to be lost, creating
a congestion event or spurious retransmission.

Strawman 1b echoes a sliding window of identifiers over
UDP such that there is overlap in the identifiers referred to by
consecutive quACKs. This solution is slightly more resilient
to loss, but uses more bytes and is still not guaranteed to
be reliable. Another variant batches identifiers to reduce the
number of packets, but this solution is even less resilient to
loss.

We also consider a Strawman 1c that echoes every identifier
over TCP with TCP_NODELAY to send every identifier in its
own packet. This ensures there are no false positives when
detecting lost packets, but adds even more link overhead in
terms of TCP headers and additional ACKs from the data
sender (every other packet by default in the Linux kernel).

Strawman 2: Cumulative hash of every identifier. Straw-
man 2 sends a SHA-256 hash of a sorted concatenation of all
the received packets in a UDP packet, and the sender hashes
every subset of the same size of sent packets until it finds
the subset with the same hash (assuming collision resistance).
The strawman includes a count of the packets received to
determine the size of the subset to hash. As the number of
missing packets exceeds even a moderate amount, the num-
ber of subsets to calculate explodes, making the strawman
impractical to decode.

One might also suggest the receiver send negative acknowl-
edgments of the packets it has not received. However, unlike
sequence numbers where one can determine a gap in received
packets, there is no way to tell with random identifiers what
packet is missing or should be expected next.

1816 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Num Additional Packet Payload Cumu-
Per-Packet Encode Time Decode Time Proxy Packets Size (bytes) lative?

Strawman 1a Parse identifier N/A n b No
Strawman 1b Parse identifier, move sliding N/A n b ·window No

window
Strawman 1c Parse identifier N/A n (TCP headers) b No
Strawman 2 Parse identifier, Concatenate and hash 1 32+4 Yes

concatenate and hash
(n

m
)

subsets (hash and count)
Power Sums Parse identifier, t modular Plug n candidate roots into a 1 4+b+b · t Yes

multiplications and additions degree-m polynomial OR solve (count, last value,
system of m polynomial equations t power sums)

Table 2: Strawmen compared to the power sum quACK representing n packets sent by the data sender, m missing packets, and
b-byte identifiers. The power sum quACK uses the threshold t. The total data overhead of each quACK must consider the packet
payload size along with transport headers. We evaluate the overheads in practice in Section 6.4.

3.4 The Power Sum Solution
Now we describe a solution to the quACK problem based
on the insight that we can model the problem as a system
of power sum polynomial equations when we have a bound
on the maximum number of missing elements, a threshold t.
Unlike the previous strawmen, this construction is efficient to
decode, and its size is proportional only to t.

Consider the simplest case, when the receiver is only miss-
ing a single element. The receiver maps packet identifiers to
a finite field, i.e. modulo the largest prime that fits in b bytes,
and communicates the sum ∑x∈R x of the received elements
to the sender. The sender computes the sum ∑x∈S x of the sent
elements and subtracts the sum from the receiver, calculating:

∑
x∈S

x−∑
x∈R

x = ∑
x∈S\R

x,

which is the sum of elements in the set difference. In this case,
the sum is exactly the value of the missing element.

In fact, we can generalize this scheme to any number of
missing elements m. Instead of transmitting only a single
sum, the receiver communicates the first m power sums to the
sender, where the i-th power sum of a multiset R is defined
as ∑x∈R xi. The sender then computes the first m power sums
of S and calculates the respective differences di for i ∈ [1,m],
producing the following system of m equations:{

∑
x∈S\R

xi = di | i ∈ [1,m]

}
.

Instead of transmitting an unbounded number of power
sums, the receiver only maintains and sends the first t power
sums. Efficiently solving these t power sum polynomial equa-
tions in t variables in a finite field is a well-understood algebra
problem [22]. The solutions are exactly x ∈ S\R.

Efficiency. The power sum quACK is efficient to decode,
adds reasonable link overhead, and is a cumulative represen-
tation of the packets seen by the receiver (Table 2). Compared
to Strawman 2, the power sum quACK can be decoded with
simple algebraic techniques. Its link overhead is proportional

only to the number of missing packets between consecutive
quACKs, up to a configurable threshold. In comparison, the
link overhead of Strawman 1 is necessarily proportional to
the number of received packets. The power sum quACK is
also resilient to mis-identifying a received packet as dropped,
in the case a quACK is lost in transmission.

Interface. The actual format of the power sum quACK in-
cludes three fields: (i) t b-byte power sums, (ii) a 4-byte count
of received elements, and (iii) the b-byte identifier of the last
element received. We assume power sum quACKs to be sent
over UDP, though the actual mechanism is not tied to the
design. Since the decoder does not know m ahead of time, the
decoder takes the difference between the number of packets it
has sent and the count in the quACK to calculate m. Sending
the last element received is an optimization that allows m to
represent just the “holes” among the packets being selectively
ACKed, excluding the possibly many consecutive elements
that are in-flight (Section 4.3.1).

3.5 Microbenchmarks
We benchmark our optimized implementation of the power
sum quACK [65] to demonstrate its practicality for in-line
packet processing. Our microbenchmarks used an m4.xlarge
AWS instance with a 4-CPU Intel Xeon E5 processor @ 2.30
GHz and 16 GB memory.

Encode Time Decode Time

Strawman 1a/1c 1 ns/pkt 0
Strawman 1b 51 ns/pkt 0
Strawman 2 27 ns/pkt 830 ms
Power Sum 33 ns/pkt 2.82 µs

Table 3: The CPU overheads of power sums are comparable
to those of the strawmen, while being more efficient in space
and computation. The encode time includes constructing and
serializing the quACK(s), given n identifiers. The decode time
includes finding the identifiers of either R or S\R, given the
quACK(s) and S. Parameters: n = 25, t = 10, b = 4.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1817

0 100 200 300
Num Sent Packets

0

10

20

30

De
co

de
 T

im
e

(μ
s)

b=2 b=4 b=8

(a) Evaluate a degree-
m = t = 10 polynomial
at n candidate roots.

0 100 200 300
Num Missing Packets

0

500

1000

De
co

de
 T

im
e

(μ
s)

b=2 b=4 b=8

(b) Plug n = 300 candi-
date roots into a degree-
m polynomial.

0 100 200 300
Threshold (pkts)

0

500

1000

1500

En
co

de
 T

im
e

(n
s/

pk
t) b=2 b=4 b=8

(c) Update t power sum
equations. Average of
1000 packets.

Figure 2: How power sum quACK performance depends on
various parameters: bit width, threshold, number of sent and
missing packets. Average of 100 trials.

A power sum quACK that represents n = 25 outstanding
packets (packets in consideration on that path segment not
yet known to be received or lost) and up to t = 10 missing
packets with b = 4-byte identifiers adds 33 ns of encoding
time per packet and takes 2.82 µs to decode (Table 3).

Decoding. The decode time must be comparable to the time
it takes to process a typical ACK and modify the logic in the
transport protocol. Decoding typically occurs on end hosts,
compared to encoding which occurs in the middle of the path.

Finding the solution to the system of power sum polyno-
mial equations boils down to applying Newton’s identities
(a linear algorithm) and finding the roots of a polynomial
equation in a modular field [22]. Factoring a polynomial
is asymptotically fast in theory, but the implementation is
branch-heavy and complicated [3]. We found that plugging in
and evaluating which of n candidate roots evaluated to zero
was faster in practice for n < 40,000 roots. This is the method
we use to decode the power sum quACK.

The decode time of this method is directly proportional to n
(Figure 2a) and the number of missing packets m (Figure 2b).
Decoding takes 2820/10/25≈ 11 ns/candidate/missing. Both
n and m are typically a few hundred at most.

Encoding. The encode time per-packet is directly propor-
tional to the threshold number of missing packets t (Figure 2c)
at 33/10≈ 3 ns/power sum. Each power sum can be updated
in a constant number of operations based on the previous
power sum, so encoding an identifier requires t modular addi-
tions and multiplications for the t power sums.

Bit widths. Different bit widths have different implications
for which instructions the CPU can use. Modular operations
are efficient for 16- and 32-bit integers, fitting within the 64-
bit word size (the number of bits that can be processed in one
instruction) of most modern CPUs. For example, to multiply
two 32-bit integers, we cast them to 64-bit integers, multiply,
then take the modulus.

Figure 2 shows the best performance we achieved at dif-
ferent bit widths. For 16-bit identifiers only, we precomputed
power tables that fit in the L3 cache. For 64-bit identifiers,
we implemented Montgomery modular multiplication [51]
to avoid an expensive hardware division for 128-bit integers.
In the remainder of the paper, we use b = 4 as the preferred

tradeoff between space and collision probability.

4 Sidekick Protocol
This section describes Robin, our design for a sidekick proto-
col built around quACKs. This includes the setup and config-
uration of a Robin sidekick connection, how a sender detects
loss from a quACK, and a path-aware modification to CUBIC
called PACUBIC, for congestion-controlled base protocols.

4.1 PEP Discovery Mechanism
Sidekick connections can be configured explicitly or implic-
itly. In systems that explicitly configure proxies, such as Ap-
ple’s iCloud Private Relay [1] based on MASQUE [39, 40],
proxies can simply negotiate sending quACKs during ses-
sion establishment. In most other settings, such as 4G/5G
cellular networks, PEPs have traditionally been deployed as
transparent proxies, silently interposing on end-to-end con-
nections. Senders therefore need a way to detect transparent
sidekick proxies and inform them of where to send quACKs.
Because of network address translation, all communication
to the proxy must be initiated by the sender or use the same
IP addresses and port numbers of the base connection.

Our current design has senders signal quACK support
by sending a distinguished packet containing a 128-byte
sidekick-request marker. Such inline signaling could confuse
receivers, but sidekicks target protocols such as QUIC that
discard cryptographically unauthenticated data anyway. It
would be cleaner to signal support through out-of-band UDP
options [61], which we hope to do once they are standardized.

The proxy replies to a sidekick-request packet by sending
a special packet from the receiver’s IP address and port num-
ber back to the sender. This packet contains a sidekick-reply
marker, an opaque session ID, and an IP address and port
number for communicating with the proxy. Upon receiving
the sidekick-reply packet, the sender begins communicating
directly with the proxy from a different UDP port. It initially
sends back the session ID and configuration parameters to
start receiving quACKs.

Security. A malicious third-party could execute a reflection
amplification attack that generates a large amount of traffic
while hiding its source. This is possible because the sender re-
quests quACKs to a different port and (for some carrier-grade
NATs) IP address from the underlying session. To mitigate
this, each quACK contains a quota, initially 1, of remaining
quACKs the proxy will send as well as an updated session ID.
The quota and session ID ensure only the sender can increase
the quota or otherwise reconfigure the session.

An adversarial PEP could send misleading information to
the sender. Note that only on-path PEPs can send credible
information, since they refer to unique packet identifiers. To
mitigate this, the sender can consider PEP feedback along
with end-to-end metrics to determine whether to keep using
the PEP. The sender can always opt out of the PEP, and the

1818 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

PEP cannot actively manipulate traffic any more than outside
a sidekick setting.

4.2 Configuration Messages
The data sender can send various other messages to the proxy
to configure the connection or reset bad state.

Protocol parameters. The sender configures (i) the quACK
interval of the PEP and (ii) the threshold number of missing
packets t, or otherwise selects sidekick-specific settings such
as how an identifier is computed.

The quACK interval is expressed in terms of time or num-
ber of packets, e.g., every N milliseconds or every N packets,
as in a TCP delayed ACK. The sender determines the desired
interval based on its estimated RTT of the base connection and
its application objectives, e.g., more frequently for latency-
sensitive applications or lower-RTT paths.

The threshold represents the bound on the number of miss-
ing packets between quACKs, in practice the number of
“holes” among the packets that are selectively ACKed. The
threshold depends on the quACK interval, and should be set
based on how precise loss detection needs to be and other
qualities of the link. For example, the threshold is larger to
detect congestive loss in the queue of a bottleneck link, or
smaller to still detect transmission error on a lossy link.

Resets. Robin allows the sender to tell the PEP to reinitial-
ize the quACK. This is helpful if the quACK becomes invalid,
e.g., if m exceeds the threshold t. It is always safe to reset the
quACK, or even to ignore the sidekick entirely and fall back
to the base protocol’s end-to-end mechanisms.

4.3 Sender Behavior
In this section, we discuss two particular sender-side behav-
iors that are enabled by the sidekick protocol and which are
helpful across several scenarios: detecting packet loss from a
decoded quACK and congestion control.

4.3.1 Detecting Loss

The sender knows definitively which packets have been re-
ceived by the proxy from a decoded quACK. Next, it must
determine from the remaining packets which ones have been
dropped and which are still in-flight, including if there has
been a reordering of packets. In-flight packets are later classi-
fied as received or dropped based on future quACKs.

When there is no reordering, the packets that are dropped
are just the “holes” among the packets that are selectively
ACKed by the quACK. In particular, these are the holes when
considering sent packets in the order they were sent up to
the last element received, which represents the last selective
ACK. To identify these dropped packets, the sender encodes
t cumulative power sums of its sent packets up to the last
element received. The difference between these power sums
and the power sums in the quACK represents the dropped
packets. The sender “removes” the identifiers of dropped
packets from its cumulative power sums, ensuring that the

only packets that contribute to the threshold limit are those
that went missing since decoding the last quACK.

To account for reordering in loss detection, Robin imple-
ments an algorithm similar to the 3-duplicate ACK rule in
TCP [5, 60]. In TCP, if three or more duplicate ACKs are
received in a row, it is a strong indication that a segment
has been lost. Robin considers a packet lost only if three or
more packets sent after the missing packet have been received.
Other mechanisms could involve timeouts for individual pack-
ets similar to the RACK-TLP loss detection algorithm for
TCP [11].

4.3.2 Path-Aware CUBIC Congestion Control

Congestion-controlled base protocols must have a congestion
response to lost packets that they retransmit due to quACKs,
similar to if the loss were discovered by the end-to-end ACK.
This ensures friendliness with end-to-end congestion control
algorithms that do consider the loss, such as CUBIC [27] in
the presence of a connection-splitting TCP PEP. Here, we
propose PACUBIC, an algorithm that emulates this “split
CUBIC” behavior. PACUBIC uses knowledge of where loss
occurs to improve connection throughput compared to end-
to-end CUBIC, while remaining fair to competing flows.

Recall that CUBIC [27] reduces its congestion window by a
multiplicative decrease factor, β = β∗ = 0.7, when observing
loss (a congestion event), and otherwise increases its window
based on a real-time dependent cubic function with scaling
factor C =C∗ = 0.4:

cwnd =C(T −K)3 +wmax where K =
3

√
wmax(1−β)

C
.

Here, cwnd is the current congestion window, wmax is the
window size just before the last reduction, and T is the time
elapsed since the last window reduction.

While a split CUBIC connection has two congestion win-
dows, end-to-end PACUBIC only has one window represent-
ing the in-flight bytes of the end-to-end connection. Concep-
tually, we want an algorithm that enables PACUBIC’s single
congestion window to match the sum of the split connection’s
two congestion windows.

PACUBIC effectively makes it so that we reduce and grow
cwnd proportionally to the number of in-flight bytes on the
path segment of where the last congestion event occurred. Let
r be the estimated ratio of the RTT of the near path segment
(between the data sender and the proxy) to the RTT of the
entire connection (between end hosts). We use r as a proxy
for the ratio of the number of in-flight bytes. If the last con-
gestion event came from a quACK, we use the same real-time
dependent cubic function but with the following constants2

β = 1− r(1−β
∗) and C =

C∗

r3 .

2See Appendix A for more intuition behind β′ and C′.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1819

If the last congestion event came from an end-to-end ACK,
then we use the original β and C as above.

While this algorithm resembles the congestion behavior of
split CUBIC, it is simply an approximation. PACUBIC does
not know the exact number of bytes in-flight on each path seg-
ment, and the sum of the two congestion windows is simply
a heuristic for an inherently different split connection. The
main takeaway is that knowing where loss occurs can inform
congestion control. We generally hope that quACKs can lead
to the development of smarter, path-aware algorithms.

5 Implementation

Module Language LOC
QuACK library (Section 3.5) Rust 1772
Media server/client + integration Rust 478
quiche client integration Rust 1821
libcurl client integration C 1459
Proxy sidekick binary Rust 833

Table 4: Lines of code.

We now describe our implementation of Robin [66] for sev-
eral applications. We integrated sidekick functionality with a
simple media client for low-latency streaming and an HTTP/3
(QUIC) client. The total implementation of the quACK library,
and proxy and client integrations used 6363 LOC (Table 4).

5.1 Baselines and Applications
The baselines we evaluated against were the performance of
two opaque transport protocols without proxy assistance, and
the fairness of a split CUBIC connection.

Low-latency media application. We implemented a simple
server and client in Rust for streaming low-latency media. The
client sends a numbered packet containing 240 bytes of data
every 20 milliseconds, representing an audio stream at 96
kbit/s. The sequence number is encrypted on the wire.

The server receives packets. If it receives a nonconsecutive
sequence number, it sends a NACK back to the client that
contains the sequence number of each missing packet. The
client’s behavior on NACK is to retransmit the packet. The
server retransmits NACKs, up to one per RTT, until it has
received the packet.

The server’s application behavior is to store incoming pack-
ets in a buffer and play them as soon as the next packet in the
sequence is available. The de-jitter buffer delay is the length
of time between when the packet is stored to when it can be
played in-order. Some packets can be played immediately.

HTTP/3 file upload application. We used the popular
libcurl [45] file transfer library as the basis for our
HTTP client, and an nginx webserver. The client makes an
HTTP POST request to the server. Both are patched with
quiche [13], a production implementation of the QUIC pro-
tocol from Cloudflare, to provide support for HTTP/3.

For our TCP baselines, we used the same file upload appli-
cation with the default HTTP/1.1 server and client. We used a
split-connection TCP PEP [10] that intercepts the TCP SYN
packet in the three-way handshake, pretends to be the other
side of that connection, and initiates a new connection to the
real endpoint. Both clients use CUBIC congestion control.

5.2 Client Integration
In each application, we modified only the client to speak
Robin and respond to in-network feedback. The server re-
mained unchanged. The modifications were in two parts: fol-
lowing the discovery mechanism to establish bi-directional
communication with the proxy, and using the information in
the quACK to modify transport layer behavior.

Low-latency media client. The media client has two open
UDP sockets: one for the base connection and one for the
sidekick connection. When it receives a quACK, it detects lost
packets without reordering and immediately retransmits them.
The protocol does not have a congestion window nor a flow-
control window. The client also sends reset and configuration
messages over the sidekick connection.

HTTP/3 file upload client. The HTTP/3 client similarly
has an adjacent UDP socket for the sidekick connection on
which it receives quACKs and sends reset and configura-
tion messages. The client passes the quACK to our modified
quiche library, which interprets the quACK and makes trans-
port layer decisions. From the client’s perspective, quiche
tells libcurl exactly what bytes to send over the wire.

Our modified quiche library uses the quACK to inform
the retransmission behavior, congestion window, and flow-
control window. The library immediately retransmits lost
frames in a newly-numbered packet, as opposed to the lost
packet, similar to QUIC’s original retransmission mechanism.
We implement PACUBIC, described in Section 4.3.2. We also
move the flow-control window (without forgetting packets
in the retransmission buffer), but only in the ACK reduction
scenario, when the congestion window is nearly representative
of that of the sidekick connection’s path segment.

5.3 Proxy Integration
Our proxy sniffs incoming packets of a network interface
using the recvfrom system call on a raw socket. It stores a
hash table using Rust’s standard library HashMap that maps
socket pairs to their respective quACKs, and incrementally
updates the quACKs for flows that have requested sidekick as-
sistance. It also sends quACKs at their configured frequencies
and listens for configuration messages.

6 Evaluation
We evaluated Robin to answer the following questions:

1. Can sidekicks improve the performance of opaque trans-
port protocols in a variety of scenarios while preserving
the opaque behavior of the base protocols?

1820 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

QuACK Thre- Emu- Real-
Scenario Link 1 Link 2 Interval shold Success Metric lated? World?

#1 Low- 1 ms delay, 3.6% 25 ms delay, 0% 2 pkts 8 Reduce tail latency of how long Yes Yes
latency loss, 100 Mbit/s loss, 10 Mbit/s packets are queued in the data
media receiver’s de-jitter buffer.
#2 Connec- 1 ms delay, 1.0% 25 ms delay, 0% 30 ms 10 Achieve high throughput; match Yes Yes
tion- split- loss, 100 Mbit/s loss, 10 Mbit/s the performance, congestion con-
ting PEP trol behavior, and fairness of
emulation connection-splitting TCP PEPs.
#3 ACK 25 ms delay, 0% 1 ms delay, 0% 15 ms 50 Reduce ACK frequency of data re- Yes No
reduction loss, 10 Mbit/s loss, 100 Mbit/s ceiver; achieve high throughput.

Table 5: Experimental scenarios. Link 1 connects the data sender (client) to the proxy, while Link 2 connects the proxy to the
data receiver (server). The quACK interval and threshold represent our sidekick configuration.

AWS Server

Lossy
Wi-Fi
Link

High-Latency
Cellular Path

Cellular Modem
Wi-Fi AP + SidekickLaptop Client

Figure 3: Real-world experimental setup.

2. Can a path-aware congestion control algorithm match
the fairness of split TCP PEPs using CUBIC?

3. How do the CPU overheads of encoding quACKs impact
the maximum capacity of a proxy with a sidekick?

4. What link overheads does the power sum quACK add
and how does it compare to the strawmen?

5. Is Robin robust in a real-world environment?

6.1 Experimental Setup
We modeled the scenarios from Section 2 in both emulated
and real-world environments. We answer questions 1-4 in
emulation and question 5 in the real world. We use the same
m4.xlarge AWS instance as before for the emulated experi-
ments, and as the server in the real-world experiments.

Emulated environment. We emulated a two-hop network
topology (Figure 1) in mininet, configuring the link properties
using tc. In emulation, we represented each link by a constant
delay (with variability induced by the queue), a random loss
percentage, and a maximum bandwidth. Table 5 describes
the parameters for each link to model—e.g., lossy Wi-Fi or a
high-latency cellular path—as well as the metrics for success
in that scenario. Link 1 connects the data sender (client) to the
proxy, while Link 2 connects the proxy to the data receiver
(server). On the proxy, we either run a sidekick, a connection-
splitting TCP PEP [10], or nothing at all.

Real-world environment. To test its robustness, we also
evaluated Robin over a real-world environment that resembled
the scenario on the train (Figure 3). In this setup, a Lenovo
ThinkPad laptop, running Ubuntu 22.04.3 with a 4-Core Intel

i7 CPU @ 2.60 GHz and 16 GB memory, acted as a client
to an AWS instance in the nearest geographical region. The
ThinkPad used as an access point (AP) a Lenovo Yoga laptop,
running Ubuntu 20.04.6 with a 4-Core Intel i5 CPU @ 1.60
GHz and 4 GB memory, with a 2.4 GHz Wi-Fi hotspot. The
AP was connected to the Internet via a JEXtream cellular
modem with a 5G data plan. The AP ran sidekick software.

We measured the link properties of each path segment to
compare to our emulation parameters. We measured delay and
loss using 1000 pings over a 100 second period, and band-
width using an iperf3 test. On the near segment between the
ThinkPad client and the AP, the min/avg/max/stdev RTT was
1.249/37.194/272.168/54.660 ms at 49.8 Mbit/s bandwidth.
We observed that loss increased the further away the AP. In
our experiments, the client was located roughly 200 feet away
in a different room, with 3.6% loss. The far segment between
the AP and the AWS server was 48.546/64.381/92.374/6.806
ms with 0.0% loss at 30.9 Mbit/s. In both environments, the
cellular link was the bottleneck link in terms of bandwidth,
and the corresponding path segments in emulation had similar
minimum RTTs and average loss percentages.

6.2 Performance Comparison to Baseline
We first evaluate Robin’s main performance goal: In each of
the motivating scenarios, we show that Robin can improve per-
formance compared to the base protocol alone, which would
not be able to benefit from existing PEPs. Each scenario has
a different metric for success—tail latency, throughput, or
number of packets sent by the data receiver (corresponding to
energy usage or chance of Wi-Fi collisions)—demonstrating
the versatility of the sidekick protocol.

Low-Latency Media. The sidekick can reduce tail laten-
cies in a low-latency media stream, representing fewer drops
and better quality of experience. The early retransmissions
induced by the sidekick reduced the 99th percentile latency
of the de-jitter buffer delay from 48.6 ms to 2.2 ms—a 95%
reduction (Figure 4a). As long as the quACK interval is less
than the end-to-end RTT, the connection benefits from the
sidekick.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1821

0 50 100 150
De-Jitter Latency (ms)

86%
88%
90%
92%
94%
96%
98%

100%

Pe
rc

en
til

e

Simple E2E
Sidekick

Sidekick(2x)
Sidekick(4x)

(a) Scenario #1: Low-latency media. Reduced
tail latency of de-jitter delay with earlier retrans-
mission. 5 minute trials.

0 20 40
Upload Data Size (MByte)

0

2

4

6

8

Go
od

pu
t (

M
bi

t/s
)

QUIC E2E
Sidekick

Sidekick(2x)
Sidekick(4x)

(b) Scenario #2: Connection-splitting PEP
emulation. Improved goodput. 20 trials me-
dian. Error bars are 1st and 3rd quartiles.

0 250 500 750 1000
Num ACKs from Data Receiver

0

2

4

6

8

Go
od

pu
t (

M
bi

t/s
)

QUIC E2E
Sidekick

Sidekick(2x)
Sidekick(4x)

(c) Scenario #3: ACK reduction. High good-
put independent of end-to-end ACK frequency.
10 MB upload.

Figure 4: Comparing the end-to-end baseline protocol to the same protocol with a sidekick connection, using the success metrics
for the three scenarios described in Table 5. The Sidekick (Nx) data points show the performance at Nx the quACK interval (sent
less frequently) and threshold of the default configurations specified in Table 5.

The sidekick is beneficial in this scenario because it enables
the client to sooner detect and retransmit lost packets, and
the server to sooner play packets from its de-jitter buffer. The
end-to-end mechanism takes one additional received packet
to notify of the loss and one end-to-end RTT to retransmit
and play the packet (20+52=72ms), resulting in three delayed
packets (the three “steps" in Figure 4a) in most cases. The
sidekick takes up to two additional packets and one near
path segment RTT (20+2=22ms or 20×2+2=42ms), delaying
either one or two packets in comparison. Dropped ACKs and
quACKs account for the < 2% of packets with even greater
de-jitter latencies.

Connection-Splitting PEP Emulation. The sidekick im-
proves upload speeds when there is a lossy, low-latency link
by using quACKs to inform the sender’s congestion control.
In a scenario with 1% random loss on the link between the
proxy and the data sender, the HTTP/3 (QUIC) client achieves
3.6× the goodput for a 10 MB upload with a sidekick com-
pared to end-to-end QUIC (Figure 4b).

When there is no random loss, the sidekick does not impact
the performance of QUIC. There are no logical changes to
the base protocol in this case because all loss is on the bottle-
neck link on the far path segment, and the CPU overheads of
processing quACKs are negligible.

Knowing where congestion occurs is an opportunity for
creating smarter congestion control. In PACUBIC, identify-
ing where the loss occured let the data sender reduce the
congestion window proportionally to how many packets were
in-flight on each path segment. In Section 6.3, we will show
that our path-aware congestion control algorithm still matches
the fairness of connection-splitting TCP PEPs.

ACK Reduction. Using quACKs in lieu of end-to-end
ACKs allows the data receiver to significantly reduce its ACK
frequency while maintaining high goodput. In our experiment,

QUIC with a sidekick sent 96% fewer packets (mainly ACKs)
than end-to-end QUIC before the goodput dropped below 8.5
Mbit/s (Figure 4c). The quACK enables the data sender to
promptly move the flow-control window forward, as long as
the last hop is reliable.

The goodput significantly degrades when reducing the end-
to-end ACK frequency without a sidekick. When end-to-end
QUIC reduces the ACK frequency to every 80 ms, the data re-
ceiver sends 247/138 = 1.8× the packets at 4.5/8.4 = 0.5×
the goodput, worse than QUIC with the sidekick in both di-
mensions (Figure 4c). With a sidekick, the data sender also
does not need to change packet pacing to avoid bursts in re-
sponse to infrequent ACKs, which is why end-to-end QUIC
cannot send fewer than ≈ 240 packets.

6.2.1 Configuring the Sidekick Connection

Table 5 shows the quACK interval and threshold we elected
for each scenario based on the considerations in Sec-
tion 4.2. In each experiment in Figure 4, we also show
how with less frequent quACKs (2× and 4× the interval)
and proportionally-adjusted thresholds, the protocol performs
worse, or more variably. Less frequent quACKs means the
client reacts later to feedback about the near path segment,
and more often has to rely on the end-to-end mechanism. The
performance particularly degrades when the quACK interval
exceeds the end-to-end RTT. However, even in this case, the
base protocol with any sidekick at all performs better than the
base protocol alone.

6.3 Fairness Evaluation
It is easy to improve performance without regard to competing
flows; however, we demonstrate that PACUBIC can match
the fairness of split CUBIC in a TCP PEP connection. We
evaluate fairness using Scenario #2 with varying amounts of
loss on the near path segment.

1822 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1MB
Upload Data Size (MByte)

0

2

4

6

8

10

Go
od

pu
t (

M
bi

t/s
)

QUIC E2E QUIC+Sidekick TCP E2E TCP+PEP

1MB 10MB 50MB
Upload Data Size (MByte)

0

2

4

6

8

10

Go
od

pu
t (

M
bi

t/s
)

(a) 0% loss.

1MB 10MB 50MB
Upload Data Size (MByte)

0

2

4

6

8

10

Go
od

pu
t (

M
bi

t/s
)

(b) 1% loss.

Figure 5: Median goodput for three upload data sizes with 0%
and 1% loss on Link 1. 20 trials. Error bars are 1st and 3rd
quartiles. With proxy assistance at 1% loss, both QUIC and
TCP match the performance of when there is no loss at all.

0 1 2 3 4 5 6 7 8
Loss % (Link 1 Delay = 1 ms, Link 2 Delay = 25 ms)

0

2

4

6

8

Go
od

pu
t (

M
bi

t/s
)

QUIC E2E QUIC+Sidekick TCP E2E TCP+PEP

0 1 2 3 4 5 6 7 8
Loss % (Link 1 Delay = 1 ms, Link 2 Delay = 25 ms)

0

2

4

6

8

Go
od

pu
t (

M
bi

t/s
)

Figure 6: Connection-splitting PEP emulation as a func-
tion of near-segment loss rate. In this emulation experiment,
QUIC+Sidekick (running PACUBIC) performs similarly to
TCP+PEP (each connection running CUBIC) and improves
goodput compared with end-to-end protocols. The graph
shows median goodput of a 10 MByte upload. QuACK inter-
val is 30 ms, threshold is 10. Error bars show IQR of 10 trials.

QUIC vs. TCP. We first compare QUIC to TCP without
either PEP. As both connections use CUBIC, they exhibit
similar congestion control behavior and achieve nearly max-
imum throughput in the emulated network with no random
loss (Figure 5a). We attribute the differences to the slightly
different retranmission and loss recovery behaviors of QUIC
and TCP. The PEPs do not affect the performance.

With even a little loss on the near path segment, both QUIC
and TCP dramatically worsen, respectively achieving 28%
and 42% of the goodput at 0% loss, for a 10 MB upload (Fig-
ure 5b). In both protocols, CUBIC treats every transmission
error as a congestion event, even though no amount of reduc-
ing the congestion window affects the error rate. QUIC and
TCP perform similarly to each other with proxy assistance
and 1% loss on the near path segment.

Sidekick vs. TCP PEP. Figure 6 shows that QUIC with
a sidekick roughly matches—as intended—the behavior of
TCP with a PEP-assisted split connection. At higher loss rates,
the near path segment becomes the bottleneck link even with
earlier feedback about loss, causing the performance of TCP
with proxy assistance to drop. QUIC with a sidekick follows

a similar pattern because of its path-aware congestion-control
scheme (Section 4.3.2). The results indicate that the sidekick
protocol’s gains do not come at the expense of congestion-
control fairness relative to the split TCP connection.

6.4 Proxy CPU Overheads

25-Byte Payload 1468-Byte Payload
Cycles % Cycles %

Sniff Packet 22417 97.6 22408 97.5
Table Lookup 247 1.1 251 1.1
Parse ID 23 0.1 22 0.1
Encode ID 74 0.3 69 0.3
Other 213 0.9 225 1.0

Total 22974 100.0 22975 100.0

Table 6: Breakdown of the CPU cycles spent processing each
packet at the proxy. Most cycles are spent on general per-
packet overheads as opposed to quACK-specific processing.

The main bottleneck of Robin on a proxy is the CPU. Ta-
ble 6 shows a breakdown of the number of CPU cycles in each
step. The largest overhead was reading the packet contents
from the network interface (97.5% of the CPU cycles).

Encoding an identifier in a power sum quACK with t = 10
used 74 CPU cycles (0.9%). As a calculation of the theoretical
maximum on a 2.30 GHz CPU, the proxy would be able to
process 31 million packets/second on a single core. The hash
table lookup used 251 cycles and parsing the pseudorandom
payload as an identifier used 22 cycles.

In practice, we measured the maximum throughput of
Robin to be 464k packets/s with 25-byte payloads and 5.5
Gbit/s (458k packets/s) with 1468-byte packet payloads on
a single core (assuming 1500-byte MTUs). This experiment
used multiple iperf3 clients to simulate high load until Robin
was unable to keep up with the load on a single core. The
packet payload size did not seem to affect results.

We find these achieved throughputs acceptable for edge
routers such as Wi-Fi APs and base stations. To deploy Robin
on core routers, we would need to reduce the overhead of
reading packets from the NIC, such as by bypassing the
kernel/user-space protection boundary3 [20, 48, 62] or using
native hardware [8]. We could also scale on multiple cores
using symmetric RSS hashing [64].

6.5 Link Overheads
The other cost in terms of using sidekick protocols is the
additional data sent by the proxy to the data sender. Too many

3A kernel-bypass system like Retina [62] can achieve 25 Gbps on 2 cores
while processing raw packets with a 1000-cycle callback (Figure 5(a) in [62]).
The Sidekick equivalent would be a 500-cycle callback, and assuming all
traffic has requested sidekick help. Throughput scales almost linearly with
the number of cores using symmetric RSS hashing. Thus we don’t expect
proxy overheads to be an issue with modern 100 Gbps network speeds and
an optimized implementation even on commodity hardware.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1823

Data Sender→ ←Proxy ←Data Receiver
Pkts Bytes Pkts Bytes Pkts Bytes Goodput

QUIC E2E 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
Strawman 1a 0.96× 1.01× 2.02× 1.56× 1.01× 1.03× 3.33×
Strawman 1b 0.94× 1.00× 2.00× 1.78× 1.00× 1.03× 3.53×
Strawman 1c 1.83× 1.06× 2.01× 1.83× 1.00× 1.03× 3.46×
Power Sum 0.94× 1.00× 1.03× 1.07× 1.00× 1.03× 3.55×

(a) Scenario #2: Connection-splitting PEP emulation.

Data Sender→ ←Proxy ←Data Receiver
Pkts Bytes Pkts Bytes Pkts Bytes Goodput

QUIC E2E 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00×
Strawman 1a 0.96× 1.00× 9.94× 4.99× 0.04× 0.08× 1.02×
Strawman 1b 0.96× 1.00× 9.95× 7.13× 0.04× 0.08× 1.02×
Strawman 1c 1.91× 1.05× 9.73× 7.41× 0.04× 0.08× 0.97×
Power Sum 0.96× 1.00× 1.09× 2.56× 0.04× 0.08× 0.98×

(b) Scenario #3: ACK reduction.

Figure 7: Link overheads for a 10 MB upload. The cells rep-
resent the multiplier relative to the end-to-end QUIC baseline
for each type of quACK. Lower is better for number of pack-
ets and bytes sent on a link. Higher goodput is better. Robin’s
power sum quACK achieves the success metric for each sce-
nario without incurring the link overheads of the strawmen.
We did not evaluate the contrived protocol in Scenario #1.

additional bytes use up bandwidth, and additional packets use
up CPU. Figure 7 shows the number of packets and bytes sent
at each node comparing the strawmen and power sum quACK
to no sidekick connection at all.

Using power sum quACKs increases the packets sent from
the proxy to the data sender by 3-9%. These packets either
consist mostly of end-to-end ACKs which are sent every
packet in quiche, or end-to-end ACKs that have been re-
placed by quACKs in the ACK reduction scenario. We did
not evaluate Scenario #1 because it is based on a contrived
protocol that lacks many of these features, and the link over-
heads would not really make sense.

This overhead is representative of the CPU overhead at
the client, since quACKs and ACKs take a similar number of
cycles to process. In an experiment with Scenario #2 during
a period of ≈ 90k incoming packets, ACKs took on average
26065 cycles to process while the quACKs took 26369 cycles,
1% more. These cycles come from, i.e., the complex recovery
and loss detection algorithms implemented at the end host.

The strawmen have significantly higher link overheads com-
pared to the power sum quACK. The proxy sends up to 10×
more packets using Strawman 1a, and also slightly harms the
goodput in the congestion control scenario. The reduced good-
put is due to the sender mis-identifying received packets as
dropped due to dropped quACKs. The proxy achieves higher
goodput with Strawman 1b but sends more bytes. Strawman
1c increases the link overheads at both the proxy and the data
sender due to larger TCP headers and TCP ACKs. We did not
evaluate Strawman 2 due to its impractical decode time.

0 2000 4000
De-Jitter Latency (ms)

86%
88%
90%
92%
94%
96%
98%

100%

Pe
rc

en
til

e

Simple E2E Sidekick

(a) Low-latency media. CDF of per-
packet de-jitter latencies over 10 one-
minute trials per protocol.

1MB 10MB 50MB
Upload Data Size (MByte)

0

1

2

3

Go
od

pu
t (

M
bi

t/s
)

QUIC E2E Sidekick

(b) Path-aware congestion control.
Median of 20 trials. Error bars are
1st and 3rd quartiles.

Figure 8: Real-world results. Experiments were run in a mod-
erately well-attended office environment over a Friday after-
noon. Trials alternate between the baseline and the sidekick
to account for variability in time of day.

6.6 End-to-End Real World Experiments

We discuss the results of our experiments replicating two of
our scenarios in the real world, using as context these main
differences between emulation and the real-world:

• The RTT is more variable as it depends on interactions
in the wireless medium and the shared cellular path.

• Wireless loss can be more variable as nearby 2.4 GHz
devices and physical barriers may interfere with the link.
Wireless loss also tends to be more clustered in practice.

• The available bandwidth on the shared cellular path is
more variable, and depends on the time of day.

Figure 8 shows the results of running the low-latency media
and connection-splitting PEP emulation experiments in the
real-world. The baseline protocol with a sidekick is able to
reduce the 99th percentile de-jitter latency of an audio stream
from 2.3 seconds to 204 ms—about a 91% reduction—and
improve the goodput of a 50 MB HTTP/3 upload by about
50%. Although the improvements are more conservative com-
pared to emulation in Figure 4a and Figure 4b, each case still
benefits the base protocol under all circumstances, compared
to end-to-end mechanisms alone.

Part of the difference can be attributed to the network set-
ting. When there is no loss on the near path segment, as can
occasionally happen in a real Wi-Fi link, we do not expect to
see a difference with a sidekick. When there is more loss on
the far path segment, which is variable and depends on the
time, we expect the benefit of the sidekick to be less since
this equally affects the performance of the base protocol.

The other part of the difference could be made up by future
work that better adapts a sidekick connection to real-world
variability: The client could improve path segment RTT es-
timation based on when the proxy receives packets, and use
this dynamic estimate in the calculation of r used in β and C.
The client could also use this estimate to dynamically adjust
the quACK interval. Finally, we could analyze theoretically
how PACUBIC responds to traffic patterns in the real world.

1824 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

7 Limitations
The sidekick approach, and our experiments, are subject to
some limitations, which we describe briefly here.

Multipath scenarios. We have only considered sidekick
proxies along a single path, and not thought extensively
about how quACKs would interact with protocols such as
TCPLS [57] that use multiple paths or streams, or even mul-
tipath QUIC [18]. To begin thinking about this question, we
would have a more complex model of the network: multiple
PEPs along a single path, multiple paths each with varying
numbers of PEPs, and so on. The proxy can include additional
information in the sidekick-reply packet to indicate which
path the PEP assistance is on, and the sender can infer from
the RTT how far along a path each PEP is relative to others.
New sidekick algorithms that come from this model could di-
agnose troublesome paths, or better allocate network traffic in
a multipath connection. Existing algorithms could be applied
to individual paths as if they were single-path connections.

Even more diverse network scenarios. The three scenar-
ios we explored all consisted of a lossy Wi-Fi link and a
high-latency WAN link. Not all scenarios will be favorable to
the sidekick protocol we designed. If the “lossy” section of a
network path were on the far path segment from the sender,
the sender would not have any more information about the
problematic link. To accomodate scenarios like this, sidekick
protocols will need more features. For example, the proxy
would need some way to receive quACKs from the data re-
ceiver, as well as a mechanism to buffer and retransmit pack-
ets [2, 10].

There are likely other scenarios that could benefit from side-
kick protocols as described, but we did not evaluate them. For
example, if we replaced the lossy Wi-Fi link with a modern
wireless link that has a fluctuating physical capacity [9,37,52],
the sender may be able to more quickly adapt and make data
available for transmission whenever capacity intermittently
becomes available.

Practical deployment. The implementation of Robin exists
as a research system that has been evaluated in emulation and
a limited set of real-world scenarios. Since sidekick protocols
require the cooperation of middleboxes and client applica-
tions, more work will be needed to standardize the discovery
protocol and wire format of sidekick messages described in
Section 4, ideally with interest from the IETF. The standards
will need to establish several design choices such as how iden-
tifiers are computed, how quACKs are transmitted, and the
exact mechanisms for security and backwards compatibility.
We may also want to standardize sender behavior for specific
base protocols, though this could be opaque except to the
sender.

The deployment of sidekick protocols can be gradual and
backwards-compatible with parties that are either unaware of
or do not want to participate in sidekick protocols. To migrate

existing client applications, one needs to modify the code to
discover a PEP and use information in a quACK to inform
the base protocol. To migrate middleboxes, they would need
to be modified to listen for sidekick-request markers, then
accumulate and send quACKs for participating connections.

Deeper analysis of path-aware congestion control. The
correspondence between endpoint-driven PACUBIC and
“split CUBIC” is good, and both are better than end-to-end
CUBIC in Figure 6), but not exact. The appropriateness of
the PACUBIC heuristic, and in general the idea of path-aware
congestion control, needs to be further explored. We discuss
this more in Appendix A.

8 Conclusion
We presented sidekick protocols: an alternate approach to
PEPs that leaves the underlying protocol opaque and unmod-
ified on the wire. We described a mathematical technique
called a quACK that enables middleboxes to refer to packets
of the underlying connection without the ability to observe
cleartext sequence numbers. We augmented a streaming pro-
tocol and a production QUIC implementation (Cloudflare
quiche) to make use of information arriving from a proxy
on a sidekick connection, including a path-aware congestion-
control mechanism called PACUBIC. In emulation and a real-
world evaluation, the sidekick protocol was able to improve
the performance—tail latency, throughput, or energy usage—
of these end-to-end base protocols without modifying the wire
format or security properties.

Quacknowledgments
We thank Mary Wootters for identifying the relevance of error-
correcting codes to the challenging quACK problem, Gerry
Wan for his insights in high-speed packet processing that
helped improve the proxy performance, and Deepti Raghavan,
Matei Zaharia, our shepherd Akshay Narayan, and the anony-
mous reviewers for other invaluable feedback and discussion.
This work was supported in part by NSF grants 2045714,
2039070, 2028733, 1931750, 1918056, 1763256, and DGE-
1656518, DARPA contract HR001120C0107, a Stanford Grad-
uate Fellowship, a Sloan Research Fellowship, and by Google,
VMware, Dropbox, Amazon, and Meta Platforms.

References
[1] Apple Inc. iCloud Private Relay Overview.

https://www.apple.com/icloud/docs/iCloud_
Private_Relay_Overview_Dec2021.pdf, Dec.
2021.

[2] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz.
Improving TCP/IP performance over wireless networks.
In Proceedings of the 1st Annual International Confer-
ence on Mobile Computing and Networking, MobiCom
’95, page 2–11, New York, NY, USA, 1995. Association
for Computing Machinery.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1825

https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf

[3] C. Batut, K. Belabas, D. Bernardi, H. Cohen, and
M. Olivier. User’s Guide to PARI-GP. Université de
Bordeaux I, 2000.

[4] BitTorrent Foundation. BitTorrent (BTT) White
Paper v0.8.7. https://www.bittorrent.com/btt/
btt-docs/BitTorrent_(BTT)_White_Paper_v0.8.
7_Feb_2019.pdf, Feb. 2019.

[5] E. Blanton, D. V. Paxson, and M. Allman. TCP Conges-
tion Control. RFC 5681, Sept. 2009.

[6] J. Border. Google QUIC over satellite links. Presenta-
tion, IETF PANRG interim, June 2020.

[7] J. Border, B. Shah, C.-J. Su, and R. Torres. Evaluating
QUIC’s performance against performance enhancing
proxy over satellite link. In 2020 IFIP Networking
Conference (Networking), pages 755–760, 2020.

[8] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker. P4: programming protocol-
independent packet processors. SIGCOMM Comput.
Commun. Rev., 44(3):87–95, July 2014.

[9] H. Burchardt, N. Serafimovski, D. Tsonev, S. Videv, and
H. Haas. VLC: Beyond point-to-point communication.
IEEE Communications Magazine, 52(7):98–105, 2014.

[10] C. Caini, R. Firrincieli, and D. Lacamera. PEPsal: a
performance enhancing proxy designed for TCP satellite
connections. In 2006 IEEE 63rd Vehicular Technology
Conference, volume 6, pages 2607–2611, 2006.

[11] Y. Cheng, N. Cardwell, N. Dukkipati, and P. Jha. The
RACK-TLP Loss Detection Algorithm for TCP. RFC
8985, Feb. 2021.

[12] D. Clark. The design philosophy of the DARPA internet
protocols. In Symposium Proceedings on Communica-
tions Architectures and Protocols, SIGCOMM ’88, page
106–114, New York, NY, USA, 1988. Association for
Computing Machinery.

[13] Cloudflare, Inc. Quiche. https://github.com/
cloudflare/quiche, Feb. 2024.

[14] B. Cronkite-Ratcliff, A. Bergman, S. Vargaftik, M. Ravi,
N. McKeown, I. Abraham, and I. Keslassy. Virtualized
congestion control. In Proceedings of the 2016 ACM
SIGCOMM Conference, SIGCOMM ’16, page 230–243,
New York, NY, USA, 2016. Association for Computing
Machinery.

[15] A. Custura, T. Jones, and G. Fairhurst. Impact of ac-
knowledgements using IETF QUIC on satellite perfor-
mance. In 2020 10th Advanced Satellite Multimedia

Systems Conference and the 16th Signal Processing for
Space Communications Workshop (ASMS/SPSC), pages
1–8, 2020.

[16] A. Custura, T. Jones, R. Secchi, and G. Fairhurst. Re-
ducing the acknowledgement frequency in IETF QUIC.
International Journal of Satellite Communications and
Networking, 41(4):315–330, 2023.

[17] P. Davern, N. Nashid, C. J. Sreenan, and A. H. Zahran.
HTTPEP: a HTTP performance enhancing proxy for
satellite systems. Int. J. Next Gener. Comput., 2(3),
2011.

[18] Q. De Coninck and O. Bonaventure. Multipath QUIC:
Design and evaluation. In Proceedings of the 13th Inter-
national Conference on Emerging Networking EXperi-
ments and Technologies, CoNEXT ’17, page 160–166,
New York, NY, USA, 2017. Association for Computing
Machinery.

[19] F. R. Dogar and P. Steenkiste. Architecting for edge
diversity: supporting rich services over an unbundled
transport. In Proceedings of the 8th International Con-
ference on Emerging Networking Experiments and Tech-
nologies, CoNEXT ’12, page 13–24, New York, NY,
USA, 2012. Association for Computing Machinery.

[20] DPDK: Data Plane Development Kit. https://www.
dpdk.org/, Sept. 2023.

[21] K. Edeline and B. Donnet. A bottom-up investigation of
the transport-layer ossification. In 2019 Network Traffic
Measurement and Analysis Conference (TMA), pages
169–176, 2019.

[22] D. Eppstein and M. T. Goodrich. Straggler identification
in round-trip data streams via Newton’s identities and
invertible Bloom filters. IEEE Trans. on Knowl. and
Data Eng., 23(2):297–306, Feb. 2011.

[23] V. Farkas, B. Héder, and S. Nováczki. A split connec-
tion TCP proxy in LTE networks. In R. Szabó and
A. Vidács, editors, 18th European Conference on Infor-
mation and Communications Technologies (EUNICE),
volume LNCS-7479, Budapest, Hungary, Aug. 2012.
Springer.

[24] B. Ford and J. R. Iyengar. Breaking up the transport
logjam. In Proceedings of the 7th ACM Workshop on
Hot Topics in Networks, HotNets ’08, pages 85–90, New
York, NY, USA, 2008. Association for Computing Ma-
chinery.

[25] P. Goyal, M. Alizadeh, and H. Balakrishnan. Rethinking
congestion control for cellular networks. In Proceedings
of the 16th ACM Workshop on Hot Topics in Networks,
HotNets ’17, page 29–35, New York, NY, USA, 2017.
Association for Computing Machinery.

1826 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.bittorrent.com/btt/btt-docs/BitTorrent_(BTT)_White_Paper_v0.8.7_Feb_2019.pdf
https://www.bittorrent.com/btt/btt-docs/BitTorrent_(BTT)_White_Paper_v0.8.7_Feb_2019.pdf
https://www.bittorrent.com/btt/btt-docs/BitTorrent_(BTT)_White_Paper_v0.8.7_Feb_2019.pdf
https://github.com/cloudflare/quiche
https://github.com/cloudflare/quiche
https://www.dpdk.org/
https://www.dpdk.org/

[26] J. Griner, J. Border, M. Kojo, Z. D. Shelby, and G. Mon-
tenegro. Performance Enhancing Proxies Intended to
Mitigate Link-Related Degradations. RFC 3135, June
2001.

[27] S. Ha, I. Rhee, and L. Xu. CUBIC: a new TCP-friendly
high-speed TCP variant. SIGOPS Oper. Syst. Rev.,
42(5):64–74, July 2008.

[28] D. A. Hayes, D. Ros, and O. Alay. On the importance of
TCP splitting proxies for future 5G mmWave communi-
cations. In 2019 IEEE 44th LCN Symposium on Emerg-
ing Topics in Networking (LCN Symposium), pages 108–
116, 2019.

[29] K. He, E. Rozner, K. Agarwal, Y. J. Gu, W. Felter,
J. Carter, and A. Akella. AC/DC TCP: Virtual con-
gestion control enforcement for datacenter networks. In
Proceedings of the 2016 ACM SIGCOMM Conference,
SIGCOMM ’16, page 244–257, New York, NY, USA,
2016. Association for Computing Machinery.

[30] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh,
M. Handley, and H. Tokuda. Is it still possible to extend
TCP? In Proceedings of the 2011 ACM SIGCOMM Con-
ference on Internet Measurement Conference, IMC ’11,
page 181–194, New York, NY, USA, 2011. Association
for Computing Machinery.

[31] J. Iyengar, I. Swett, and M. Kühlewind. QUIC Ac-
knowledgement Frequency. Internet-Draft draft-ietf-
quic-ack-frequency-07, Internet Engineering Task Force,
Oct. 2023. Work in Progress.

[32] J. Iyengar and M. Thomson. QUIC: A UDP-Based
Multiplexed and Secure Transport. RFC 9000, May
2021.

[33] J. R. Iyengar and B. Ford. Flow splitting with fate shar-
ing in a next generation transport services architecture.
CoRR, abs/0912.0921, 2009.

[34] A. Kapoor, A. Falk, T. Faber, and Y. Pryadkin. Achiev-
ing faster access to satellite link bandwidth. In Proceed-
ings IEEE INFOCOM 2006. 25TH IEEE International
Conference on Computer Communications, pages 1–6,
2006.

[35] M. G. Karpovsky, L. B. Levitin, and A. Trachtenberg.
Data verification and reconciliation with generalized
error-control codes. IEEE Transactions on Information
Theory, 49(7):1788–1793, 2003.

[36] D. Kliazovich, S. Redana, and F. Granelli. Cross-layer
error recovery in wireless access networks: The ARQ
proxy approach. Int. J. Commun. Syst., 25(4):461–477,
Apr. 2012.

[37] S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Hen-
neberger, A. Leuther, A. Tessmann, R. Schmogrow,
D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude,
O. Ambacher, J. Leuthold, and I. Kallfass. Wireless sub-
THz communication system with high data rate. Nature
Photonics, 7:977–981, Oct. 2013.

[38] M. Kosek, H. Cech, V. Bajpai, and J. Ott. Exploring
proxying QUIC and HTTP/3 for satellite communica-
tion. In 2022 IFIP Networking Conference (IFIP Net-
working), pages 1–9, 2022.

[39] M. Kosek, T. Shreedhar, and V. Bajpai. Beyond QUIC
v1: A first look at recent transport layer IETF stan-
dardization efforts. IEEE Communications Magazine,
59(4):24–29, 2021.

[40] Z. Krämer, M. Kühlewind, M. Ihlar, and A. Mihály. Co-
operative performance enhancement using QUIC tun-
neling in 5G cellular networks. In Proceedings of the
Applied Networking Research Workshop, ANRW ’21,
page 49–51, New York, NY, USA, 2021. Association
for Computing Machinery.

[41] Z. Krämer, S. Molnár, M. Pieskä, and A. Mihály. A
lightweight performance enhancing proxy for evolved
protocols and networks. In 2020 IEEE 25th Interna-
tional Workshop on Computer Aided Modeling and De-
sign of Communication Links and Networks (CAMAD),
pages 1–6, 2020.

[42] N. Kuhn, F. Michel, L. Thomas, E. Dubois, and
E. Lochin. QUIC: Opportunities and threats in SAT-
COM. In 2020 10th Advanced Satellite Multimedia
Systems Conference and the 16th Signal Processing for
Space Communications Workshop (ASMS/SPSC), pages
1–7, 2020.

[43] T. Li, K. Zheng, K. Xu, R. A. Jadhav, T. Xiong, K. Win-
stein, and K. Tan. Tack: Improving wireless transport
performance by taming acknowledgments. In Proceed-
ings of the Annual Conference of the ACM Special In-
terest Group on Data Communication on the Appli-
cations, Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM ’20, page 15–30,
New York, NY, USA, 2020. Association for Computing
Machinery.

[44] Y. Li, X. Zhou, M. Boucadair, J. Wang, and F. Qin.
LOOPS (Localized Optimizations on Path Segments)
Problem Statement and Opportunities for Network-
Assisted Performance Enhancement. Internet-Draft
draft-li-tsvwg-loops-problem-opportunities-06, Internet
Engineering Task Force, July 2020. Work in Progress.

[45] libcurl - the multiprotocol file transfer library. https:
//curl.se/libcurl/, Sept. 2023.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1827

https://curl.se/libcurl/
https://curl.se/libcurl/

[46] A. M. Mandalari, A. Lutu, B. Briscoe, M. Bagnulo, and
O. Alay. Measuring ECN++: Good news for ++, bad
news for ECN over mobile. IEEE Communications
Magazine, 56(3):180–186, 2018.

[47] A. Martin and N. Khademi. On the suitability of BBR
congestion control for QUIC over GEO SATCOM net-
works. In Proceedings of the Workshop on Applied Net-
working Research, ANRW ’22, New York, NY, USA,
2022. Association for Computing Machinery.

[48] S. McCanne and V. Jacobson. The BSD packet filter:
a new architecture for user-level packet capture. In
Proceedings of the USENIX Winter 1993 Technical Con-
ference, USENIX ’93, page 2, USA, 1993. USENIX
Association.

[49] A. Mihály, S. Nádas, S. Molnár, Z. Krämer, R. Skog, and
M. Ihlar. Supporting multi-domain congestion control
by a lightweight PEP. In 2017 International Conference
on Internet of Things, Embedded Systems and Commu-
nications (IINTEC), pages 105–110, 2017.

[50] Y. Minsky, A. Trachtenberg, and R. Zippel. Set reconcil-
iation with nearly optimal communication complexity.
IEEE Transactions on Information Theory, 49(9):2213–
2218, 2003.

[51] P. L. Montgomery. Modular multiplication without trial
division. Mathematics of Computation, 44(170):519–
521, 1985.

[52] Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos. A
survey of millimeter wave communications (mmWave)
for 5G: opportunities and challenges. Wireless Networks,
21:2657–2676, 2015.

[53] G. Papastergiou, G. Fairhurst, D. Ros, A. Brunstrom,
K.-J. Grinnemo, P. Hurtig, N. Khademi, M. Tüxen,
M. Welzl, D. Damjanovic, and S. Mangiante. De-
ossifying the internet transport layer: A survey and fu-
ture perspectives. IEEE Communications Surveys &
Tutorials, 19(1):619–639, 2017.

[54] C. Perkins, M. Westerlund, and J. Ott. Media Transport
and Use of RTP in WebRTC. RFC 8834, Jan. 2021.

[55] M. Polese, M. Mezzavilla, M. Zhang, J. Zhu, S. Rangan,
S. Panwar, and M. Zorzi. milliProxy: A TCP proxy
architecture for 5G mmWave cellular systems. In 2017
51st Asilomar Conference on Signals, Systems, and Com-
puters, pages 951–957, 2017.

[56] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda,
F. Duchene, O. Bonaventure, and M. Handley. How
hard can it be? Designing and implementing a deploy-
able multipath TCP. In Proceedings of the 9th USENIX

Conference on Networked Systems Design and Imple-
mentation, NSDI ’12, page 29, USA, 2012. USENIX
Association.

[57] F. Rochet, E. Assogba, and O. Bonaventure. TCPLS:
Closely integrating TCP and TLS. In Proceedings of
the 19th ACM Workshop on Hot Topics in Networks,
HotNets ’20, page 45–52, New York, NY, USA, 2020.
Association for Computing Machinery.

[58] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end
arguments in system design. ACM Trans. Comput. Syst.,
2(4):277–288, Nov. 1984.

[59] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy. Blind-
box: Deep packet inspection over encrypted traffic. In
Proceedings of the 2015 ACM Conference on Special In-
terest Group on Data Communication, SIGCOMM ’15,
page 213–226, New York, NY, USA, 2015. Association
for Computing Machinery.

[60] W. R. Stevens. TCP Slow Start, Congestion Avoidance,
Fast Retransmit, and Fast Recovery Algorithms. RFC
2001, Jan. 1997.

[61] D. J. D. Touch. Transport Options for UDP. Internet-
Draft draft-ietf-tsvwg-udp-options-28, Internet Engi-
neering Task Force, Nov. 2023. Work in Progress.

[62] G. Wan, F. Gong, T. Barbette, and Z. Durumeric. Retina:
analyzing 100GbE traffic on commodity hardware. In
Proceedings of the ACM SIGCOMM 2022 Conference,
SIGCOMM ’22, page 530–544, New York, NY, USA,
2022. Association for Computing Machinery.

[63] K. Winstein and H. Balakrishnan. Mosh: An interactive
remote shell for mobile clients. In 2012 USENIX Annual
Technical Conference, USENIX ATC ’12, pages 177–
182. USENIX Association, June 2012.

[64] S. Woo and K. Park. Scalable TCP session monitoring
with symmetric receive-side scaling. KAIST, Daejeon,
Korea, Tech. Rep, 144, 2012.

[65] G. Yuan. Quack. https://github.com/ygina/
quack, Feb. 2024.

[66] G. Yuan. Sidekick. https://github.com/ygina/
sidekick, Feb. 2024.

[67] G. Yuan, D. K. Zhang, M. Sotoudeh, M. Welzl, and
K. Winstein. Sidecar: in-network performance enhance-
ments in the age of paranoid transport protocols. In
Proceedings of the 21st ACM Workshop on Hot Topics
in Networks, HotNets ’22, page 221–227, New York,
NY, USA, 2022. Association for Computing Machinery.

1828 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/ygina/quack
https://github.com/ygina/quack
https://github.com/ygina/sidekick
https://github.com/ygina/sidekick

[68] J. Zirngibl, P. Buschmann, P. Sattler, B. Jaeger,
J. Aulbach, and G. Carle. It’s over 9000: analyzing
early QUIC deployments with the standardization on
the horizon. In Proceedings of the 21st ACM Inter-
net Measurement Conference, IMC ’21, page 261–275,
New York, NY, USA, 2021. Association for Computing
Machinery.

[69] Zoom Video Communications, Inc. Zoom Encryp-
tion White Paper. https://explore.zoom.us/docs/
doc/Zoom%20Encryption%20Whitepaper.pdf, Aug.
2021.

A Intuitive Analysis of PACUBIC
Here, we dive deeper into the intuition behind the PACUBIC
constants (Section 4.3.2), including how they were derived
and why the PACUBIC algorithm achieves similar congestion
behavior to the CUBIC algorithm in a split connection—we
call this behavior “split CUBIC”.

Consider the same network topology as Figure 1 in which
a data sender uploads a large file to a data receiver, with help
from a sidekick proxy in the middle of the connection. The
near path segment connects the sender to the proxy, and the
far path segment connects the proxy to the receiver. The near
segment is low-delay with varying random loss, and the far
segment is high-delay with no random loss. The far segment
is the bottleneck link in terms of bandwidth. The actual link
parameters are the same as in Scenario #2 of Table 5.

We first discuss how split CUBIC would behave in this
setting to conceptually motivate PACUBIC. Consider the con-
gestion windows of each half of the split connection, one taken
at the data sender and one at the proxy (Figures 9a and 9d).
The far path segment experiences only congestive loss, lead-
ing the window at the proxy to fluctuate around the segment’s
BDP regardless of the loss on the near path segment. The
window at the data sender independently determines whether
the packets that reach the proxy will be able to fully utilize
the window set at the far path segment. The data sender is
able to achieve this at low random loss rates, but becomes the
bottleneck as loss rates increase (Figure 6).

While split CUBIC has two windows, PACUBIC only has
one window representing the in-flight bytes of the end-to-
end connection. PACUBIC considers loss detected from both
quACKs and end-to-end ACKs. Conceptually, we want an
algorithm that would enable PACUBIC’s single congestion
window to match the sum of CUBIC’s two congestion win-
dows, or the total number of in-flight bytes.

With no random loss on the near path segment, PACUBIC
(Figure 9b) behaves the same as normal CUBIC (Figure 9c).
The congestion window is entirely governed by end-to-end
ACKs since the far path segment is the bottleneck link. Note
that while the sender may be able to deduce that a loss oc-
curred on the far path segment by combining info from the
quACK with the end-to-end ACK, PACUBIC conservatively
treats the loss as occurring anywhere on the path.

With some random loss on the near path segment, PACU-
BIC grows and reduces cwnd based on where the last con-
gestion event occurs (Figure 9e). Note that if the congestion
window cwnd represents the bytes in-flight in the end-to-end
connection, then r · cwnd represents the proportion of bytes
in-flight on the near path segment. At a high level, if the data
sender discovers loss on the near path segment via the quACK,
it holds the (1− r) · cwnd portion of the “far window” con-
stant while applying the CUBIC algorithm to the remaining
r ·wmax of the “near window,” representing the bottleneck
link.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 1829

https://explore.zoom.us/docs/doc/Zoom%20Encryption%20Whitepaper.pdf
https://explore.zoom.us/docs/doc/Zoom%20Encryption%20Whitepaper.pdf

0 5 10 15 20
Time Since Start (s)

0
20
40
60
80

100
120

cw
nd

 (p
ac

ke
ts

)

CUBIC PACUBIC Split CUBIC Split CUBIC (Proxy)

0 5 10 15 20
Time Since Start (s)

0
20
40
60
80

100
120

cw
nd

 (p
ac

ke
ts

)

(a) Split CUBIC, 0% loss.

0 5 10 15 20
Time Since Start (s)

0
20
40
60
80

100
120

cw
nd

 (p
ac

ke
ts

)

(b) PACUBIC, 0% loss.

0 5 10 15 20
Time Since Start (s)

0
20
40
60
80

100
120

cw
nd

 (p
ac

ke
ts

)

(c) CUBIC, 0% loss.

0 5 10 15 20
Time Since Start (s)

0
20
40
60
80

100
120

cw
nd

 (p
ac

ke
ts

)

(d) Split CUBIC, 1% loss.

0 5 10 15 20
Time Since Start (s)

0
20
40
60
80

100
120

cw
nd

 (p
ac

ke
ts

)

(e) PACUBIC, 1% loss.

0 5 10 15 20
Time Since Start (s)

0
20
40
60
80

100
120

cw
nd

 (p
ac

ke
ts

)

(f) CUBIC, 1% loss.

Figure 9: Congestion window of a long-running upload in Scenario #2 (Table 5) with 0% and 1% loss on the near path segmenet.
The cwnd is measured at the data sender, except for split CUBIC whose split connection also has a cwnd at the proxy. PACUBIC
reacts to every congestion event while keeping the cwnd high. CUBIC performs poorly when there is loss on the near path
segment. CUBIC and PACUBIC are implemented in QUIC, while split CUBIC is implemented in TCP using a PEP.

Mathematically, instead of reducing wmax, the window size
just before the last reduction, by (1−β∗) ·wmax, PACUBIC
reduces it by only [1− (1− r(1−β∗))] ·wmax = r(1−β∗) ·
wmax. That is r times the original reduction, a smaller amount.
We use the RTT ratio r (near path segment to end-to-end) as
a proxy for the ratio of the number of in-flight bytes.

Similarly, instead of using a cubic growth function
with scaling factor C∗ and inflection point K = K∗ =

3
√

wmax(1−β∗)/C∗, we use a larger scaling factor C =C∗/r3

and thus a shorter inflection point

K =
3

√
wmax(1−β)

C
= 3

√
r ·wmax(1−β∗)

C∗/r3 = r4/3 ·K∗.

The shorter inflection point leads the congestion window to
grow more quickly since the sender also reacts to feedback
about loss more quickly over the low-delay link.

At times, there can be loss detected both in quACKs and
in end-to-end ACKs. The end-to-end ACKs have a greater
effect since they reduce the congestion window by a larger
proportion, until the remaining path segment with loss is the
bottleneck link. In this scenario with loss, the bottleneck link
at equilibrium is the near path segment. At this point, the
quACK primarily determines the congestion window updates.
If the far path segment were to become the bottleneck again,
the data sender would detect a congestion event via the end-
to-end ACK.

PACUBIC has several limitations. Although it beats end-
to-end CUBIC, it still performs worse than split CUBIC, es-
pecially at high loss rates (Figure 6). Also, it doesn’t consider
loss on the far path segment any differently than original
CUBIC, unlike split CUBIC which treats the two split con-
nections independently. PACUBIC emulates the congestion
control behavior and fairness of split CUBIC fairly well as a
heuristic, but would benefit from an analysis in a wider variety
of network scenarios. It would also benefit from a side-by-
side fairness comparison against other congestion control
algorithms that perform well in the same scenarios. We’d like
the primary takeaway of PACUBIC to be that knowing where
loss occurs can cleverly inform congestion control.

1830 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Motivating Scenarios
	Low-Latency Media
	Connection-Splitting PEP Emulation
	ACK Reduction

	QuACK
	The QuACK Problem
	Packet Identifiers
	Strawman Solutions
	The Power Sum Solution
	Microbenchmarks

	Sidekick Protocol
	PEP Discovery Mechanism
	Configuration Messages
	Sender Behavior
	Detecting Loss
	Path-Aware CUBIC Congestion Control

	Implementation
	Baselines and Applications
	Client Integration
	Proxy Integration

	Evaluation
	Experimental Setup
	Performance Comparison to Baseline
	Configuring the Sidekick Connection

	Fairness Evaluation
	Proxy CPU Overheads
	Link Overheads
	End-to-End Real World Experiments

	Limitations
	Conclusion
	Intuitive Analysis of PACUBIC

